Properties

Label 960.2.v.c.257.1
Level $960$
Weight $2$
Character 960.257
Analytic conductor $7.666$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [960,2,Mod(257,960)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("960.257"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(960, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 0, 2, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 960 = 2^{6} \cdot 3 \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 960.v (of order \(4\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,-4,0,0,0,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.66563859404\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(i)\)
Coefficient field: \(\Q(\zeta_{8})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 30)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 257.1
Root \(0.707107 - 0.707107i\) of defining polynomial
Character \(\chi\) \(=\) 960.257
Dual form 960.2.v.c.833.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.70711 + 0.292893i) q^{3} +(0.707107 - 2.12132i) q^{5} +(1.00000 + 1.00000i) q^{7} +(2.82843 - 1.00000i) q^{9} -1.41421i q^{11} +(-0.585786 + 3.82843i) q^{15} +(1.41421 - 1.41421i) q^{17} +4.00000i q^{19} +(-2.00000 - 1.41421i) q^{21} +(-2.82843 - 2.82843i) q^{23} +(-4.00000 - 3.00000i) q^{25} +(-4.53553 + 2.53553i) q^{27} +7.07107 q^{29} +2.00000 q^{31} +(0.414214 + 2.41421i) q^{33} +(2.82843 - 1.41421i) q^{35} +(-6.00000 - 6.00000i) q^{37} -5.65685i q^{41} +(6.00000 - 6.00000i) q^{43} +(-0.121320 - 6.70711i) q^{45} -5.00000i q^{49} +(-2.00000 + 2.82843i) q^{51} +(2.82843 + 2.82843i) q^{53} +(-3.00000 - 1.00000i) q^{55} +(-1.17157 - 6.82843i) q^{57} +9.89949 q^{59} +6.00000 q^{61} +(3.82843 + 1.82843i) q^{63} +(-4.00000 - 4.00000i) q^{67} +(5.65685 + 4.00000i) q^{69} -14.1421i q^{71} +(-5.00000 + 5.00000i) q^{73} +(7.70711 + 3.94975i) q^{75} +(1.41421 - 1.41421i) q^{77} -6.00000i q^{79} +(7.00000 - 5.65685i) q^{81} +(-8.48528 - 8.48528i) q^{83} +(-2.00000 - 4.00000i) q^{85} +(-12.0711 + 2.07107i) q^{87} +2.82843 q^{89} +(-3.41421 + 0.585786i) q^{93} +(8.48528 + 2.82843i) q^{95} +(3.00000 + 3.00000i) q^{97} +(-1.41421 - 4.00000i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{3} + 4 q^{7} - 8 q^{15} - 8 q^{21} - 16 q^{25} - 4 q^{27} + 8 q^{31} - 4 q^{33} - 24 q^{37} + 24 q^{43} + 8 q^{45} - 8 q^{51} - 12 q^{55} - 16 q^{57} + 24 q^{61} + 4 q^{63} - 16 q^{67} - 20 q^{73}+ \cdots + 12 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/960\mathbb{Z}\right)^\times\).

\(n\) \(511\) \(577\) \(641\) \(901\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{4}\right)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.70711 + 0.292893i −0.985599 + 0.169102i
\(4\) 0 0
\(5\) 0.707107 2.12132i 0.316228 0.948683i
\(6\) 0 0
\(7\) 1.00000 + 1.00000i 0.377964 + 0.377964i 0.870367 0.492403i \(-0.163881\pi\)
−0.492403 + 0.870367i \(0.663881\pi\)
\(8\) 0 0
\(9\) 2.82843 1.00000i 0.942809 0.333333i
\(10\) 0 0
\(11\) 1.41421i 0.426401i −0.977008 0.213201i \(-0.931611\pi\)
0.977008 0.213201i \(-0.0683888\pi\)
\(12\) 0 0
\(13\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(14\) 0 0
\(15\) −0.585786 + 3.82843i −0.151249 + 0.988496i
\(16\) 0 0
\(17\) 1.41421 1.41421i 0.342997 0.342997i −0.514496 0.857493i \(-0.672021\pi\)
0.857493 + 0.514496i \(0.172021\pi\)
\(18\) 0 0
\(19\) 4.00000i 0.917663i 0.888523 + 0.458831i \(0.151732\pi\)
−0.888523 + 0.458831i \(0.848268\pi\)
\(20\) 0 0
\(21\) −2.00000 1.41421i −0.436436 0.308607i
\(22\) 0 0
\(23\) −2.82843 2.82843i −0.589768 0.589768i 0.347801 0.937568i \(-0.386929\pi\)
−0.937568 + 0.347801i \(0.886929\pi\)
\(24\) 0 0
\(25\) −4.00000 3.00000i −0.800000 0.600000i
\(26\) 0 0
\(27\) −4.53553 + 2.53553i −0.872864 + 0.487964i
\(28\) 0 0
\(29\) 7.07107 1.31306 0.656532 0.754298i \(-0.272023\pi\)
0.656532 + 0.754298i \(0.272023\pi\)
\(30\) 0 0
\(31\) 2.00000 0.359211 0.179605 0.983739i \(-0.442518\pi\)
0.179605 + 0.983739i \(0.442518\pi\)
\(32\) 0 0
\(33\) 0.414214 + 2.41421i 0.0721053 + 0.420261i
\(34\) 0 0
\(35\) 2.82843 1.41421i 0.478091 0.239046i
\(36\) 0 0
\(37\) −6.00000 6.00000i −0.986394 0.986394i 0.0135147 0.999909i \(-0.495698\pi\)
−0.999909 + 0.0135147i \(0.995698\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 5.65685i 0.883452i −0.897150 0.441726i \(-0.854366\pi\)
0.897150 0.441726i \(-0.145634\pi\)
\(42\) 0 0
\(43\) 6.00000 6.00000i 0.914991 0.914991i −0.0816682 0.996660i \(-0.526025\pi\)
0.996660 + 0.0816682i \(0.0260248\pi\)
\(44\) 0 0
\(45\) −0.121320 6.70711i −0.0180854 0.999836i
\(46\) 0 0
\(47\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(48\) 0 0
\(49\) 5.00000i 0.714286i
\(50\) 0 0
\(51\) −2.00000 + 2.82843i −0.280056 + 0.396059i
\(52\) 0 0
\(53\) 2.82843 + 2.82843i 0.388514 + 0.388514i 0.874157 0.485643i \(-0.161414\pi\)
−0.485643 + 0.874157i \(0.661414\pi\)
\(54\) 0 0
\(55\) −3.00000 1.00000i −0.404520 0.134840i
\(56\) 0 0
\(57\) −1.17157 6.82843i −0.155179 0.904447i
\(58\) 0 0
\(59\) 9.89949 1.28880 0.644402 0.764687i \(-0.277106\pi\)
0.644402 + 0.764687i \(0.277106\pi\)
\(60\) 0 0
\(61\) 6.00000 0.768221 0.384111 0.923287i \(-0.374508\pi\)
0.384111 + 0.923287i \(0.374508\pi\)
\(62\) 0 0
\(63\) 3.82843 + 1.82843i 0.482336 + 0.230360i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) −4.00000 4.00000i −0.488678 0.488678i 0.419211 0.907889i \(-0.362307\pi\)
−0.907889 + 0.419211i \(0.862307\pi\)
\(68\) 0 0
\(69\) 5.65685 + 4.00000i 0.681005 + 0.481543i
\(70\) 0 0
\(71\) 14.1421i 1.67836i −0.543852 0.839181i \(-0.683035\pi\)
0.543852 0.839181i \(-0.316965\pi\)
\(72\) 0 0
\(73\) −5.00000 + 5.00000i −0.585206 + 0.585206i −0.936329 0.351123i \(-0.885800\pi\)
0.351123 + 0.936329i \(0.385800\pi\)
\(74\) 0 0
\(75\) 7.70711 + 3.94975i 0.889940 + 0.456078i
\(76\) 0 0
\(77\) 1.41421 1.41421i 0.161165 0.161165i
\(78\) 0 0
\(79\) 6.00000i 0.675053i −0.941316 0.337526i \(-0.890410\pi\)
0.941316 0.337526i \(-0.109590\pi\)
\(80\) 0 0
\(81\) 7.00000 5.65685i 0.777778 0.628539i
\(82\) 0 0
\(83\) −8.48528 8.48528i −0.931381 0.931381i 0.0664117 0.997792i \(-0.478845\pi\)
−0.997792 + 0.0664117i \(0.978845\pi\)
\(84\) 0 0
\(85\) −2.00000 4.00000i −0.216930 0.433861i
\(86\) 0 0
\(87\) −12.0711 + 2.07107i −1.29415 + 0.222042i
\(88\) 0 0
\(89\) 2.82843 0.299813 0.149906 0.988700i \(-0.452103\pi\)
0.149906 + 0.988700i \(0.452103\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) −3.41421 + 0.585786i −0.354037 + 0.0607432i
\(94\) 0 0
\(95\) 8.48528 + 2.82843i 0.870572 + 0.290191i
\(96\) 0 0
\(97\) 3.00000 + 3.00000i 0.304604 + 0.304604i 0.842812 0.538208i \(-0.180899\pi\)
−0.538208 + 0.842812i \(0.680899\pi\)
\(98\) 0 0
\(99\) −1.41421 4.00000i −0.142134 0.402015i
\(100\) 0 0
\(101\) 9.89949i 0.985037i −0.870302 0.492518i \(-0.836076\pi\)
0.870302 0.492518i \(-0.163924\pi\)
\(102\) 0 0
\(103\) −1.00000 + 1.00000i −0.0985329 + 0.0985329i −0.754655 0.656122i \(-0.772196\pi\)
0.656122 + 0.754655i \(0.272196\pi\)
\(104\) 0 0
\(105\) −4.41421 + 3.24264i −0.430783 + 0.316449i
\(106\) 0 0
\(107\) −2.82843 + 2.82843i −0.273434 + 0.273434i −0.830481 0.557047i \(-0.811934\pi\)
0.557047 + 0.830481i \(0.311934\pi\)
\(108\) 0 0
\(109\) 10.0000i 0.957826i 0.877862 + 0.478913i \(0.158969\pi\)
−0.877862 + 0.478913i \(0.841031\pi\)
\(110\) 0 0
\(111\) 12.0000 + 8.48528i 1.13899 + 0.805387i
\(112\) 0 0
\(113\) 9.89949 + 9.89949i 0.931266 + 0.931266i 0.997785 0.0665190i \(-0.0211893\pi\)
−0.0665190 + 0.997785i \(0.521189\pi\)
\(114\) 0 0
\(115\) −8.00000 + 4.00000i −0.746004 + 0.373002i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 2.82843 0.259281
\(120\) 0 0
\(121\) 9.00000 0.818182
\(122\) 0 0
\(123\) 1.65685 + 9.65685i 0.149394 + 0.870729i
\(124\) 0 0
\(125\) −9.19239 + 6.36396i −0.822192 + 0.569210i
\(126\) 0 0
\(127\) 7.00000 + 7.00000i 0.621150 + 0.621150i 0.945825 0.324676i \(-0.105255\pi\)
−0.324676 + 0.945825i \(0.605255\pi\)
\(128\) 0 0
\(129\) −8.48528 + 12.0000i −0.747087 + 1.05654i
\(130\) 0 0
\(131\) 18.3848i 1.60629i −0.595787 0.803143i \(-0.703160\pi\)
0.595787 0.803143i \(-0.296840\pi\)
\(132\) 0 0
\(133\) −4.00000 + 4.00000i −0.346844 + 0.346844i
\(134\) 0 0
\(135\) 2.17157 + 11.4142i 0.186899 + 0.982379i
\(136\) 0 0
\(137\) −4.24264 + 4.24264i −0.362473 + 0.362473i −0.864723 0.502249i \(-0.832506\pi\)
0.502249 + 0.864723i \(0.332506\pi\)
\(138\) 0 0
\(139\) 8.00000i 0.678551i 0.940687 + 0.339276i \(0.110182\pi\)
−0.940687 + 0.339276i \(0.889818\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) 5.00000 15.0000i 0.415227 1.24568i
\(146\) 0 0
\(147\) 1.46447 + 8.53553i 0.120787 + 0.703999i
\(148\) 0 0
\(149\) −12.7279 −1.04271 −0.521356 0.853339i \(-0.674574\pi\)
−0.521356 + 0.853339i \(0.674574\pi\)
\(150\) 0 0
\(151\) −16.0000 −1.30206 −0.651031 0.759051i \(-0.725663\pi\)
−0.651031 + 0.759051i \(0.725663\pi\)
\(152\) 0 0
\(153\) 2.58579 5.41421i 0.209048 0.437713i
\(154\) 0 0
\(155\) 1.41421 4.24264i 0.113592 0.340777i
\(156\) 0 0
\(157\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(158\) 0 0
\(159\) −5.65685 4.00000i −0.448618 0.317221i
\(160\) 0 0
\(161\) 5.65685i 0.445823i
\(162\) 0 0
\(163\) −4.00000 + 4.00000i −0.313304 + 0.313304i −0.846188 0.532884i \(-0.821108\pi\)
0.532884 + 0.846188i \(0.321108\pi\)
\(164\) 0 0
\(165\) 5.41421 + 0.828427i 0.421496 + 0.0644930i
\(166\) 0 0
\(167\) 5.65685 5.65685i 0.437741 0.437741i −0.453510 0.891251i \(-0.649829\pi\)
0.891251 + 0.453510i \(0.149829\pi\)
\(168\) 0 0
\(169\) 13.0000i 1.00000i
\(170\) 0 0
\(171\) 4.00000 + 11.3137i 0.305888 + 0.865181i
\(172\) 0 0
\(173\) 1.41421 + 1.41421i 0.107521 + 0.107521i 0.758820 0.651300i \(-0.225776\pi\)
−0.651300 + 0.758820i \(0.725776\pi\)
\(174\) 0 0
\(175\) −1.00000 7.00000i −0.0755929 0.529150i
\(176\) 0 0
\(177\) −16.8995 + 2.89949i −1.27024 + 0.217939i
\(178\) 0 0
\(179\) −18.3848 −1.37414 −0.687071 0.726590i \(-0.741104\pi\)
−0.687071 + 0.726590i \(0.741104\pi\)
\(180\) 0 0
\(181\) 22.0000 1.63525 0.817624 0.575753i \(-0.195291\pi\)
0.817624 + 0.575753i \(0.195291\pi\)
\(182\) 0 0
\(183\) −10.2426 + 1.75736i −0.757158 + 0.129908i
\(184\) 0 0
\(185\) −16.9706 + 8.48528i −1.24770 + 0.623850i
\(186\) 0 0
\(187\) −2.00000 2.00000i −0.146254 0.146254i
\(188\) 0 0
\(189\) −7.07107 2.00000i −0.514344 0.145479i
\(190\) 0 0
\(191\) 2.82843i 0.204658i 0.994751 + 0.102329i \(0.0326294\pi\)
−0.994751 + 0.102329i \(0.967371\pi\)
\(192\) 0 0
\(193\) −15.0000 + 15.0000i −1.07972 + 1.07972i −0.0831899 + 0.996534i \(0.526511\pi\)
−0.996534 + 0.0831899i \(0.973489\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −16.9706 + 16.9706i −1.20910 + 1.20910i −0.237785 + 0.971318i \(0.576421\pi\)
−0.971318 + 0.237785i \(0.923579\pi\)
\(198\) 0 0
\(199\) 24.0000i 1.70131i 0.525720 + 0.850657i \(0.323796\pi\)
−0.525720 + 0.850657i \(0.676204\pi\)
\(200\) 0 0
\(201\) 8.00000 + 5.65685i 0.564276 + 0.399004i
\(202\) 0 0
\(203\) 7.07107 + 7.07107i 0.496292 + 0.496292i
\(204\) 0 0
\(205\) −12.0000 4.00000i −0.838116 0.279372i
\(206\) 0 0
\(207\) −10.8284 5.17157i −0.752628 0.359449i
\(208\) 0 0
\(209\) 5.65685 0.391293
\(210\) 0 0
\(211\) 8.00000 0.550743 0.275371 0.961338i \(-0.411199\pi\)
0.275371 + 0.961338i \(0.411199\pi\)
\(212\) 0 0
\(213\) 4.14214 + 24.1421i 0.283814 + 1.65419i
\(214\) 0 0
\(215\) −8.48528 16.9706i −0.578691 1.15738i
\(216\) 0 0
\(217\) 2.00000 + 2.00000i 0.135769 + 0.135769i
\(218\) 0 0
\(219\) 7.07107 10.0000i 0.477818 0.675737i
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 9.00000 9.00000i 0.602685 0.602685i −0.338340 0.941024i \(-0.609865\pi\)
0.941024 + 0.338340i \(0.109865\pi\)
\(224\) 0 0
\(225\) −14.3137 4.48528i −0.954247 0.299019i
\(226\) 0 0
\(227\) 15.5563 15.5563i 1.03251 1.03251i 0.0330577 0.999453i \(-0.489475\pi\)
0.999453 0.0330577i \(-0.0105245\pi\)
\(228\) 0 0
\(229\) 6.00000i 0.396491i 0.980152 + 0.198246i \(0.0635244\pi\)
−0.980152 + 0.198246i \(0.936476\pi\)
\(230\) 0 0
\(231\) −2.00000 + 2.82843i −0.131590 + 0.186097i
\(232\) 0 0
\(233\) −12.7279 12.7279i −0.833834 0.833834i 0.154205 0.988039i \(-0.450718\pi\)
−0.988039 + 0.154205i \(0.950718\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 1.75736 + 10.2426i 0.114153 + 0.665331i
\(238\) 0 0
\(239\) 8.48528 0.548867 0.274434 0.961606i \(-0.411510\pi\)
0.274434 + 0.961606i \(0.411510\pi\)
\(240\) 0 0
\(241\) 4.00000 0.257663 0.128831 0.991667i \(-0.458877\pi\)
0.128831 + 0.991667i \(0.458877\pi\)
\(242\) 0 0
\(243\) −10.2929 + 11.7071i −0.660289 + 0.751011i
\(244\) 0 0
\(245\) −10.6066 3.53553i −0.677631 0.225877i
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 16.9706 + 12.0000i 1.07547 + 0.760469i
\(250\) 0 0
\(251\) 12.7279i 0.803379i 0.915776 + 0.401690i \(0.131577\pi\)
−0.915776 + 0.401690i \(0.868423\pi\)
\(252\) 0 0
\(253\) −4.00000 + 4.00000i −0.251478 + 0.251478i
\(254\) 0 0
\(255\) 4.58579 + 6.24264i 0.287173 + 0.390929i
\(256\) 0 0
\(257\) −9.89949 + 9.89949i −0.617514 + 0.617514i −0.944893 0.327379i \(-0.893834\pi\)
0.327379 + 0.944893i \(0.393834\pi\)
\(258\) 0 0
\(259\) 12.0000i 0.745644i
\(260\) 0 0
\(261\) 20.0000 7.07107i 1.23797 0.437688i
\(262\) 0 0
\(263\) −5.65685 5.65685i −0.348817 0.348817i 0.510852 0.859669i \(-0.329330\pi\)
−0.859669 + 0.510852i \(0.829330\pi\)
\(264\) 0 0
\(265\) 8.00000 4.00000i 0.491436 0.245718i
\(266\) 0 0
\(267\) −4.82843 + 0.828427i −0.295495 + 0.0506989i
\(268\) 0 0
\(269\) 15.5563 0.948487 0.474244 0.880394i \(-0.342722\pi\)
0.474244 + 0.880394i \(0.342722\pi\)
\(270\) 0 0
\(271\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −4.24264 + 5.65685i −0.255841 + 0.341121i
\(276\) 0 0
\(277\) 6.00000 + 6.00000i 0.360505 + 0.360505i 0.863999 0.503494i \(-0.167952\pi\)
−0.503494 + 0.863999i \(0.667952\pi\)
\(278\) 0 0
\(279\) 5.65685 2.00000i 0.338667 0.119737i
\(280\) 0 0
\(281\) 8.48528i 0.506189i 0.967442 + 0.253095i \(0.0814484\pi\)
−0.967442 + 0.253095i \(0.918552\pi\)
\(282\) 0 0
\(283\) 20.0000 20.0000i 1.18888 1.18888i 0.211498 0.977378i \(-0.432166\pi\)
0.977378 0.211498i \(-0.0678343\pi\)
\(284\) 0 0
\(285\) −15.3137 2.34315i −0.907106 0.138796i
\(286\) 0 0
\(287\) 5.65685 5.65685i 0.333914 0.333914i
\(288\) 0 0
\(289\) 13.0000i 0.764706i
\(290\) 0 0
\(291\) −6.00000 4.24264i −0.351726 0.248708i
\(292\) 0 0
\(293\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(294\) 0 0
\(295\) 7.00000 21.0000i 0.407556 1.22267i
\(296\) 0 0
\(297\) 3.58579 + 6.41421i 0.208068 + 0.372190i
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) 12.0000 0.691669
\(302\) 0 0
\(303\) 2.89949 + 16.8995i 0.166572 + 0.970851i
\(304\) 0 0
\(305\) 4.24264 12.7279i 0.242933 0.728799i
\(306\) 0 0
\(307\) 18.0000 + 18.0000i 1.02731 + 1.02731i 0.999616 + 0.0276979i \(0.00881765\pi\)
0.0276979 + 0.999616i \(0.491182\pi\)
\(308\) 0 0
\(309\) 1.41421 2.00000i 0.0804518 0.113776i
\(310\) 0 0
\(311\) 19.7990i 1.12270i 0.827579 + 0.561349i \(0.189717\pi\)
−0.827579 + 0.561349i \(0.810283\pi\)
\(312\) 0 0
\(313\) 9.00000 9.00000i 0.508710 0.508710i −0.405420 0.914130i \(-0.632875\pi\)
0.914130 + 0.405420i \(0.132875\pi\)
\(314\) 0 0
\(315\) 6.58579 6.82843i 0.371067 0.384738i
\(316\) 0 0
\(317\) 12.7279 12.7279i 0.714871 0.714871i −0.252679 0.967550i \(-0.581312\pi\)
0.967550 + 0.252679i \(0.0813116\pi\)
\(318\) 0 0
\(319\) 10.0000i 0.559893i
\(320\) 0 0
\(321\) 4.00000 5.65685i 0.223258 0.315735i
\(322\) 0 0
\(323\) 5.65685 + 5.65685i 0.314756 + 0.314756i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) −2.92893 17.0711i −0.161970 0.944032i
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) −8.00000 −0.439720 −0.219860 0.975531i \(-0.570560\pi\)
−0.219860 + 0.975531i \(0.570560\pi\)
\(332\) 0 0
\(333\) −22.9706 10.9706i −1.25878 0.601183i
\(334\) 0 0
\(335\) −11.3137 + 5.65685i −0.618134 + 0.309067i
\(336\) 0 0
\(337\) −9.00000 9.00000i −0.490261 0.490261i 0.418127 0.908388i \(-0.362687\pi\)
−0.908388 + 0.418127i \(0.862687\pi\)
\(338\) 0 0
\(339\) −19.7990 14.0000i −1.07533 0.760376i
\(340\) 0 0
\(341\) 2.82843i 0.153168i
\(342\) 0 0
\(343\) 12.0000 12.0000i 0.647939 0.647939i
\(344\) 0 0
\(345\) 12.4853 9.17157i 0.672185 0.493781i
\(346\) 0 0
\(347\) 9.89949 9.89949i 0.531433 0.531433i −0.389566 0.920999i \(-0.627375\pi\)
0.920999 + 0.389566i \(0.127375\pi\)
\(348\) 0 0
\(349\) 2.00000i 0.107058i 0.998566 + 0.0535288i \(0.0170469\pi\)
−0.998566 + 0.0535288i \(0.982953\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 12.7279 + 12.7279i 0.677439 + 0.677439i 0.959420 0.281981i \(-0.0909915\pi\)
−0.281981 + 0.959420i \(0.590992\pi\)
\(354\) 0 0
\(355\) −30.0000 10.0000i −1.59223 0.530745i
\(356\) 0 0
\(357\) −4.82843 + 0.828427i −0.255547 + 0.0438450i
\(358\) 0 0
\(359\) −11.3137 −0.597115 −0.298557 0.954392i \(-0.596505\pi\)
−0.298557 + 0.954392i \(0.596505\pi\)
\(360\) 0 0
\(361\) 3.00000 0.157895
\(362\) 0 0
\(363\) −15.3640 + 2.63604i −0.806399 + 0.138356i
\(364\) 0 0
\(365\) 7.07107 + 14.1421i 0.370117 + 0.740233i
\(366\) 0 0
\(367\) 19.0000 + 19.0000i 0.991792 + 0.991792i 0.999967 0.00817466i \(-0.00260210\pi\)
−0.00817466 + 0.999967i \(0.502602\pi\)
\(368\) 0 0
\(369\) −5.65685 16.0000i −0.294484 0.832927i
\(370\) 0 0
\(371\) 5.65685i 0.293689i
\(372\) 0 0
\(373\) −4.00000 + 4.00000i −0.207112 + 0.207112i −0.803039 0.595927i \(-0.796785\pi\)
0.595927 + 0.803039i \(0.296785\pi\)
\(374\) 0 0
\(375\) 13.8284 13.5563i 0.714097 0.700047i
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 16.0000i 0.821865i 0.911666 + 0.410932i \(0.134797\pi\)
−0.911666 + 0.410932i \(0.865203\pi\)
\(380\) 0 0
\(381\) −14.0000 9.89949i −0.717242 0.507166i
\(382\) 0 0
\(383\) 16.9706 + 16.9706i 0.867155 + 0.867155i 0.992157 0.125001i \(-0.0398935\pi\)
−0.125001 + 0.992157i \(0.539894\pi\)
\(384\) 0 0
\(385\) −2.00000 4.00000i −0.101929 0.203859i
\(386\) 0 0
\(387\) 10.9706 22.9706i 0.557665 1.16766i
\(388\) 0 0
\(389\) −4.24264 −0.215110 −0.107555 0.994199i \(-0.534302\pi\)
−0.107555 + 0.994199i \(0.534302\pi\)
\(390\) 0 0
\(391\) −8.00000 −0.404577
\(392\) 0 0
\(393\) 5.38478 + 31.3848i 0.271626 + 1.58315i
\(394\) 0 0
\(395\) −12.7279 4.24264i −0.640411 0.213470i
\(396\) 0 0
\(397\) −22.0000 22.0000i −1.10415 1.10415i −0.993905 0.110244i \(-0.964837\pi\)
−0.110244 0.993905i \(-0.535163\pi\)
\(398\) 0 0
\(399\) 5.65685 8.00000i 0.283197 0.400501i
\(400\) 0 0
\(401\) 8.48528i 0.423735i −0.977298 0.211867i \(-0.932046\pi\)
0.977298 0.211867i \(-0.0679545\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) −7.05025 18.8492i −0.350330 0.936626i
\(406\) 0 0
\(407\) −8.48528 + 8.48528i −0.420600 + 0.420600i
\(408\) 0 0
\(409\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(410\) 0 0
\(411\) 6.00000 8.48528i 0.295958 0.418548i
\(412\) 0 0
\(413\) 9.89949 + 9.89949i 0.487122 + 0.487122i
\(414\) 0 0
\(415\) −24.0000 + 12.0000i −1.17811 + 0.589057i
\(416\) 0 0
\(417\) −2.34315 13.6569i −0.114744 0.668779i
\(418\) 0 0
\(419\) 21.2132 1.03633 0.518166 0.855280i \(-0.326615\pi\)
0.518166 + 0.855280i \(0.326615\pi\)
\(420\) 0 0
\(421\) −14.0000 −0.682318 −0.341159 0.940006i \(-0.610819\pi\)
−0.341159 + 0.940006i \(0.610819\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −9.89949 + 1.41421i −0.480196 + 0.0685994i
\(426\) 0 0
\(427\) 6.00000 + 6.00000i 0.290360 + 0.290360i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 11.3137i 0.544962i −0.962161 0.272481i \(-0.912156\pi\)
0.962161 0.272481i \(-0.0878442\pi\)
\(432\) 0 0
\(433\) −1.00000 + 1.00000i −0.0480569 + 0.0480569i −0.730727 0.682670i \(-0.760819\pi\)
0.682670 + 0.730727i \(0.260819\pi\)
\(434\) 0 0
\(435\) −4.14214 + 27.0711i −0.198600 + 1.29796i
\(436\) 0 0
\(437\) 11.3137 11.3137i 0.541208 0.541208i
\(438\) 0 0
\(439\) 16.0000i 0.763638i 0.924237 + 0.381819i \(0.124702\pi\)
−0.924237 + 0.381819i \(0.875298\pi\)
\(440\) 0 0
\(441\) −5.00000 14.1421i −0.238095 0.673435i
\(442\) 0 0
\(443\) −4.24264 4.24264i −0.201574 0.201574i 0.599100 0.800674i \(-0.295525\pi\)
−0.800674 + 0.599100i \(0.795525\pi\)
\(444\) 0 0
\(445\) 2.00000 6.00000i 0.0948091 0.284427i
\(446\) 0 0
\(447\) 21.7279 3.72792i 1.02770 0.176325i
\(448\) 0 0
\(449\) 14.1421 0.667409 0.333704 0.942678i \(-0.391701\pi\)
0.333704 + 0.942678i \(0.391701\pi\)
\(450\) 0 0
\(451\) −8.00000 −0.376705
\(452\) 0 0
\(453\) 27.3137 4.68629i 1.28331 0.220181i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −15.0000 15.0000i −0.701670 0.701670i 0.263099 0.964769i \(-0.415256\pi\)
−0.964769 + 0.263099i \(0.915256\pi\)
\(458\) 0 0
\(459\) −2.82843 + 10.0000i −0.132020 + 0.466760i
\(460\) 0 0
\(461\) 7.07107i 0.329332i −0.986349 0.164666i \(-0.947345\pi\)
0.986349 0.164666i \(-0.0526547\pi\)
\(462\) 0 0
\(463\) −5.00000 + 5.00000i −0.232370 + 0.232370i −0.813681 0.581311i \(-0.802540\pi\)
0.581311 + 0.813681i \(0.302540\pi\)
\(464\) 0 0
\(465\) −1.17157 + 7.65685i −0.0543304 + 0.355078i
\(466\) 0 0
\(467\) −19.7990 + 19.7990i −0.916188 + 0.916188i −0.996750 0.0805616i \(-0.974329\pi\)
0.0805616 + 0.996750i \(0.474329\pi\)
\(468\) 0 0
\(469\) 8.00000i 0.369406i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −8.48528 8.48528i −0.390154 0.390154i
\(474\) 0 0
\(475\) 12.0000 16.0000i 0.550598 0.734130i
\(476\) 0 0
\(477\) 10.8284 + 5.17157i 0.495800 + 0.236790i
\(478\) 0 0
\(479\) −31.1127 −1.42158 −0.710788 0.703407i \(-0.751661\pi\)
−0.710788 + 0.703407i \(0.751661\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 1.65685 + 9.65685i 0.0753895 + 0.439402i
\(484\) 0 0
\(485\) 8.48528 4.24264i 0.385297 0.192648i
\(486\) 0 0
\(487\) −9.00000 9.00000i −0.407829 0.407829i 0.473152 0.880981i \(-0.343116\pi\)
−0.880981 + 0.473152i \(0.843116\pi\)
\(488\) 0 0
\(489\) 5.65685 8.00000i 0.255812 0.361773i
\(490\) 0 0
\(491\) 26.8701i 1.21263i 0.795225 + 0.606314i \(0.207353\pi\)
−0.795225 + 0.606314i \(0.792647\pi\)
\(492\) 0 0
\(493\) 10.0000 10.0000i 0.450377 0.450377i
\(494\) 0 0
\(495\) −9.48528 + 0.171573i −0.426332 + 0.00771163i
\(496\) 0 0
\(497\) 14.1421 14.1421i 0.634361 0.634361i
\(498\) 0 0
\(499\) 20.0000i 0.895323i 0.894203 + 0.447661i \(0.147743\pi\)
−0.894203 + 0.447661i \(0.852257\pi\)
\(500\) 0 0
\(501\) −8.00000 + 11.3137i −0.357414 + 0.505459i
\(502\) 0 0
\(503\) −8.48528 8.48528i −0.378340 0.378340i 0.492163 0.870503i \(-0.336206\pi\)
−0.870503 + 0.492163i \(0.836206\pi\)
\(504\) 0 0
\(505\) −21.0000 7.00000i −0.934488 0.311496i
\(506\) 0 0
\(507\) −3.80761 22.1924i −0.169102 0.985599i
\(508\) 0 0
\(509\) 24.0416 1.06563 0.532813 0.846233i \(-0.321135\pi\)
0.532813 + 0.846233i \(0.321135\pi\)
\(510\) 0 0
\(511\) −10.0000 −0.442374
\(512\) 0 0
\(513\) −10.1421 18.1421i −0.447786 0.800995i
\(514\) 0 0
\(515\) 1.41421 + 2.82843i 0.0623177 + 0.124635i
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) −2.82843 2.00000i −0.124154 0.0877903i
\(520\) 0 0
\(521\) 25.4558i 1.11524i −0.830096 0.557620i \(-0.811714\pi\)
0.830096 0.557620i \(-0.188286\pi\)
\(522\) 0 0
\(523\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(524\) 0 0
\(525\) 3.75736 + 11.6569i 0.163985 + 0.508747i
\(526\) 0 0
\(527\) 2.82843 2.82843i 0.123208 0.123208i
\(528\) 0 0
\(529\) 7.00000i 0.304348i
\(530\) 0 0
\(531\) 28.0000 9.89949i 1.21510 0.429601i
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 4.00000 + 8.00000i 0.172935 + 0.345870i
\(536\) 0 0
\(537\) 31.3848 5.38478i 1.35435 0.232370i
\(538\) 0 0
\(539\) −7.07107 −0.304572
\(540\) 0 0
\(541\) 2.00000 0.0859867 0.0429934 0.999075i \(-0.486311\pi\)
0.0429934 + 0.999075i \(0.486311\pi\)
\(542\) 0 0
\(543\) −37.5563 + 6.44365i −1.61170 + 0.276524i
\(544\) 0 0
\(545\) 21.2132 + 7.07107i 0.908674 + 0.302891i
\(546\) 0 0
\(547\) 6.00000 + 6.00000i 0.256541 + 0.256541i 0.823646 0.567104i \(-0.191936\pi\)
−0.567104 + 0.823646i \(0.691936\pi\)
\(548\) 0 0
\(549\) 16.9706 6.00000i 0.724286 0.256074i
\(550\) 0 0
\(551\) 28.2843i 1.20495i
\(552\) 0 0
\(553\) 6.00000 6.00000i 0.255146 0.255146i
\(554\) 0 0
\(555\) 26.4853 19.4558i 1.12424 0.825855i
\(556\) 0 0
\(557\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 4.00000 + 2.82843i 0.168880 + 0.119416i
\(562\) 0 0
\(563\) 21.2132 + 21.2132i 0.894030 + 0.894030i 0.994900 0.100870i \(-0.0321625\pi\)
−0.100870 + 0.994900i \(0.532163\pi\)
\(564\) 0 0
\(565\) 28.0000 14.0000i 1.17797 0.588984i
\(566\) 0 0
\(567\) 12.6569 + 1.34315i 0.531538 + 0.0564068i
\(568\) 0 0
\(569\) −14.1421 −0.592869 −0.296435 0.955053i \(-0.595798\pi\)
−0.296435 + 0.955053i \(0.595798\pi\)
\(570\) 0 0
\(571\) −40.0000 −1.67395 −0.836974 0.547243i \(-0.815677\pi\)
−0.836974 + 0.547243i \(0.815677\pi\)
\(572\) 0 0
\(573\) −0.828427 4.82843i −0.0346080 0.201710i
\(574\) 0 0
\(575\) 2.82843 + 19.7990i 0.117954 + 0.825675i
\(576\) 0 0
\(577\) 13.0000 + 13.0000i 0.541197 + 0.541197i 0.923880 0.382683i \(-0.125000\pi\)
−0.382683 + 0.923880i \(0.625000\pi\)
\(578\) 0 0
\(579\) 21.2132 30.0000i 0.881591 1.24676i
\(580\) 0 0
\(581\) 16.9706i 0.704058i
\(582\) 0 0
\(583\) 4.00000 4.00000i 0.165663 0.165663i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −25.4558 + 25.4558i −1.05068 + 1.05068i −0.0520296 + 0.998646i \(0.516569\pi\)
−0.998646 + 0.0520296i \(0.983431\pi\)
\(588\) 0 0
\(589\) 8.00000i 0.329634i
\(590\) 0 0
\(591\) 24.0000 33.9411i 0.987228 1.39615i
\(592\) 0 0
\(593\) 15.5563 + 15.5563i 0.638823 + 0.638823i 0.950265 0.311442i \(-0.100812\pi\)
−0.311442 + 0.950265i \(0.600812\pi\)
\(594\) 0 0
\(595\) 2.00000 6.00000i 0.0819920 0.245976i
\(596\) 0 0
\(597\) −7.02944 40.9706i −0.287696 1.67681i
\(598\) 0 0
\(599\) 45.2548 1.84906 0.924531 0.381106i \(-0.124457\pi\)
0.924531 + 0.381106i \(0.124457\pi\)
\(600\) 0 0
\(601\) −10.0000 −0.407909 −0.203954 0.978980i \(-0.565379\pi\)
−0.203954 + 0.978980i \(0.565379\pi\)
\(602\) 0 0
\(603\) −15.3137 7.31371i −0.623622 0.297837i
\(604\) 0 0
\(605\) 6.36396 19.0919i 0.258732 0.776195i
\(606\) 0 0
\(607\) −3.00000 3.00000i −0.121766 0.121766i 0.643598 0.765364i \(-0.277441\pi\)
−0.765364 + 0.643598i \(0.777441\pi\)
\(608\) 0 0
\(609\) −14.1421 10.0000i −0.573068 0.405220i
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) −18.0000 + 18.0000i −0.727013 + 0.727013i −0.970024 0.243011i \(-0.921865\pi\)
0.243011 + 0.970024i \(0.421865\pi\)
\(614\) 0 0
\(615\) 21.6569 + 3.31371i 0.873289 + 0.133622i
\(616\) 0 0
\(617\) 21.2132 21.2132i 0.854011 0.854011i −0.136613 0.990624i \(-0.543622\pi\)
0.990624 + 0.136613i \(0.0436217\pi\)
\(618\) 0 0
\(619\) 24.0000i 0.964641i 0.875995 + 0.482321i \(0.160206\pi\)
−0.875995 + 0.482321i \(0.839794\pi\)
\(620\) 0 0
\(621\) 20.0000 + 5.65685i 0.802572 + 0.227002i
\(622\) 0 0
\(623\) 2.82843 + 2.82843i 0.113319 + 0.113319i
\(624\) 0 0
\(625\) 7.00000 + 24.0000i 0.280000 + 0.960000i
\(626\) 0 0
\(627\) −9.65685 + 1.65685i −0.385658 + 0.0661684i
\(628\) 0 0
\(629\) −16.9706 −0.676661
\(630\) 0 0
\(631\) 14.0000 0.557331 0.278666 0.960388i \(-0.410108\pi\)
0.278666 + 0.960388i \(0.410108\pi\)
\(632\) 0 0
\(633\) −13.6569 + 2.34315i −0.542811 + 0.0931317i
\(634\) 0 0
\(635\) 19.7990 9.89949i 0.785699 0.392849i
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) −14.1421 40.0000i −0.559454 1.58238i
\(640\) 0 0
\(641\) 5.65685i 0.223432i 0.993740 + 0.111716i \(0.0356347\pi\)
−0.993740 + 0.111716i \(0.964365\pi\)
\(642\) 0 0
\(643\) 24.0000 24.0000i 0.946468 0.946468i −0.0521706 0.998638i \(-0.516614\pi\)
0.998638 + 0.0521706i \(0.0166140\pi\)
\(644\) 0 0
\(645\) 19.4558 + 26.4853i 0.766073 + 1.04286i
\(646\) 0 0
\(647\) −19.7990 + 19.7990i −0.778379 + 0.778379i −0.979555 0.201176i \(-0.935524\pi\)
0.201176 + 0.979555i \(0.435524\pi\)
\(648\) 0 0
\(649\) 14.0000i 0.549548i
\(650\) 0 0
\(651\) −4.00000 2.82843i −0.156772 0.110855i
\(652\) 0 0
\(653\) −4.24264 4.24264i −0.166027 0.166027i 0.619203 0.785231i \(-0.287456\pi\)
−0.785231 + 0.619203i \(0.787456\pi\)
\(654\) 0 0
\(655\) −39.0000 13.0000i −1.52386 0.507952i
\(656\) 0 0
\(657\) −9.14214 + 19.1421i −0.356669 + 0.746806i
\(658\) 0 0
\(659\) −35.3553 −1.37725 −0.688624 0.725118i \(-0.741785\pi\)
−0.688624 + 0.725118i \(0.741785\pi\)
\(660\) 0 0
\(661\) −50.0000 −1.94477 −0.972387 0.233373i \(-0.925024\pi\)
−0.972387 + 0.233373i \(0.925024\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 5.65685 + 11.3137i 0.219363 + 0.438727i
\(666\) 0 0
\(667\) −20.0000 20.0000i −0.774403 0.774403i
\(668\) 0 0
\(669\) −12.7279 + 18.0000i −0.492090 + 0.695920i
\(670\) 0 0
\(671\) 8.48528i 0.327571i
\(672\) 0 0
\(673\) 13.0000 13.0000i 0.501113 0.501113i −0.410671 0.911784i \(-0.634705\pi\)
0.911784 + 0.410671i \(0.134705\pi\)
\(674\) 0 0
\(675\) 25.7487 + 3.46447i 0.991069 + 0.133347i
\(676\) 0 0
\(677\) −18.3848 + 18.3848i −0.706584 + 0.706584i −0.965815 0.259231i \(-0.916531\pi\)
0.259231 + 0.965815i \(0.416531\pi\)
\(678\) 0 0
\(679\) 6.00000i 0.230259i
\(680\) 0 0
\(681\) −22.0000 + 31.1127i −0.843042 + 1.19224i
\(682\) 0 0
\(683\) −25.4558 25.4558i −0.974041 0.974041i 0.0256307 0.999671i \(-0.491841\pi\)
−0.999671 + 0.0256307i \(0.991841\pi\)
\(684\) 0 0
\(685\) 6.00000 + 12.0000i 0.229248 + 0.458496i
\(686\) 0 0
\(687\) −1.75736 10.2426i −0.0670474 0.390781i
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) 12.0000 0.456502 0.228251 0.973602i \(-0.426699\pi\)
0.228251 + 0.973602i \(0.426699\pi\)
\(692\) 0 0
\(693\) 2.58579 5.41421i 0.0982259 0.205669i
\(694\) 0 0
\(695\) 16.9706 + 5.65685i 0.643730 + 0.214577i
\(696\) 0 0
\(697\) −8.00000 8.00000i −0.303022 0.303022i
\(698\) 0 0
\(699\) 25.4558 + 18.0000i 0.962828 + 0.680823i
\(700\) 0 0
\(701\) 26.8701i 1.01487i 0.861691 + 0.507434i \(0.169406\pi\)
−0.861691 + 0.507434i \(0.830594\pi\)
\(702\) 0 0
\(703\) 24.0000 24.0000i 0.905177 0.905177i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 9.89949 9.89949i 0.372309 0.372309i
\(708\) 0 0
\(709\) 10.0000i 0.375558i −0.982211 0.187779i \(-0.939871\pi\)
0.982211 0.187779i \(-0.0601289\pi\)
\(710\) 0 0
\(711\) −6.00000 16.9706i −0.225018 0.636446i
\(712\) 0 0
\(713\) −5.65685 5.65685i −0.211851 0.211851i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) −14.4853 + 2.48528i −0.540963 + 0.0928145i
\(718\) 0 0
\(719\) −22.6274 −0.843860 −0.421930 0.906628i \(-0.638647\pi\)
−0.421930 + 0.906628i \(0.638647\pi\)
\(720\) 0 0
\(721\) −2.00000 −0.0744839
\(722\) 0 0
\(723\) −6.82843 + 1.17157i −0.253952 + 0.0435713i
\(724\) 0 0
\(725\) −28.2843 21.2132i −1.05045 0.787839i
\(726\) 0 0
\(727\) 3.00000 + 3.00000i 0.111264 + 0.111264i 0.760547 0.649283i \(-0.224931\pi\)
−0.649283 + 0.760547i \(0.724931\pi\)
\(728\) 0 0
\(729\) 14.1421 23.0000i 0.523783 0.851852i
\(730\) 0 0
\(731\) 16.9706i 0.627679i
\(732\) 0 0
\(733\) 26.0000 26.0000i 0.960332 0.960332i −0.0389108 0.999243i \(-0.512389\pi\)
0.999243 + 0.0389108i \(0.0123888\pi\)
\(734\) 0 0
\(735\) 19.1421 + 2.92893i 0.706068 + 0.108035i
\(736\) 0 0
\(737\) −5.65685 + 5.65685i −0.208373 + 0.208373i
\(738\) 0 0
\(739\) 40.0000i 1.47142i −0.677295 0.735712i \(-0.736848\pi\)
0.677295 0.735712i \(-0.263152\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 36.7696 + 36.7696i 1.34894 + 1.34894i 0.886810 + 0.462134i \(0.152916\pi\)
0.462134 + 0.886810i \(0.347084\pi\)
\(744\) 0 0
\(745\) −9.00000 + 27.0000i −0.329734 + 0.989203i
\(746\) 0 0
\(747\) −32.4853 15.5147i −1.18857 0.567654i
\(748\) 0 0
\(749\) −5.65685 −0.206697
\(750\) 0 0
\(751\) 30.0000 1.09472 0.547358 0.836899i \(-0.315634\pi\)
0.547358 + 0.836899i \(0.315634\pi\)
\(752\) 0 0
\(753\) −3.72792 21.7279i −0.135853 0.791809i
\(754\) 0 0
\(755\) −11.3137 + 33.9411i −0.411748 + 1.23524i
\(756\) 0 0
\(757\) 30.0000 + 30.0000i 1.09037 + 1.09037i 0.995489 + 0.0948798i \(0.0302467\pi\)
0.0948798 + 0.995489i \(0.469753\pi\)
\(758\) 0 0
\(759\) 5.65685 8.00000i 0.205331 0.290382i
\(760\) 0 0
\(761\) 36.7696i 1.33290i 0.745552 + 0.666448i \(0.232186\pi\)
−0.745552 + 0.666448i \(0.767814\pi\)
\(762\) 0 0
\(763\) −10.0000 + 10.0000i −0.362024 + 0.362024i
\(764\) 0 0
\(765\) −9.65685 9.31371i −0.349144 0.336738i
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) 22.0000i 0.793340i −0.917961 0.396670i \(-0.870166\pi\)
0.917961 0.396670i \(-0.129834\pi\)
\(770\) 0 0
\(771\) 14.0000 19.7990i 0.504198 0.713043i
\(772\) 0 0
\(773\) −29.6985 29.6985i −1.06818 1.06818i −0.997499 0.0706813i \(-0.977483\pi\)
−0.0706813 0.997499i \(-0.522517\pi\)
\(774\) 0 0
\(775\) −8.00000 6.00000i −0.287368 0.215526i
\(776\) 0 0
\(777\) 3.51472 + 20.4853i 0.126090 + 0.734905i
\(778\) 0 0
\(779\) 22.6274 0.810711
\(780\) 0 0
\(781\) −20.0000 −0.715656
\(782\) 0 0
\(783\) −32.0711 + 17.9289i −1.14613 + 0.640728i
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 28.0000 + 28.0000i 0.998092 + 0.998092i 0.999998 0.00190598i \(-0.000606691\pi\)
−0.00190598 + 0.999998i \(0.500607\pi\)
\(788\) 0 0
\(789\) 11.3137 + 8.00000i 0.402779 + 0.284808i
\(790\) 0 0
\(791\) 19.7990i 0.703971i
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) −12.4853 + 9.17157i −0.442807 + 0.325282i
\(796\) 0 0
\(797\) −12.7279 + 12.7279i −0.450846 + 0.450846i −0.895635 0.444789i \(-0.853279\pi\)
0.444789 + 0.895635i \(0.353279\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) 8.00000 2.82843i 0.282666 0.0999376i
\(802\) 0 0
\(803\) 7.07107 + 7.07107i 0.249533 + 0.249533i
\(804\) 0 0
\(805\) −12.0000 4.00000i −0.422944 0.140981i
\(806\) 0 0
\(807\) −26.5563 + 4.55635i −0.934828 + 0.160391i
\(808\) 0 0
\(809\) −22.6274 −0.795538 −0.397769 0.917486i \(-0.630215\pi\)
−0.397769 + 0.917486i \(0.630215\pi\)
\(810\) 0 0
\(811\) −4.00000 −0.140459 −0.0702295 0.997531i \(-0.522373\pi\)
−0.0702295 + 0.997531i \(0.522373\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 5.65685 + 11.3137i 0.198151 + 0.396302i
\(816\) 0 0
\(817\) 24.0000 + 24.0000i 0.839654 + 0.839654i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 43.8406i 1.53005i 0.644002 + 0.765024i \(0.277273\pi\)
−0.644002 + 0.765024i \(0.722727\pi\)
\(822\) 0 0
\(823\) 25.0000 25.0000i 0.871445 0.871445i −0.121185 0.992630i \(-0.538669\pi\)
0.992630 + 0.121185i \(0.0386693\pi\)
\(824\) 0 0
\(825\) 5.58579 10.8995i 0.194472 0.379472i
\(826\) 0 0
\(827\) −12.7279 + 12.7279i −0.442593 + 0.442593i −0.892883 0.450289i \(-0.851321\pi\)
0.450289 + 0.892883i \(0.351321\pi\)
\(828\) 0 0
\(829\) 14.0000i 0.486240i −0.969996 0.243120i \(-0.921829\pi\)
0.969996 0.243120i \(-0.0781709\pi\)
\(830\) 0 0
\(831\) −12.0000 8.48528i −0.416275 0.294351i
\(832\) 0 0
\(833\) −7.07107 7.07107i −0.244998 0.244998i
\(834\) 0 0
\(835\) −8.00000 16.0000i −0.276851 0.553703i
\(836\) 0 0
\(837\) −9.07107 + 5.07107i −0.313542 + 0.175282i
\(838\) 0 0
\(839\) 5.65685 0.195296 0.0976481 0.995221i \(-0.468868\pi\)
0.0976481 + 0.995221i \(0.468868\pi\)
\(840\) 0 0
\(841\) 21.0000 0.724138
\(842\) 0 0
\(843\) −2.48528 14.4853i −0.0855976 0.498900i
\(844\) 0 0
\(845\) 27.5772 + 9.19239i 0.948683 + 0.316228i
\(846\) 0 0
\(847\) 9.00000 + 9.00000i 0.309244 + 0.309244i
\(848\) 0 0
\(849\) −28.2843 + 40.0000i −0.970714 + 1.37280i
\(850\) 0 0
\(851\) 33.9411i 1.16349i
\(852\) 0 0
\(853\) 2.00000 2.00000i 0.0684787 0.0684787i −0.672038 0.740517i \(-0.734581\pi\)
0.740517 + 0.672038i \(0.234581\pi\)
\(854\) 0 0
\(855\) 26.8284 0.485281i 0.917513 0.0165963i
\(856\) 0 0
\(857\) −38.1838 + 38.1838i −1.30433 + 1.30433i −0.378892 + 0.925441i \(0.623695\pi\)
−0.925441 + 0.378892i \(0.876305\pi\)
\(858\) 0 0
\(859\) 32.0000i 1.09183i 0.837842 + 0.545913i \(0.183817\pi\)
−0.837842 + 0.545913i \(0.816183\pi\)
\(860\) 0 0
\(861\) −8.00000 + 11.3137i −0.272639 + 0.385570i
\(862\) 0 0
\(863\) −36.7696 36.7696i −1.25165 1.25165i −0.954980 0.296670i \(-0.904124\pi\)
−0.296670 0.954980i \(-0.595876\pi\)
\(864\) 0 0
\(865\) 4.00000 2.00000i 0.136004 0.0680020i
\(866\) 0 0
\(867\) −3.80761 22.1924i −0.129313 0.753693i
\(868\) 0 0
\(869\) −8.48528 −0.287843
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) 11.4853 + 5.48528i 0.388718 + 0.185649i
\(874\) 0 0
\(875\) −15.5563 2.82843i −0.525901 0.0956183i
\(876\) 0 0
\(877\) 36.0000 + 36.0000i 1.21563 + 1.21563i 0.969146 + 0.246488i \(0.0792765\pi\)
0.246488 + 0.969146i \(0.420724\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 19.7990i 0.667045i 0.942742 + 0.333522i \(0.108237\pi\)
−0.942742 + 0.333522i \(0.891763\pi\)
\(882\) 0 0
\(883\) 4.00000 4.00000i 0.134611 0.134611i −0.636591 0.771202i \(-0.719656\pi\)
0.771202 + 0.636591i \(0.219656\pi\)
\(884\) 0 0
\(885\) −5.79899 + 37.8995i −0.194931 + 1.27398i
\(886\) 0 0
\(887\) −8.48528 + 8.48528i −0.284908 + 0.284908i −0.835063 0.550155i \(-0.814569\pi\)
0.550155 + 0.835063i \(0.314569\pi\)
\(888\) 0 0
\(889\) 14.0000i 0.469545i
\(890\) 0 0
\(891\) −8.00000 9.89949i −0.268010 0.331646i
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) −13.0000 + 39.0000i −0.434542 + 1.30363i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 14.1421 0.471667
\(900\) 0 0
\(901\) 8.00000 0.266519
\(902\) 0 0
\(903\) −20.4853 + 3.51472i −0.681707 + 0.116963i
\(904\) 0 0
\(905\) 15.5563 46.6690i 0.517111 1.55133i
\(906\) 0 0
\(907\) 22.0000 + 22.0000i 0.730498 + 0.730498i 0.970718 0.240220i \(-0.0772197\pi\)
−0.240220 + 0.970718i \(0.577220\pi\)
\(908\) 0 0
\(909\) −9.89949 28.0000i −0.328346 0.928701i
\(910\) 0 0
\(911\) 39.5980i 1.31194i −0.754787 0.655970i \(-0.772260\pi\)
0.754787 0.655970i \(-0.227740\pi\)
\(912\) 0 0
\(913\) −12.0000 + 12.0000i −0.397142 + 0.397142i
\(914\) 0 0
\(915\) −3.51472 + 22.9706i −0.116193 + 0.759383i
\(916\) 0 0
\(917\) 18.3848 18.3848i 0.607119 0.607119i
\(918\) 0 0
\(919\) 34.0000i 1.12156i 0.827966 + 0.560778i \(0.189498\pi\)
−0.827966 + 0.560778i \(0.810502\pi\)
\(920\) 0 0
\(921\) −36.0000 25.4558i −1.18624 0.838799i
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 6.00000 + 42.0000i 0.197279 + 1.38095i
\(926\) 0 0
\(927\) −1.82843 + 3.82843i −0.0600534 + 0.125742i
\(928\) 0 0
\(929\) −2.82843 −0.0927977 −0.0463988 0.998923i \(-0.514775\pi\)
−0.0463988 + 0.998923i \(0.514775\pi\)
\(930\) 0 0
\(931\) 20.0000 0.655474
\(932\) 0 0
\(933\) −5.79899 33.7990i −0.189850 1.10653i
\(934\) 0 0
\(935\) −5.65685 + 2.82843i −0.184999 + 0.0924995i
\(936\) 0 0
\(937\) −5.00000 5.00000i −0.163343 0.163343i 0.620703 0.784046i \(-0.286847\pi\)
−0.784046 + 0.620703i \(0.786847\pi\)
\(938\) 0 0
\(939\) −12.7279 + 18.0000i −0.415360 + 0.587408i
\(940\) 0 0
\(941\) 12.7279i 0.414918i 0.978244 + 0.207459i \(0.0665194\pi\)
−0.978244 + 0.207459i \(0.933481\pi\)
\(942\) 0 0
\(943\) −16.0000 + 16.0000i −0.521032 + 0.521032i
\(944\) 0 0
\(945\) −9.24264 + 13.5858i −0.300663 + 0.441946i
\(946\) 0 0
\(947\) −18.3848 + 18.3848i −0.597425 + 0.597425i −0.939627 0.342202i \(-0.888827\pi\)
0.342202 + 0.939627i \(0.388827\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) −18.0000 + 25.4558i −0.583690 + 0.825462i
\(952\) 0 0
\(953\) −4.24264 4.24264i −0.137433 0.137433i 0.635044 0.772476i \(-0.280982\pi\)
−0.772476 + 0.635044i \(0.780982\pi\)
\(954\) 0 0
\(955\) 6.00000 + 2.00000i 0.194155 + 0.0647185i
\(956\) 0 0
\(957\) 2.92893 + 17.0711i 0.0946789 + 0.551829i
\(958\) 0 0
\(959\) −8.48528 −0.274004
\(960\) 0 0
\(961\) −27.0000 −0.870968
\(962\) 0 0
\(963\) −5.17157 + 10.8284i −0.166652 + 0.348941i
\(964\) 0 0
\(965\) 21.2132 + 42.4264i 0.682877 + 1.36575i
\(966\) 0 0
\(967\) −19.0000 19.0000i −0.610999 0.610999i 0.332208 0.943206i \(-0.392207\pi\)
−0.943206 + 0.332208i \(0.892207\pi\)
\(968\) 0 0
\(969\) −11.3137 8.00000i −0.363449 0.256997i
\(970\) 0 0
\(971\) 41.0122i 1.31614i −0.752955 0.658072i \(-0.771372\pi\)
0.752955 0.658072i \(-0.228628\pi\)
\(972\) 0 0
\(973\) −8.00000 + 8.00000i −0.256468 + 0.256468i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 4.24264 4.24264i 0.135734 0.135734i −0.635975 0.771709i \(-0.719402\pi\)
0.771709 + 0.635975i \(0.219402\pi\)
\(978\) 0 0
\(979\) 4.00000i 0.127841i
\(980\) 0 0
\(981\) 10.0000 + 28.2843i 0.319275 + 0.903047i
\(982\) 0 0
\(983\) −14.1421 14.1421i −0.451064 0.451064i 0.444644 0.895708i \(-0.353330\pi\)
−0.895708 + 0.444644i \(0.853330\pi\)
\(984\) 0 0
\(985\) 24.0000 + 48.0000i 0.764704 + 1.52941i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −33.9411 −1.07927
\(990\) 0 0
\(991\) −40.0000 −1.27064 −0.635321 0.772248i \(-0.719132\pi\)
−0.635321 + 0.772248i \(0.719132\pi\)
\(992\) 0 0
\(993\) 13.6569 2.34315i 0.433387 0.0743575i
\(994\) 0 0
\(995\) 50.9117 + 16.9706i 1.61401 + 0.538003i
\(996\) 0 0
\(997\) 8.00000 + 8.00000i 0.253363 + 0.253363i 0.822348 0.568985i \(-0.192664\pi\)
−0.568985 + 0.822348i \(0.692664\pi\)
\(998\) 0 0
\(999\) 42.4264 + 12.0000i 1.34231 + 0.379663i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 960.2.v.c.257.1 4
3.2 odd 2 inner 960.2.v.c.257.2 4
4.3 odd 2 960.2.v.k.257.2 4
5.3 odd 4 inner 960.2.v.c.833.2 4
8.3 odd 2 30.2.e.a.17.2 yes 4
8.5 even 2 240.2.v.e.17.2 4
12.11 even 2 960.2.v.k.257.1 4
15.8 even 4 inner 960.2.v.c.833.1 4
20.3 even 4 960.2.v.k.833.1 4
24.5 odd 2 240.2.v.e.17.1 4
24.11 even 2 30.2.e.a.17.1 4
40.3 even 4 30.2.e.a.23.1 yes 4
40.13 odd 4 240.2.v.e.113.1 4
40.19 odd 2 150.2.e.a.107.1 4
40.27 even 4 150.2.e.a.143.2 4
40.29 even 2 1200.2.v.b.257.1 4
40.37 odd 4 1200.2.v.b.593.2 4
60.23 odd 4 960.2.v.k.833.2 4
72.11 even 6 810.2.m.f.377.2 8
72.43 odd 6 810.2.m.f.377.1 8
72.59 even 6 810.2.m.f.107.1 8
72.67 odd 6 810.2.m.f.107.2 8
120.29 odd 2 1200.2.v.b.257.2 4
120.53 even 4 240.2.v.e.113.2 4
120.59 even 2 150.2.e.a.107.2 4
120.77 even 4 1200.2.v.b.593.1 4
120.83 odd 4 30.2.e.a.23.2 yes 4
120.107 odd 4 150.2.e.a.143.1 4
360.43 even 12 810.2.m.f.53.1 8
360.83 odd 12 810.2.m.f.53.2 8
360.203 odd 12 810.2.m.f.593.1 8
360.283 even 12 810.2.m.f.593.2 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
30.2.e.a.17.1 4 24.11 even 2
30.2.e.a.17.2 yes 4 8.3 odd 2
30.2.e.a.23.1 yes 4 40.3 even 4
30.2.e.a.23.2 yes 4 120.83 odd 4
150.2.e.a.107.1 4 40.19 odd 2
150.2.e.a.107.2 4 120.59 even 2
150.2.e.a.143.1 4 120.107 odd 4
150.2.e.a.143.2 4 40.27 even 4
240.2.v.e.17.1 4 24.5 odd 2
240.2.v.e.17.2 4 8.5 even 2
240.2.v.e.113.1 4 40.13 odd 4
240.2.v.e.113.2 4 120.53 even 4
810.2.m.f.53.1 8 360.43 even 12
810.2.m.f.53.2 8 360.83 odd 12
810.2.m.f.107.1 8 72.59 even 6
810.2.m.f.107.2 8 72.67 odd 6
810.2.m.f.377.1 8 72.43 odd 6
810.2.m.f.377.2 8 72.11 even 6
810.2.m.f.593.1 8 360.203 odd 12
810.2.m.f.593.2 8 360.283 even 12
960.2.v.c.257.1 4 1.1 even 1 trivial
960.2.v.c.257.2 4 3.2 odd 2 inner
960.2.v.c.833.1 4 15.8 even 4 inner
960.2.v.c.833.2 4 5.3 odd 4 inner
960.2.v.k.257.1 4 12.11 even 2
960.2.v.k.257.2 4 4.3 odd 2
960.2.v.k.833.1 4 20.3 even 4
960.2.v.k.833.2 4 60.23 odd 4
1200.2.v.b.257.1 4 40.29 even 2
1200.2.v.b.257.2 4 120.29 odd 2
1200.2.v.b.593.1 4 120.77 even 4
1200.2.v.b.593.2 4 40.37 odd 4