Properties

Label 960.2.y.c.943.1
Level $960$
Weight $2$
Character 960.943
Analytic conductor $7.666$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [960,2,Mod(847,960)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("960.847"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(960, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([2, 1, 0, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 960 = 2^{6} \cdot 3 \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 960.y (of order \(4\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,2,0,2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.66563859404\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 240)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 943.1
Root \(-1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 960.943
Dual form 960.2.y.c.847.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{3} +(1.00000 + 2.00000i) q^{5} +(-3.00000 + 3.00000i) q^{7} +1.00000 q^{9} +(1.00000 + 1.00000i) q^{11} +(1.00000 + 2.00000i) q^{15} +(1.00000 - 1.00000i) q^{17} +(1.00000 + 1.00000i) q^{19} +(-3.00000 + 3.00000i) q^{21} +(-5.00000 - 5.00000i) q^{23} +(-3.00000 + 4.00000i) q^{25} +1.00000 q^{27} +(-5.00000 + 5.00000i) q^{29} +6.00000i q^{31} +(1.00000 + 1.00000i) q^{33} +(-9.00000 - 3.00000i) q^{35} +4.00000i q^{37} +12.0000i q^{41} -10.0000i q^{43} +(1.00000 + 2.00000i) q^{45} +(3.00000 + 3.00000i) q^{47} -11.0000i q^{49} +(1.00000 - 1.00000i) q^{51} +6.00000 q^{53} +(-1.00000 + 3.00000i) q^{55} +(1.00000 + 1.00000i) q^{57} +(-5.00000 + 5.00000i) q^{59} +(-5.00000 - 5.00000i) q^{61} +(-3.00000 + 3.00000i) q^{63} -2.00000i q^{67} +(-5.00000 - 5.00000i) q^{69} +16.0000 q^{71} +(9.00000 - 9.00000i) q^{73} +(-3.00000 + 4.00000i) q^{75} -6.00000 q^{77} +16.0000 q^{79} +1.00000 q^{81} -4.00000 q^{83} +(3.00000 + 1.00000i) q^{85} +(-5.00000 + 5.00000i) q^{87} +6.00000 q^{89} +6.00000i q^{93} +(-1.00000 + 3.00000i) q^{95} +(1.00000 - 1.00000i) q^{97} +(1.00000 + 1.00000i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{3} + 2 q^{5} - 6 q^{7} + 2 q^{9} + 2 q^{11} + 2 q^{15} + 2 q^{17} + 2 q^{19} - 6 q^{21} - 10 q^{23} - 6 q^{25} + 2 q^{27} - 10 q^{29} + 2 q^{33} - 18 q^{35} + 2 q^{45} + 6 q^{47} + 2 q^{51} + 12 q^{53}+ \cdots + 2 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/960\mathbb{Z}\right)^\times\).

\(n\) \(511\) \(577\) \(641\) \(901\)
\(\chi(n)\) \(-1\) \(e\left(\frac{3}{4}\right)\) \(1\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.00000 0.577350
\(4\) 0 0
\(5\) 1.00000 + 2.00000i 0.447214 + 0.894427i
\(6\) 0 0
\(7\) −3.00000 + 3.00000i −1.13389 + 1.13389i −0.144370 + 0.989524i \(0.546115\pi\)
−0.989524 + 0.144370i \(0.953885\pi\)
\(8\) 0 0
\(9\) 1.00000 0.333333
\(10\) 0 0
\(11\) 1.00000 + 1.00000i 0.301511 + 0.301511i 0.841605 0.540094i \(-0.181611\pi\)
−0.540094 + 0.841605i \(0.681611\pi\)
\(12\) 0 0
\(13\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(14\) 0 0
\(15\) 1.00000 + 2.00000i 0.258199 + 0.516398i
\(16\) 0 0
\(17\) 1.00000 1.00000i 0.242536 0.242536i −0.575363 0.817898i \(-0.695139\pi\)
0.817898 + 0.575363i \(0.195139\pi\)
\(18\) 0 0
\(19\) 1.00000 + 1.00000i 0.229416 + 0.229416i 0.812449 0.583033i \(-0.198134\pi\)
−0.583033 + 0.812449i \(0.698134\pi\)
\(20\) 0 0
\(21\) −3.00000 + 3.00000i −0.654654 + 0.654654i
\(22\) 0 0
\(23\) −5.00000 5.00000i −1.04257 1.04257i −0.999053 0.0435195i \(-0.986143\pi\)
−0.0435195 0.999053i \(-0.513857\pi\)
\(24\) 0 0
\(25\) −3.00000 + 4.00000i −0.600000 + 0.800000i
\(26\) 0 0
\(27\) 1.00000 0.192450
\(28\) 0 0
\(29\) −5.00000 + 5.00000i −0.928477 + 0.928477i −0.997608 0.0691309i \(-0.977977\pi\)
0.0691309 + 0.997608i \(0.477977\pi\)
\(30\) 0 0
\(31\) 6.00000i 1.07763i 0.842424 + 0.538816i \(0.181128\pi\)
−0.842424 + 0.538816i \(0.818872\pi\)
\(32\) 0 0
\(33\) 1.00000 + 1.00000i 0.174078 + 0.174078i
\(34\) 0 0
\(35\) −9.00000 3.00000i −1.52128 0.507093i
\(36\) 0 0
\(37\) 4.00000i 0.657596i 0.944400 + 0.328798i \(0.106644\pi\)
−0.944400 + 0.328798i \(0.893356\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 12.0000i 1.87409i 0.349215 + 0.937043i \(0.386448\pi\)
−0.349215 + 0.937043i \(0.613552\pi\)
\(42\) 0 0
\(43\) 10.0000i 1.52499i −0.646997 0.762493i \(-0.723975\pi\)
0.646997 0.762493i \(-0.276025\pi\)
\(44\) 0 0
\(45\) 1.00000 + 2.00000i 0.149071 + 0.298142i
\(46\) 0 0
\(47\) 3.00000 + 3.00000i 0.437595 + 0.437595i 0.891202 0.453607i \(-0.149863\pi\)
−0.453607 + 0.891202i \(0.649863\pi\)
\(48\) 0 0
\(49\) 11.0000i 1.57143i
\(50\) 0 0
\(51\) 1.00000 1.00000i 0.140028 0.140028i
\(52\) 0 0
\(53\) 6.00000 0.824163 0.412082 0.911147i \(-0.364802\pi\)
0.412082 + 0.911147i \(0.364802\pi\)
\(54\) 0 0
\(55\) −1.00000 + 3.00000i −0.134840 + 0.404520i
\(56\) 0 0
\(57\) 1.00000 + 1.00000i 0.132453 + 0.132453i
\(58\) 0 0
\(59\) −5.00000 + 5.00000i −0.650945 + 0.650945i −0.953220 0.302276i \(-0.902254\pi\)
0.302276 + 0.953220i \(0.402254\pi\)
\(60\) 0 0
\(61\) −5.00000 5.00000i −0.640184 0.640184i 0.310416 0.950601i \(-0.399532\pi\)
−0.950601 + 0.310416i \(0.899532\pi\)
\(62\) 0 0
\(63\) −3.00000 + 3.00000i −0.377964 + 0.377964i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 2.00000i 0.244339i −0.992509 0.122169i \(-0.961015\pi\)
0.992509 0.122169i \(-0.0389851\pi\)
\(68\) 0 0
\(69\) −5.00000 5.00000i −0.601929 0.601929i
\(70\) 0 0
\(71\) 16.0000 1.89885 0.949425 0.313993i \(-0.101667\pi\)
0.949425 + 0.313993i \(0.101667\pi\)
\(72\) 0 0
\(73\) 9.00000 9.00000i 1.05337 1.05337i 0.0548772 0.998493i \(-0.482523\pi\)
0.998493 0.0548772i \(-0.0174767\pi\)
\(74\) 0 0
\(75\) −3.00000 + 4.00000i −0.346410 + 0.461880i
\(76\) 0 0
\(77\) −6.00000 −0.683763
\(78\) 0 0
\(79\) 16.0000 1.80014 0.900070 0.435745i \(-0.143515\pi\)
0.900070 + 0.435745i \(0.143515\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) −4.00000 −0.439057 −0.219529 0.975606i \(-0.570452\pi\)
−0.219529 + 0.975606i \(0.570452\pi\)
\(84\) 0 0
\(85\) 3.00000 + 1.00000i 0.325396 + 0.108465i
\(86\) 0 0
\(87\) −5.00000 + 5.00000i −0.536056 + 0.536056i
\(88\) 0 0
\(89\) 6.00000 0.635999 0.317999 0.948091i \(-0.396989\pi\)
0.317999 + 0.948091i \(0.396989\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 6.00000i 0.622171i
\(94\) 0 0
\(95\) −1.00000 + 3.00000i −0.102598 + 0.307794i
\(96\) 0 0
\(97\) 1.00000 1.00000i 0.101535 0.101535i −0.654515 0.756049i \(-0.727127\pi\)
0.756049 + 0.654515i \(0.227127\pi\)
\(98\) 0 0
\(99\) 1.00000 + 1.00000i 0.100504 + 0.100504i
\(100\) 0 0
\(101\) −9.00000 + 9.00000i −0.895533 + 0.895533i −0.995037 0.0995037i \(-0.968274\pi\)
0.0995037 + 0.995037i \(0.468274\pi\)
\(102\) 0 0
\(103\) 3.00000 + 3.00000i 0.295599 + 0.295599i 0.839287 0.543688i \(-0.182973\pi\)
−0.543688 + 0.839287i \(0.682973\pi\)
\(104\) 0 0
\(105\) −9.00000 3.00000i −0.878310 0.292770i
\(106\) 0 0
\(107\) 4.00000 0.386695 0.193347 0.981130i \(-0.438066\pi\)
0.193347 + 0.981130i \(0.438066\pi\)
\(108\) 0 0
\(109\) 7.00000 7.00000i 0.670478 0.670478i −0.287348 0.957826i \(-0.592774\pi\)
0.957826 + 0.287348i \(0.0927736\pi\)
\(110\) 0 0
\(111\) 4.00000i 0.379663i
\(112\) 0 0
\(113\) 1.00000 + 1.00000i 0.0940721 + 0.0940721i 0.752577 0.658505i \(-0.228811\pi\)
−0.658505 + 0.752577i \(0.728811\pi\)
\(114\) 0 0
\(115\) 5.00000 15.0000i 0.466252 1.39876i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 6.00000i 0.550019i
\(120\) 0 0
\(121\) 9.00000i 0.818182i
\(122\) 0 0
\(123\) 12.0000i 1.08200i
\(124\) 0 0
\(125\) −11.0000 2.00000i −0.983870 0.178885i
\(126\) 0 0
\(127\) −1.00000 1.00000i −0.0887357 0.0887357i 0.661346 0.750081i \(-0.269986\pi\)
−0.750081 + 0.661346i \(0.769986\pi\)
\(128\) 0 0
\(129\) 10.0000i 0.880451i
\(130\) 0 0
\(131\) −1.00000 + 1.00000i −0.0873704 + 0.0873704i −0.749441 0.662071i \(-0.769678\pi\)
0.662071 + 0.749441i \(0.269678\pi\)
\(132\) 0 0
\(133\) −6.00000 −0.520266
\(134\) 0 0
\(135\) 1.00000 + 2.00000i 0.0860663 + 0.172133i
\(136\) 0 0
\(137\) 5.00000 + 5.00000i 0.427179 + 0.427179i 0.887666 0.460487i \(-0.152325\pi\)
−0.460487 + 0.887666i \(0.652325\pi\)
\(138\) 0 0
\(139\) −5.00000 + 5.00000i −0.424094 + 0.424094i −0.886611 0.462516i \(-0.846947\pi\)
0.462516 + 0.886611i \(0.346947\pi\)
\(140\) 0 0
\(141\) 3.00000 + 3.00000i 0.252646 + 0.252646i
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) −15.0000 5.00000i −1.24568 0.415227i
\(146\) 0 0
\(147\) 11.0000i 0.907265i
\(148\) 0 0
\(149\) −1.00000 1.00000i −0.0819232 0.0819232i 0.664958 0.746881i \(-0.268450\pi\)
−0.746881 + 0.664958i \(0.768450\pi\)
\(150\) 0 0
\(151\) −16.0000 −1.30206 −0.651031 0.759051i \(-0.725663\pi\)
−0.651031 + 0.759051i \(0.725663\pi\)
\(152\) 0 0
\(153\) 1.00000 1.00000i 0.0808452 0.0808452i
\(154\) 0 0
\(155\) −12.0000 + 6.00000i −0.963863 + 0.481932i
\(156\) 0 0
\(157\) 2.00000 0.159617 0.0798087 0.996810i \(-0.474569\pi\)
0.0798087 + 0.996810i \(0.474569\pi\)
\(158\) 0 0
\(159\) 6.00000 0.475831
\(160\) 0 0
\(161\) 30.0000 2.36433
\(162\) 0 0
\(163\) 4.00000 0.313304 0.156652 0.987654i \(-0.449930\pi\)
0.156652 + 0.987654i \(0.449930\pi\)
\(164\) 0 0
\(165\) −1.00000 + 3.00000i −0.0778499 + 0.233550i
\(166\) 0 0
\(167\) −7.00000 + 7.00000i −0.541676 + 0.541676i −0.924020 0.382344i \(-0.875117\pi\)
0.382344 + 0.924020i \(0.375117\pi\)
\(168\) 0 0
\(169\) 13.0000 1.00000
\(170\) 0 0
\(171\) 1.00000 + 1.00000i 0.0764719 + 0.0764719i
\(172\) 0 0
\(173\) 20.0000i 1.52057i −0.649589 0.760286i \(-0.725059\pi\)
0.649589 0.760286i \(-0.274941\pi\)
\(174\) 0 0
\(175\) −3.00000 21.0000i −0.226779 1.58745i
\(176\) 0 0
\(177\) −5.00000 + 5.00000i −0.375823 + 0.375823i
\(178\) 0 0
\(179\) 5.00000 + 5.00000i 0.373718 + 0.373718i 0.868829 0.495112i \(-0.164873\pi\)
−0.495112 + 0.868829i \(0.664873\pi\)
\(180\) 0 0
\(181\) 3.00000 3.00000i 0.222988 0.222988i −0.586767 0.809756i \(-0.699600\pi\)
0.809756 + 0.586767i \(0.199600\pi\)
\(182\) 0 0
\(183\) −5.00000 5.00000i −0.369611 0.369611i
\(184\) 0 0
\(185\) −8.00000 + 4.00000i −0.588172 + 0.294086i
\(186\) 0 0
\(187\) 2.00000 0.146254
\(188\) 0 0
\(189\) −3.00000 + 3.00000i −0.218218 + 0.218218i
\(190\) 0 0
\(191\) 6.00000i 0.434145i 0.976156 + 0.217072i \(0.0696508\pi\)
−0.976156 + 0.217072i \(0.930349\pi\)
\(192\) 0 0
\(193\) 13.0000 + 13.0000i 0.935760 + 0.935760i 0.998058 0.0622972i \(-0.0198427\pi\)
−0.0622972 + 0.998058i \(0.519843\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 24.0000i 1.70993i −0.518686 0.854965i \(-0.673579\pi\)
0.518686 0.854965i \(-0.326421\pi\)
\(198\) 0 0
\(199\) 26.0000i 1.84309i −0.388270 0.921546i \(-0.626927\pi\)
0.388270 0.921546i \(-0.373073\pi\)
\(200\) 0 0
\(201\) 2.00000i 0.141069i
\(202\) 0 0
\(203\) 30.0000i 2.10559i
\(204\) 0 0
\(205\) −24.0000 + 12.0000i −1.67623 + 0.838116i
\(206\) 0 0
\(207\) −5.00000 5.00000i −0.347524 0.347524i
\(208\) 0 0
\(209\) 2.00000i 0.138343i
\(210\) 0 0
\(211\) 15.0000 15.0000i 1.03264 1.03264i 0.0331936 0.999449i \(-0.489432\pi\)
0.999449 0.0331936i \(-0.0105678\pi\)
\(212\) 0 0
\(213\) 16.0000 1.09630
\(214\) 0 0
\(215\) 20.0000 10.0000i 1.36399 0.681994i
\(216\) 0 0
\(217\) −18.0000 18.0000i −1.22192 1.22192i
\(218\) 0 0
\(219\) 9.00000 9.00000i 0.608164 0.608164i
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 9.00000 9.00000i 0.602685 0.602685i −0.338340 0.941024i \(-0.609865\pi\)
0.941024 + 0.338340i \(0.109865\pi\)
\(224\) 0 0
\(225\) −3.00000 + 4.00000i −0.200000 + 0.266667i
\(226\) 0 0
\(227\) 14.0000i 0.929213i 0.885517 + 0.464606i \(0.153804\pi\)
−0.885517 + 0.464606i \(0.846196\pi\)
\(228\) 0 0
\(229\) 15.0000 + 15.0000i 0.991228 + 0.991228i 0.999962 0.00873396i \(-0.00278014\pi\)
−0.00873396 + 0.999962i \(0.502780\pi\)
\(230\) 0 0
\(231\) −6.00000 −0.394771
\(232\) 0 0
\(233\) −7.00000 + 7.00000i −0.458585 + 0.458585i −0.898191 0.439606i \(-0.855118\pi\)
0.439606 + 0.898191i \(0.355118\pi\)
\(234\) 0 0
\(235\) −3.00000 + 9.00000i −0.195698 + 0.587095i
\(236\) 0 0
\(237\) 16.0000 1.03931
\(238\) 0 0
\(239\) 8.00000 0.517477 0.258738 0.965947i \(-0.416693\pi\)
0.258738 + 0.965947i \(0.416693\pi\)
\(240\) 0 0
\(241\) −6.00000 −0.386494 −0.193247 0.981150i \(-0.561902\pi\)
−0.193247 + 0.981150i \(0.561902\pi\)
\(242\) 0 0
\(243\) 1.00000 0.0641500
\(244\) 0 0
\(245\) 22.0000 11.0000i 1.40553 0.702764i
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) −4.00000 −0.253490
\(250\) 0 0
\(251\) −3.00000 3.00000i −0.189358 0.189358i 0.606060 0.795419i \(-0.292749\pi\)
−0.795419 + 0.606060i \(0.792749\pi\)
\(252\) 0 0
\(253\) 10.0000i 0.628695i
\(254\) 0 0
\(255\) 3.00000 + 1.00000i 0.187867 + 0.0626224i
\(256\) 0 0
\(257\) −7.00000 + 7.00000i −0.436648 + 0.436648i −0.890882 0.454234i \(-0.849913\pi\)
0.454234 + 0.890882i \(0.349913\pi\)
\(258\) 0 0
\(259\) −12.0000 12.0000i −0.745644 0.745644i
\(260\) 0 0
\(261\) −5.00000 + 5.00000i −0.309492 + 0.309492i
\(262\) 0 0
\(263\) 11.0000 + 11.0000i 0.678289 + 0.678289i 0.959613 0.281324i \(-0.0907735\pi\)
−0.281324 + 0.959613i \(0.590774\pi\)
\(264\) 0 0
\(265\) 6.00000 + 12.0000i 0.368577 + 0.737154i
\(266\) 0 0
\(267\) 6.00000 0.367194
\(268\) 0 0
\(269\) −1.00000 + 1.00000i −0.0609711 + 0.0609711i −0.736935 0.675964i \(-0.763728\pi\)
0.675964 + 0.736935i \(0.263728\pi\)
\(270\) 0 0
\(271\) 22.0000i 1.33640i 0.743980 + 0.668202i \(0.232936\pi\)
−0.743980 + 0.668202i \(0.767064\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −7.00000 + 1.00000i −0.422116 + 0.0603023i
\(276\) 0 0
\(277\) 28.0000i 1.68236i −0.540758 0.841178i \(-0.681862\pi\)
0.540758 0.841178i \(-0.318138\pi\)
\(278\) 0 0
\(279\) 6.00000i 0.359211i
\(280\) 0 0
\(281\) 8.00000i 0.477240i 0.971113 + 0.238620i \(0.0766950\pi\)
−0.971113 + 0.238620i \(0.923305\pi\)
\(282\) 0 0
\(283\) 18.0000i 1.06999i −0.844856 0.534994i \(-0.820314\pi\)
0.844856 0.534994i \(-0.179686\pi\)
\(284\) 0 0
\(285\) −1.00000 + 3.00000i −0.0592349 + 0.177705i
\(286\) 0 0
\(287\) −36.0000 36.0000i −2.12501 2.12501i
\(288\) 0 0
\(289\) 15.0000i 0.882353i
\(290\) 0 0
\(291\) 1.00000 1.00000i 0.0586210 0.0586210i
\(292\) 0 0
\(293\) −14.0000 −0.817889 −0.408944 0.912559i \(-0.634103\pi\)
−0.408944 + 0.912559i \(0.634103\pi\)
\(294\) 0 0
\(295\) −15.0000 5.00000i −0.873334 0.291111i
\(296\) 0 0
\(297\) 1.00000 + 1.00000i 0.0580259 + 0.0580259i
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) 30.0000 + 30.0000i 1.72917 + 1.72917i
\(302\) 0 0
\(303\) −9.00000 + 9.00000i −0.517036 + 0.517036i
\(304\) 0 0
\(305\) 5.00000 15.0000i 0.286299 0.858898i
\(306\) 0 0
\(307\) 22.0000i 1.25561i 0.778372 + 0.627803i \(0.216046\pi\)
−0.778372 + 0.627803i \(0.783954\pi\)
\(308\) 0 0
\(309\) 3.00000 + 3.00000i 0.170664 + 0.170664i
\(310\) 0 0
\(311\) 24.0000 1.36092 0.680458 0.732787i \(-0.261781\pi\)
0.680458 + 0.732787i \(0.261781\pi\)
\(312\) 0 0
\(313\) 13.0000 13.0000i 0.734803 0.734803i −0.236764 0.971567i \(-0.576087\pi\)
0.971567 + 0.236764i \(0.0760868\pi\)
\(314\) 0 0
\(315\) −9.00000 3.00000i −0.507093 0.169031i
\(316\) 0 0
\(317\) −18.0000 −1.01098 −0.505490 0.862832i \(-0.668688\pi\)
−0.505490 + 0.862832i \(0.668688\pi\)
\(318\) 0 0
\(319\) −10.0000 −0.559893
\(320\) 0 0
\(321\) 4.00000 0.223258
\(322\) 0 0
\(323\) 2.00000 0.111283
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 7.00000 7.00000i 0.387101 0.387101i
\(328\) 0 0
\(329\) −18.0000 −0.992372
\(330\) 0 0
\(331\) 9.00000 + 9.00000i 0.494685 + 0.494685i 0.909779 0.415094i \(-0.136251\pi\)
−0.415094 + 0.909779i \(0.636251\pi\)
\(332\) 0 0
\(333\) 4.00000i 0.219199i
\(334\) 0 0
\(335\) 4.00000 2.00000i 0.218543 0.109272i
\(336\) 0 0
\(337\) −3.00000 + 3.00000i −0.163420 + 0.163420i −0.784080 0.620660i \(-0.786865\pi\)
0.620660 + 0.784080i \(0.286865\pi\)
\(338\) 0 0
\(339\) 1.00000 + 1.00000i 0.0543125 + 0.0543125i
\(340\) 0 0
\(341\) −6.00000 + 6.00000i −0.324918 + 0.324918i
\(342\) 0 0
\(343\) 12.0000 + 12.0000i 0.647939 + 0.647939i
\(344\) 0 0
\(345\) 5.00000 15.0000i 0.269191 0.807573i
\(346\) 0 0
\(347\) −4.00000 −0.214731 −0.107366 0.994220i \(-0.534242\pi\)
−0.107366 + 0.994220i \(0.534242\pi\)
\(348\) 0 0
\(349\) 19.0000 19.0000i 1.01705 1.01705i 0.0171945 0.999852i \(-0.494527\pi\)
0.999852 0.0171945i \(-0.00547346\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −15.0000 15.0000i −0.798369 0.798369i 0.184469 0.982838i \(-0.440943\pi\)
−0.982838 + 0.184469i \(0.940943\pi\)
\(354\) 0 0
\(355\) 16.0000 + 32.0000i 0.849192 + 1.69838i
\(356\) 0 0
\(357\) 6.00000i 0.317554i
\(358\) 0 0
\(359\) 2.00000i 0.105556i −0.998606 0.0527780i \(-0.983192\pi\)
0.998606 0.0527780i \(-0.0168076\pi\)
\(360\) 0 0
\(361\) 17.0000i 0.894737i
\(362\) 0 0
\(363\) 9.00000i 0.472377i
\(364\) 0 0
\(365\) 27.0000 + 9.00000i 1.41324 + 0.471082i
\(366\) 0 0
\(367\) −13.0000 13.0000i −0.678594 0.678594i 0.281088 0.959682i \(-0.409305\pi\)
−0.959682 + 0.281088i \(0.909305\pi\)
\(368\) 0 0
\(369\) 12.0000i 0.624695i
\(370\) 0 0
\(371\) −18.0000 + 18.0000i −0.934513 + 0.934513i
\(372\) 0 0
\(373\) −22.0000 −1.13912 −0.569558 0.821951i \(-0.692886\pi\)
−0.569558 + 0.821951i \(0.692886\pi\)
\(374\) 0 0
\(375\) −11.0000 2.00000i −0.568038 0.103280i
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 3.00000 3.00000i 0.154100 0.154100i −0.625847 0.779946i \(-0.715246\pi\)
0.779946 + 0.625847i \(0.215246\pi\)
\(380\) 0 0
\(381\) −1.00000 1.00000i −0.0512316 0.0512316i
\(382\) 0 0
\(383\) 9.00000 9.00000i 0.459879 0.459879i −0.438737 0.898616i \(-0.644574\pi\)
0.898616 + 0.438737i \(0.144574\pi\)
\(384\) 0 0
\(385\) −6.00000 12.0000i −0.305788 0.611577i
\(386\) 0 0
\(387\) 10.0000i 0.508329i
\(388\) 0 0
\(389\) 7.00000 + 7.00000i 0.354914 + 0.354914i 0.861934 0.507020i \(-0.169253\pi\)
−0.507020 + 0.861934i \(0.669253\pi\)
\(390\) 0 0
\(391\) −10.0000 −0.505722
\(392\) 0 0
\(393\) −1.00000 + 1.00000i −0.0504433 + 0.0504433i
\(394\) 0 0
\(395\) 16.0000 + 32.0000i 0.805047 + 1.61009i
\(396\) 0 0
\(397\) 14.0000 0.702640 0.351320 0.936255i \(-0.385733\pi\)
0.351320 + 0.936255i \(0.385733\pi\)
\(398\) 0 0
\(399\) −6.00000 −0.300376
\(400\) 0 0
\(401\) −18.0000 −0.898877 −0.449439 0.893311i \(-0.648376\pi\)
−0.449439 + 0.893311i \(0.648376\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 1.00000 + 2.00000i 0.0496904 + 0.0993808i
\(406\) 0 0
\(407\) −4.00000 + 4.00000i −0.198273 + 0.198273i
\(408\) 0 0
\(409\) −10.0000 −0.494468 −0.247234 0.968956i \(-0.579522\pi\)
−0.247234 + 0.968956i \(0.579522\pi\)
\(410\) 0 0
\(411\) 5.00000 + 5.00000i 0.246632 + 0.246632i
\(412\) 0 0
\(413\) 30.0000i 1.47620i
\(414\) 0 0
\(415\) −4.00000 8.00000i −0.196352 0.392705i
\(416\) 0 0
\(417\) −5.00000 + 5.00000i −0.244851 + 0.244851i
\(418\) 0 0
\(419\) 9.00000 + 9.00000i 0.439679 + 0.439679i 0.891904 0.452225i \(-0.149370\pi\)
−0.452225 + 0.891904i \(0.649370\pi\)
\(420\) 0 0
\(421\) −17.0000 + 17.0000i −0.828529 + 0.828529i −0.987313 0.158784i \(-0.949243\pi\)
0.158784 + 0.987313i \(0.449243\pi\)
\(422\) 0 0
\(423\) 3.00000 + 3.00000i 0.145865 + 0.145865i
\(424\) 0 0
\(425\) 1.00000 + 7.00000i 0.0485071 + 0.339550i
\(426\) 0 0
\(427\) 30.0000 1.45180
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 2.00000i 0.0963366i −0.998839 0.0481683i \(-0.984662\pi\)
0.998839 0.0481683i \(-0.0153384\pi\)
\(432\) 0 0
\(433\) 1.00000 + 1.00000i 0.0480569 + 0.0480569i 0.730727 0.682670i \(-0.239181\pi\)
−0.682670 + 0.730727i \(0.739181\pi\)
\(434\) 0 0
\(435\) −15.0000 5.00000i −0.719195 0.239732i
\(436\) 0 0
\(437\) 10.0000i 0.478365i
\(438\) 0 0
\(439\) 14.0000i 0.668184i 0.942541 + 0.334092i \(0.108430\pi\)
−0.942541 + 0.334092i \(0.891570\pi\)
\(440\) 0 0
\(441\) 11.0000i 0.523810i
\(442\) 0 0
\(443\) 6.00000i 0.285069i 0.989790 + 0.142534i \(0.0455251\pi\)
−0.989790 + 0.142534i \(0.954475\pi\)
\(444\) 0 0
\(445\) 6.00000 + 12.0000i 0.284427 + 0.568855i
\(446\) 0 0
\(447\) −1.00000 1.00000i −0.0472984 0.0472984i
\(448\) 0 0
\(449\) 16.0000i 0.755087i −0.925992 0.377543i \(-0.876769\pi\)
0.925992 0.377543i \(-0.123231\pi\)
\(450\) 0 0
\(451\) −12.0000 + 12.0000i −0.565058 + 0.565058i
\(452\) 0 0
\(453\) −16.0000 −0.751746
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 17.0000 + 17.0000i 0.795226 + 0.795226i 0.982339 0.187112i \(-0.0599128\pi\)
−0.187112 + 0.982339i \(0.559913\pi\)
\(458\) 0 0
\(459\) 1.00000 1.00000i 0.0466760 0.0466760i
\(460\) 0 0
\(461\) −1.00000 1.00000i −0.0465746 0.0465746i 0.683436 0.730011i \(-0.260485\pi\)
−0.730011 + 0.683436i \(0.760485\pi\)
\(462\) 0 0
\(463\) −19.0000 + 19.0000i −0.883005 + 0.883005i −0.993839 0.110834i \(-0.964648\pi\)
0.110834 + 0.993839i \(0.464648\pi\)
\(464\) 0 0
\(465\) −12.0000 + 6.00000i −0.556487 + 0.278243i
\(466\) 0 0
\(467\) 30.0000i 1.38823i 0.719862 + 0.694117i \(0.244205\pi\)
−0.719862 + 0.694117i \(0.755795\pi\)
\(468\) 0 0
\(469\) 6.00000 + 6.00000i 0.277054 + 0.277054i
\(470\) 0 0
\(471\) 2.00000 0.0921551
\(472\) 0 0
\(473\) 10.0000 10.0000i 0.459800 0.459800i
\(474\) 0 0
\(475\) −7.00000 + 1.00000i −0.321182 + 0.0458831i
\(476\) 0 0
\(477\) 6.00000 0.274721
\(478\) 0 0
\(479\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 30.0000 1.36505
\(484\) 0 0
\(485\) 3.00000 + 1.00000i 0.136223 + 0.0454077i
\(486\) 0 0
\(487\) 9.00000 9.00000i 0.407829 0.407829i −0.473152 0.880981i \(-0.656884\pi\)
0.880981 + 0.473152i \(0.156884\pi\)
\(488\) 0 0
\(489\) 4.00000 0.180886
\(490\) 0 0
\(491\) 1.00000 + 1.00000i 0.0451294 + 0.0451294i 0.729311 0.684182i \(-0.239841\pi\)
−0.684182 + 0.729311i \(0.739841\pi\)
\(492\) 0 0
\(493\) 10.0000i 0.450377i
\(494\) 0 0
\(495\) −1.00000 + 3.00000i −0.0449467 + 0.134840i
\(496\) 0 0
\(497\) −48.0000 + 48.0000i −2.15309 + 2.15309i
\(498\) 0 0
\(499\) −15.0000 15.0000i −0.671492 0.671492i 0.286568 0.958060i \(-0.407486\pi\)
−0.958060 + 0.286568i \(0.907486\pi\)
\(500\) 0 0
\(501\) −7.00000 + 7.00000i −0.312737 + 0.312737i
\(502\) 0 0
\(503\) −17.0000 17.0000i −0.757993 0.757993i 0.217964 0.975957i \(-0.430058\pi\)
−0.975957 + 0.217964i \(0.930058\pi\)
\(504\) 0 0
\(505\) −27.0000 9.00000i −1.20148 0.400495i
\(506\) 0 0
\(507\) 13.0000 0.577350
\(508\) 0 0
\(509\) −5.00000 + 5.00000i −0.221621 + 0.221621i −0.809181 0.587560i \(-0.800089\pi\)
0.587560 + 0.809181i \(0.300089\pi\)
\(510\) 0 0
\(511\) 54.0000i 2.38882i
\(512\) 0 0
\(513\) 1.00000 + 1.00000i 0.0441511 + 0.0441511i
\(514\) 0 0
\(515\) −3.00000 + 9.00000i −0.132196 + 0.396587i
\(516\) 0 0
\(517\) 6.00000i 0.263880i
\(518\) 0 0
\(519\) 20.0000i 0.877903i
\(520\) 0 0
\(521\) 24.0000i 1.05146i 0.850652 + 0.525730i \(0.176208\pi\)
−0.850652 + 0.525730i \(0.823792\pi\)
\(522\) 0 0
\(523\) 38.0000i 1.66162i 0.556553 + 0.830812i \(0.312124\pi\)
−0.556553 + 0.830812i \(0.687876\pi\)
\(524\) 0 0
\(525\) −3.00000 21.0000i −0.130931 0.916515i
\(526\) 0 0
\(527\) 6.00000 + 6.00000i 0.261364 + 0.261364i
\(528\) 0 0
\(529\) 27.0000i 1.17391i
\(530\) 0 0
\(531\) −5.00000 + 5.00000i −0.216982 + 0.216982i
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 4.00000 + 8.00000i 0.172935 + 0.345870i
\(536\) 0 0
\(537\) 5.00000 + 5.00000i 0.215766 + 0.215766i
\(538\) 0 0
\(539\) 11.0000 11.0000i 0.473804 0.473804i
\(540\) 0 0
\(541\) −9.00000 9.00000i −0.386940 0.386940i 0.486654 0.873595i \(-0.338217\pi\)
−0.873595 + 0.486654i \(0.838217\pi\)
\(542\) 0 0
\(543\) 3.00000 3.00000i 0.128742 0.128742i
\(544\) 0 0
\(545\) 21.0000 + 7.00000i 0.899541 + 0.299847i
\(546\) 0 0
\(547\) 2.00000i 0.0855138i −0.999086 0.0427569i \(-0.986386\pi\)
0.999086 0.0427569i \(-0.0136141\pi\)
\(548\) 0 0
\(549\) −5.00000 5.00000i −0.213395 0.213395i
\(550\) 0 0
\(551\) −10.0000 −0.426014
\(552\) 0 0
\(553\) −48.0000 + 48.0000i −2.04117 + 2.04117i
\(554\) 0 0
\(555\) −8.00000 + 4.00000i −0.339581 + 0.169791i
\(556\) 0 0
\(557\) 18.0000 0.762684 0.381342 0.924434i \(-0.375462\pi\)
0.381342 + 0.924434i \(0.375462\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 2.00000 0.0844401
\(562\) 0 0
\(563\) −4.00000 −0.168580 −0.0842900 0.996441i \(-0.526862\pi\)
−0.0842900 + 0.996441i \(0.526862\pi\)
\(564\) 0 0
\(565\) −1.00000 + 3.00000i −0.0420703 + 0.126211i
\(566\) 0 0
\(567\) −3.00000 + 3.00000i −0.125988 + 0.125988i
\(568\) 0 0
\(569\) 22.0000 0.922288 0.461144 0.887325i \(-0.347439\pi\)
0.461144 + 0.887325i \(0.347439\pi\)
\(570\) 0 0
\(571\) −27.0000 27.0000i −1.12991 1.12991i −0.990190 0.139724i \(-0.955378\pi\)
−0.139724 0.990190i \(-0.544622\pi\)
\(572\) 0 0
\(573\) 6.00000i 0.250654i
\(574\) 0 0
\(575\) 35.0000 5.00000i 1.45960 0.208514i
\(576\) 0 0
\(577\) −15.0000 + 15.0000i −0.624458 + 0.624458i −0.946668 0.322210i \(-0.895574\pi\)
0.322210 + 0.946668i \(0.395574\pi\)
\(578\) 0 0
\(579\) 13.0000 + 13.0000i 0.540262 + 0.540262i
\(580\) 0 0
\(581\) 12.0000 12.0000i 0.497844 0.497844i
\(582\) 0 0
\(583\) 6.00000 + 6.00000i 0.248495 + 0.248495i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −12.0000 −0.495293 −0.247647 0.968850i \(-0.579657\pi\)
−0.247647 + 0.968850i \(0.579657\pi\)
\(588\) 0 0
\(589\) −6.00000 + 6.00000i −0.247226 + 0.247226i
\(590\) 0 0
\(591\) 24.0000i 0.987228i
\(592\) 0 0
\(593\) 5.00000 + 5.00000i 0.205325 + 0.205325i 0.802277 0.596952i \(-0.203622\pi\)
−0.596952 + 0.802277i \(0.703622\pi\)
\(594\) 0 0
\(595\) −12.0000 + 6.00000i −0.491952 + 0.245976i
\(596\) 0 0
\(597\) 26.0000i 1.06411i
\(598\) 0 0
\(599\) 10.0000i 0.408589i −0.978909 0.204294i \(-0.934510\pi\)
0.978909 0.204294i \(-0.0654900\pi\)
\(600\) 0 0
\(601\) 16.0000i 0.652654i 0.945257 + 0.326327i \(0.105811\pi\)
−0.945257 + 0.326327i \(0.894189\pi\)
\(602\) 0 0
\(603\) 2.00000i 0.0814463i
\(604\) 0 0
\(605\) 18.0000 9.00000i 0.731804 0.365902i
\(606\) 0 0
\(607\) −17.0000 17.0000i −0.690009 0.690009i 0.272225 0.962234i \(-0.412241\pi\)
−0.962234 + 0.272225i \(0.912241\pi\)
\(608\) 0 0
\(609\) 30.0000i 1.21566i
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) −10.0000 −0.403896 −0.201948 0.979396i \(-0.564727\pi\)
−0.201948 + 0.979396i \(0.564727\pi\)
\(614\) 0 0
\(615\) −24.0000 + 12.0000i −0.967773 + 0.483887i
\(616\) 0 0
\(617\) 17.0000 + 17.0000i 0.684394 + 0.684394i 0.960987 0.276593i \(-0.0892054\pi\)
−0.276593 + 0.960987i \(0.589205\pi\)
\(618\) 0 0
\(619\) −21.0000 + 21.0000i −0.844061 + 0.844061i −0.989384 0.145323i \(-0.953578\pi\)
0.145323 + 0.989384i \(0.453578\pi\)
\(620\) 0 0
\(621\) −5.00000 5.00000i −0.200643 0.200643i
\(622\) 0 0
\(623\) −18.0000 + 18.0000i −0.721155 + 0.721155i
\(624\) 0 0
\(625\) −7.00000 24.0000i −0.280000 0.960000i
\(626\) 0 0
\(627\) 2.00000i 0.0798723i
\(628\) 0 0
\(629\) 4.00000 + 4.00000i 0.159490 + 0.159490i
\(630\) 0 0
\(631\) 32.0000 1.27390 0.636950 0.770905i \(-0.280196\pi\)
0.636950 + 0.770905i \(0.280196\pi\)
\(632\) 0 0
\(633\) 15.0000 15.0000i 0.596196 0.596196i
\(634\) 0 0
\(635\) 1.00000 3.00000i 0.0396838 0.119051i
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 16.0000 0.632950
\(640\) 0 0
\(641\) 42.0000 1.65890 0.829450 0.558581i \(-0.188654\pi\)
0.829450 + 0.558581i \(0.188654\pi\)
\(642\) 0 0
\(643\) −4.00000 −0.157745 −0.0788723 0.996885i \(-0.525132\pi\)
−0.0788723 + 0.996885i \(0.525132\pi\)
\(644\) 0 0
\(645\) 20.0000 10.0000i 0.787499 0.393750i
\(646\) 0 0
\(647\) 13.0000 13.0000i 0.511083 0.511083i −0.403775 0.914858i \(-0.632302\pi\)
0.914858 + 0.403775i \(0.132302\pi\)
\(648\) 0 0
\(649\) −10.0000 −0.392534
\(650\) 0 0
\(651\) −18.0000 18.0000i −0.705476 0.705476i
\(652\) 0 0
\(653\) 24.0000i 0.939193i 0.882881 + 0.469596i \(0.155601\pi\)
−0.882881 + 0.469596i \(0.844399\pi\)
\(654\) 0 0
\(655\) −3.00000 1.00000i −0.117220 0.0390732i
\(656\) 0 0
\(657\) 9.00000 9.00000i 0.351123 0.351123i
\(658\) 0 0
\(659\) 13.0000 + 13.0000i 0.506408 + 0.506408i 0.913422 0.407014i \(-0.133430\pi\)
−0.407014 + 0.913422i \(0.633430\pi\)
\(660\) 0 0
\(661\) 19.0000 19.0000i 0.739014 0.739014i −0.233373 0.972387i \(-0.574976\pi\)
0.972387 + 0.233373i \(0.0749763\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −6.00000 12.0000i −0.232670 0.465340i
\(666\) 0 0
\(667\) 50.0000 1.93601
\(668\) 0 0
\(669\) 9.00000 9.00000i 0.347960 0.347960i
\(670\) 0 0
\(671\) 10.0000i 0.386046i
\(672\) 0 0
\(673\) 29.0000 + 29.0000i 1.11787 + 1.11787i 0.992054 + 0.125814i \(0.0401543\pi\)
0.125814 + 0.992054i \(0.459846\pi\)
\(674\) 0 0
\(675\) −3.00000 + 4.00000i −0.115470 + 0.153960i
\(676\) 0 0
\(677\) 48.0000i 1.84479i 0.386248 + 0.922395i \(0.373771\pi\)
−0.386248 + 0.922395i \(0.626229\pi\)
\(678\) 0 0
\(679\) 6.00000i 0.230259i
\(680\) 0 0
\(681\) 14.0000i 0.536481i
\(682\) 0 0
\(683\) 42.0000i 1.60709i −0.595247 0.803543i \(-0.702946\pi\)
0.595247 0.803543i \(-0.297054\pi\)
\(684\) 0 0
\(685\) −5.00000 + 15.0000i −0.191040 + 0.573121i
\(686\) 0 0
\(687\) 15.0000 + 15.0000i 0.572286 + 0.572286i
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) 15.0000 15.0000i 0.570627 0.570627i −0.361677 0.932304i \(-0.617796\pi\)
0.932304 + 0.361677i \(0.117796\pi\)
\(692\) 0 0
\(693\) −6.00000 −0.227921
\(694\) 0 0
\(695\) −15.0000 5.00000i −0.568982 0.189661i
\(696\) 0 0
\(697\) 12.0000 + 12.0000i 0.454532 + 0.454532i
\(698\) 0 0
\(699\) −7.00000 + 7.00000i −0.264764 + 0.264764i
\(700\) 0 0
\(701\) −37.0000 37.0000i −1.39747 1.39747i −0.807220 0.590251i \(-0.799029\pi\)
−0.590251 0.807220i \(-0.700971\pi\)
\(702\) 0 0
\(703\) −4.00000 + 4.00000i −0.150863 + 0.150863i
\(704\) 0 0
\(705\) −3.00000 + 9.00000i −0.112987 + 0.338960i
\(706\) 0 0
\(707\) 54.0000i 2.03088i
\(708\) 0 0
\(709\) −17.0000 17.0000i −0.638448 0.638448i 0.311724 0.950173i \(-0.399093\pi\)
−0.950173 + 0.311724i \(0.899093\pi\)
\(710\) 0 0
\(711\) 16.0000 0.600047
\(712\) 0 0
\(713\) 30.0000 30.0000i 1.12351 1.12351i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 8.00000 0.298765
\(718\) 0 0
\(719\) −8.00000 −0.298350 −0.149175 0.988811i \(-0.547662\pi\)
−0.149175 + 0.988811i \(0.547662\pi\)
\(720\) 0 0
\(721\) −18.0000 −0.670355
\(722\) 0 0
\(723\) −6.00000 −0.223142
\(724\) 0 0
\(725\) −5.00000 35.0000i −0.185695 1.29987i
\(726\) 0 0
\(727\) −7.00000 + 7.00000i −0.259616 + 0.259616i −0.824898 0.565282i \(-0.808767\pi\)
0.565282 + 0.824898i \(0.308767\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) −10.0000 10.0000i −0.369863 0.369863i
\(732\) 0 0
\(733\) 4.00000i 0.147743i 0.997268 + 0.0738717i \(0.0235355\pi\)
−0.997268 + 0.0738717i \(0.976464\pi\)
\(734\) 0 0
\(735\) 22.0000 11.0000i 0.811482 0.405741i
\(736\) 0 0
\(737\) 2.00000 2.00000i 0.0736709 0.0736709i
\(738\) 0 0
\(739\) −15.0000 15.0000i −0.551784 0.551784i 0.375171 0.926955i \(-0.377584\pi\)
−0.926955 + 0.375171i \(0.877584\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −13.0000 13.0000i −0.476924 0.476924i 0.427223 0.904146i \(-0.359492\pi\)
−0.904146 + 0.427223i \(0.859492\pi\)
\(744\) 0 0
\(745\) 1.00000 3.00000i 0.0366372 0.109911i
\(746\) 0 0
\(747\) −4.00000 −0.146352
\(748\) 0 0
\(749\) −12.0000 + 12.0000i −0.438470 + 0.438470i
\(750\) 0 0
\(751\) 34.0000i 1.24068i −0.784334 0.620339i \(-0.786995\pi\)
0.784334 0.620339i \(-0.213005\pi\)
\(752\) 0 0
\(753\) −3.00000 3.00000i −0.109326 0.109326i
\(754\) 0 0
\(755\) −16.0000 32.0000i −0.582300 1.16460i
\(756\) 0 0
\(757\) 20.0000i 0.726912i −0.931611 0.363456i \(-0.881597\pi\)
0.931611 0.363456i \(-0.118403\pi\)
\(758\) 0 0
\(759\) 10.0000i 0.362977i
\(760\) 0 0
\(761\) 48.0000i 1.74000i −0.493053 0.869999i \(-0.664119\pi\)
0.493053 0.869999i \(-0.335881\pi\)
\(762\) 0 0
\(763\) 42.0000i 1.52050i
\(764\) 0 0
\(765\) 3.00000 + 1.00000i 0.108465 + 0.0361551i
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) 44.0000i 1.58668i −0.608778 0.793340i \(-0.708340\pi\)
0.608778 0.793340i \(-0.291660\pi\)
\(770\) 0 0
\(771\) −7.00000 + 7.00000i −0.252099 + 0.252099i
\(772\) 0 0
\(773\) −42.0000 −1.51064 −0.755318 0.655359i \(-0.772517\pi\)
−0.755318 + 0.655359i \(0.772517\pi\)
\(774\) 0 0
\(775\) −24.0000 18.0000i −0.862105 0.646579i
\(776\) 0 0
\(777\) −12.0000 12.0000i −0.430498 0.430498i
\(778\) 0 0
\(779\) −12.0000 + 12.0000i −0.429945 + 0.429945i
\(780\) 0 0
\(781\) 16.0000 + 16.0000i 0.572525 + 0.572525i
\(782\) 0 0
\(783\) −5.00000 + 5.00000i −0.178685 + 0.178685i
\(784\) 0 0
\(785\) 2.00000 + 4.00000i 0.0713831 + 0.142766i
\(786\) 0 0
\(787\) 14.0000i 0.499046i 0.968369 + 0.249523i \(0.0802738\pi\)
−0.968369 + 0.249523i \(0.919726\pi\)
\(788\) 0 0
\(789\) 11.0000 + 11.0000i 0.391610 + 0.391610i
\(790\) 0 0
\(791\) −6.00000 −0.213335
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) 6.00000 + 12.0000i 0.212798 + 0.425596i
\(796\) 0 0
\(797\) 14.0000 0.495905 0.247953 0.968772i \(-0.420242\pi\)
0.247953 + 0.968772i \(0.420242\pi\)
\(798\) 0 0
\(799\) 6.00000 0.212265
\(800\) 0 0
\(801\) 6.00000 0.212000
\(802\) 0 0
\(803\) 18.0000 0.635206
\(804\) 0 0
\(805\) 30.0000 + 60.0000i 1.05736 + 2.11472i
\(806\) 0 0
\(807\) −1.00000 + 1.00000i −0.0352017 + 0.0352017i
\(808\) 0 0
\(809\) −38.0000 −1.33601 −0.668004 0.744157i \(-0.732851\pi\)
−0.668004 + 0.744157i \(0.732851\pi\)
\(810\) 0 0
\(811\) −19.0000 19.0000i −0.667180 0.667180i 0.289882 0.957062i \(-0.406384\pi\)
−0.957062 + 0.289882i \(0.906384\pi\)
\(812\) 0 0
\(813\) 22.0000i 0.771574i
\(814\) 0 0
\(815\) 4.00000 + 8.00000i 0.140114 + 0.280228i
\(816\) 0 0
\(817\) 10.0000 10.0000i 0.349856 0.349856i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −1.00000 + 1.00000i −0.0349002 + 0.0349002i −0.724342 0.689441i \(-0.757856\pi\)
0.689441 + 0.724342i \(0.257856\pi\)
\(822\) 0 0
\(823\) 3.00000 + 3.00000i 0.104573 + 0.104573i 0.757458 0.652884i \(-0.226441\pi\)
−0.652884 + 0.757458i \(0.726441\pi\)
\(824\) 0 0
\(825\) −7.00000 + 1.00000i −0.243709 + 0.0348155i
\(826\) 0 0
\(827\) −4.00000 −0.139094 −0.0695468 0.997579i \(-0.522155\pi\)
−0.0695468 + 0.997579i \(0.522155\pi\)
\(828\) 0 0
\(829\) −17.0000 + 17.0000i −0.590434 + 0.590434i −0.937749 0.347314i \(-0.887094\pi\)
0.347314 + 0.937749i \(0.387094\pi\)
\(830\) 0 0
\(831\) 28.0000i 0.971309i
\(832\) 0 0
\(833\) −11.0000 11.0000i −0.381127 0.381127i
\(834\) 0 0
\(835\) −21.0000 7.00000i −0.726735 0.242245i
\(836\) 0 0
\(837\) 6.00000i 0.207390i
\(838\) 0 0
\(839\) 30.0000i 1.03572i 0.855467 + 0.517858i \(0.173270\pi\)
−0.855467 + 0.517858i \(0.826730\pi\)
\(840\) 0 0
\(841\) 21.0000i 0.724138i
\(842\) 0 0
\(843\) 8.00000i 0.275535i
\(844\) 0 0
\(845\) 13.0000 + 26.0000i 0.447214 + 0.894427i
\(846\) 0 0
\(847\) 27.0000 + 27.0000i 0.927731 + 0.927731i
\(848\) 0 0
\(849\) 18.0000i 0.617758i
\(850\) 0 0
\(851\) 20.0000 20.0000i 0.685591 0.685591i
\(852\) 0 0
\(853\) 6.00000 0.205436 0.102718 0.994711i \(-0.467246\pi\)
0.102718 + 0.994711i \(0.467246\pi\)
\(854\) 0 0
\(855\) −1.00000 + 3.00000i −0.0341993 + 0.102598i
\(856\) 0 0
\(857\) −23.0000 23.0000i −0.785665 0.785665i 0.195115 0.980780i \(-0.437492\pi\)
−0.980780 + 0.195115i \(0.937492\pi\)
\(858\) 0 0
\(859\) 23.0000 23.0000i 0.784750 0.784750i −0.195878 0.980628i \(-0.562756\pi\)
0.980628 + 0.195878i \(0.0627558\pi\)
\(860\) 0 0
\(861\) −36.0000 36.0000i −1.22688 1.22688i
\(862\) 0 0
\(863\) −15.0000 + 15.0000i −0.510606 + 0.510606i −0.914712 0.404106i \(-0.867583\pi\)
0.404106 + 0.914712i \(0.367583\pi\)
\(864\) 0 0
\(865\) 40.0000 20.0000i 1.36004 0.680020i
\(866\) 0 0
\(867\) 15.0000i 0.509427i
\(868\) 0 0
\(869\) 16.0000 + 16.0000i 0.542763 + 0.542763i
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) 1.00000 1.00000i 0.0338449 0.0338449i
\(874\) 0 0
\(875\) 39.0000 27.0000i 1.31844 0.912767i
\(876\) 0 0
\(877\) −22.0000 −0.742887 −0.371444 0.928456i \(-0.621137\pi\)
−0.371444 + 0.928456i \(0.621137\pi\)
\(878\) 0 0
\(879\) −14.0000 −0.472208
\(880\) 0 0
\(881\) 30.0000 1.01073 0.505363 0.862907i \(-0.331359\pi\)
0.505363 + 0.862907i \(0.331359\pi\)
\(882\) 0 0
\(883\) 20.0000 0.673054 0.336527 0.941674i \(-0.390748\pi\)
0.336527 + 0.941674i \(0.390748\pi\)
\(884\) 0 0
\(885\) −15.0000 5.00000i −0.504219 0.168073i
\(886\) 0 0
\(887\) −3.00000 + 3.00000i −0.100730 + 0.100730i −0.755676 0.654946i \(-0.772691\pi\)
0.654946 + 0.755676i \(0.272691\pi\)
\(888\) 0 0
\(889\) 6.00000 0.201234
\(890\) 0 0
\(891\) 1.00000 + 1.00000i 0.0335013 + 0.0335013i
\(892\) 0 0
\(893\) 6.00000i 0.200782i
\(894\) 0 0
\(895\) −5.00000 + 15.0000i −0.167132 + 0.501395i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −30.0000 30.0000i −1.00056 1.00056i
\(900\) 0 0
\(901\) 6.00000 6.00000i 0.199889 0.199889i
\(902\) 0 0
\(903\) 30.0000 + 30.0000i 0.998337 + 0.998337i
\(904\) 0 0
\(905\) 9.00000 + 3.00000i 0.299170 + 0.0997234i
\(906\) 0 0
\(907\) −28.0000 −0.929725 −0.464862 0.885383i \(-0.653896\pi\)
−0.464862 + 0.885383i \(0.653896\pi\)
\(908\) 0 0
\(909\) −9.00000 + 9.00000i −0.298511 + 0.298511i
\(910\) 0 0
\(911\) 10.0000i 0.331315i −0.986183 0.165657i \(-0.947025\pi\)
0.986183 0.165657i \(-0.0529746\pi\)
\(912\) 0 0
\(913\) −4.00000 4.00000i −0.132381 0.132381i
\(914\) 0 0
\(915\) 5.00000 15.0000i 0.165295 0.495885i
\(916\) 0 0
\(917\) 6.00000i 0.198137i
\(918\) 0 0
\(919\) 30.0000i 0.989609i 0.869004 + 0.494804i \(0.164760\pi\)
−0.869004 + 0.494804i \(0.835240\pi\)
\(920\) 0 0
\(921\) 22.0000i 0.724925i
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) −16.0000 12.0000i −0.526077 0.394558i
\(926\) 0 0
\(927\) 3.00000 + 3.00000i 0.0985329 + 0.0985329i
\(928\) 0 0
\(929\) 40.0000i 1.31236i 0.754606 + 0.656179i \(0.227828\pi\)
−0.754606 + 0.656179i \(0.772172\pi\)
\(930\) 0 0
\(931\) 11.0000 11.0000i 0.360510 0.360510i
\(932\) 0 0
\(933\) 24.0000 0.785725
\(934\) 0 0
\(935\) 2.00000 + 4.00000i 0.0654070 + 0.130814i
\(936\) 0 0
\(937\) 25.0000 + 25.0000i 0.816714 + 0.816714i 0.985630 0.168916i \(-0.0540267\pi\)
−0.168916 + 0.985630i \(0.554027\pi\)
\(938\) 0 0
\(939\) 13.0000 13.0000i 0.424239 0.424239i
\(940\) 0 0
\(941\) −5.00000 5.00000i −0.162995 0.162995i 0.620897 0.783892i \(-0.286769\pi\)
−0.783892 + 0.620897i \(0.786769\pi\)
\(942\) 0 0
\(943\) 60.0000 60.0000i 1.95387 1.95387i
\(944\) 0 0
\(945\) −9.00000 3.00000i −0.292770 0.0975900i
\(946\) 0 0
\(947\) 18.0000i 0.584921i −0.956278 0.292461i \(-0.905526\pi\)
0.956278 0.292461i \(-0.0944741\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) −18.0000 −0.583690
\(952\) 0 0
\(953\) 29.0000 29.0000i 0.939402 0.939402i −0.0588639 0.998266i \(-0.518748\pi\)
0.998266 + 0.0588639i \(0.0187478\pi\)
\(954\) 0 0
\(955\) −12.0000 + 6.00000i −0.388311 + 0.194155i
\(956\) 0 0
\(957\) −10.0000 −0.323254
\(958\) 0 0
\(959\) −30.0000 −0.968751
\(960\) 0 0
\(961\) −5.00000 −0.161290
\(962\) 0 0
\(963\) 4.00000 0.128898
\(964\) 0 0
\(965\) −13.0000 + 39.0000i −0.418485 + 1.25545i
\(966\) 0 0
\(967\) −15.0000 + 15.0000i −0.482367 + 0.482367i −0.905887 0.423520i \(-0.860795\pi\)
0.423520 + 0.905887i \(0.360795\pi\)
\(968\) 0 0
\(969\) 2.00000 0.0642493
\(970\) 0 0
\(971\) −7.00000 7.00000i −0.224641 0.224641i 0.585809 0.810449i \(-0.300777\pi\)
−0.810449 + 0.585809i \(0.800777\pi\)
\(972\) 0 0
\(973\) 30.0000i 0.961756i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 17.0000 17.0000i 0.543878 0.543878i −0.380785 0.924663i \(-0.624346\pi\)
0.924663 + 0.380785i \(0.124346\pi\)
\(978\) 0 0
\(979\) 6.00000 + 6.00000i 0.191761 + 0.191761i
\(980\) 0 0
\(981\) 7.00000 7.00000i 0.223493 0.223493i
\(982\) 0 0
\(983\) −9.00000 9.00000i −0.287055 0.287055i 0.548859 0.835915i \(-0.315062\pi\)
−0.835915 + 0.548859i \(0.815062\pi\)
\(984\) 0 0
\(985\) 48.0000 24.0000i 1.52941 0.764704i
\(986\) 0 0
\(987\) −18.0000 −0.572946
\(988\) 0 0
\(989\) −50.0000 + 50.0000i −1.58991 + 1.58991i
\(990\) 0 0
\(991\) 22.0000i 0.698853i 0.936964 + 0.349427i \(0.113624\pi\)
−0.936964 + 0.349427i \(0.886376\pi\)
\(992\) 0 0
\(993\) 9.00000 + 9.00000i 0.285606 + 0.285606i
\(994\) 0 0
\(995\) 52.0000 26.0000i 1.64851 0.824255i
\(996\) 0 0
\(997\) 32.0000i 1.01345i −0.862108 0.506725i \(-0.830856\pi\)
0.862108 0.506725i \(-0.169144\pi\)
\(998\) 0 0
\(999\) 4.00000i 0.126554i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 960.2.y.c.943.1 2
4.3 odd 2 240.2.y.c.163.1 2
5.2 odd 4 960.2.bc.b.367.1 2
8.3 odd 2 1920.2.y.d.223.1 2
8.5 even 2 1920.2.y.a.223.1 2
12.11 even 2 720.2.z.a.163.1 2
16.3 odd 4 1920.2.bc.a.1183.1 2
16.5 even 4 240.2.bc.c.43.1 yes 2
16.11 odd 4 960.2.bc.b.463.1 2
16.13 even 4 1920.2.bc.f.1183.1 2
20.7 even 4 240.2.bc.c.67.1 yes 2
40.27 even 4 1920.2.bc.f.607.1 2
40.37 odd 4 1920.2.bc.a.607.1 2
48.5 odd 4 720.2.bd.b.523.1 2
60.47 odd 4 720.2.bd.b.307.1 2
80.27 even 4 inner 960.2.y.c.847.1 2
80.37 odd 4 240.2.y.c.187.1 yes 2
80.67 even 4 1920.2.y.a.1567.1 2
80.77 odd 4 1920.2.y.d.1567.1 2
240.197 even 4 720.2.z.a.667.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
240.2.y.c.163.1 2 4.3 odd 2
240.2.y.c.187.1 yes 2 80.37 odd 4
240.2.bc.c.43.1 yes 2 16.5 even 4
240.2.bc.c.67.1 yes 2 20.7 even 4
720.2.z.a.163.1 2 12.11 even 2
720.2.z.a.667.1 2 240.197 even 4
720.2.bd.b.307.1 2 60.47 odd 4
720.2.bd.b.523.1 2 48.5 odd 4
960.2.y.c.847.1 2 80.27 even 4 inner
960.2.y.c.943.1 2 1.1 even 1 trivial
960.2.bc.b.367.1 2 5.2 odd 4
960.2.bc.b.463.1 2 16.11 odd 4
1920.2.y.a.223.1 2 8.5 even 2
1920.2.y.a.1567.1 2 80.67 even 4
1920.2.y.d.223.1 2 8.3 odd 2
1920.2.y.d.1567.1 2 80.77 odd 4
1920.2.bc.a.607.1 2 40.37 odd 4
1920.2.bc.a.1183.1 2 16.3 odd 4
1920.2.bc.f.607.1 2 40.27 even 4
1920.2.bc.f.1183.1 2 16.13 even 4