Properties

Label 960.2.h.b
Level 960960
Weight 22
Character orbit 960.h
Analytic conductor 7.6667.666
Analytic rank 00
Dimension 44
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [960,2,Mod(191,960)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(960, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0, 1, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("960.191"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: N N == 960=2635 960 = 2^{6} \cdot 3 \cdot 5
Weight: k k == 2 2
Character orbit: [χ][\chi] == 960.h (of order 22, degree 11, not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,-4,0,0,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(9)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 7.665638594047.66563859404
Analytic rank: 00
Dimension: 44
Coefficient field: Q(ζ8)\Q(\zeta_{8})
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x4+1 x^{4} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a5]\Z[a_1, \ldots, a_{5}]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 480)
Sato-Tate group: SU(2)[C2]\mathrm{SU}(2)[C_{2}]

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a primitive root of unity ζ8\zeta_{8}. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+(ζ83ζ821)q3ζ82q5+(ζ83+2ζ82ζ8)q7+(2ζ83++2ζ8)q9+(2ζ832ζ8)q11++(2ζ832ζ88)q99+O(q100) q + (\zeta_{8}^{3} - \zeta_{8}^{2} - 1) q^{3} - \zeta_{8}^{2} q^{5} + ( - \zeta_{8}^{3} + 2 \zeta_{8}^{2} - \zeta_{8}) q^{7} + ( - 2 \zeta_{8}^{3} + \cdots + 2 \zeta_{8}) q^{9} + (2 \zeta_{8}^{3} - 2 \zeta_{8}) q^{11} + \cdots + ( - 2 \zeta_{8}^{3} - 2 \zeta_{8} - 8) q^{99} +O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q4q3+8q134q15+12q21+24q234q254q27+8q33+8q35+24q378q39+4q458q47+4q4924q518q57+16q598q63+32q99+O(q100) 4 q - 4 q^{3} + 8 q^{13} - 4 q^{15} + 12 q^{21} + 24 q^{23} - 4 q^{25} - 4 q^{27} + 8 q^{33} + 8 q^{35} + 24 q^{37} - 8 q^{39} + 4 q^{45} - 8 q^{47} + 4 q^{49} - 24 q^{51} - 8 q^{57} + 16 q^{59} - 8 q^{63}+ \cdots - 32 q^{99}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/960Z)×\left(\mathbb{Z}/960\mathbb{Z}\right)^\times.

nn 511511 577577 641641 901901
χ(n)\chi(n) 1-1 11 1-1 11

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
191.1
0.707107 + 0.707107i
0.707107 0.707107i
−0.707107 0.707107i
−0.707107 + 0.707107i
0 −1.70711 0.292893i 0 1.00000i 0 0.585786i 0 2.82843 + 1.00000i 0
191.2 0 −1.70711 + 0.292893i 0 1.00000i 0 0.585786i 0 2.82843 1.00000i 0
191.3 0 −0.292893 1.70711i 0 1.00000i 0 3.41421i 0 −2.82843 + 1.00000i 0
191.4 0 −0.292893 + 1.70711i 0 1.00000i 0 3.41421i 0 −2.82843 1.00000i 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
12.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 960.2.h.b 4
3.b odd 2 1 960.2.h.f 4
4.b odd 2 1 960.2.h.f 4
8.b even 2 1 480.2.h.d yes 4
8.d odd 2 1 480.2.h.b 4
12.b even 2 1 inner 960.2.h.b 4
24.f even 2 1 480.2.h.d yes 4
24.h odd 2 1 480.2.h.b 4
40.e odd 2 1 2400.2.h.e 4
40.f even 2 1 2400.2.h.b 4
40.i odd 4 1 2400.2.o.b 4
40.i odd 4 1 2400.2.o.j 4
40.k even 4 1 2400.2.o.c 4
40.k even 4 1 2400.2.o.i 4
120.i odd 2 1 2400.2.h.e 4
120.m even 2 1 2400.2.h.b 4
120.q odd 4 1 2400.2.o.b 4
120.q odd 4 1 2400.2.o.j 4
120.w even 4 1 2400.2.o.c 4
120.w even 4 1 2400.2.o.i 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
480.2.h.b 4 8.d odd 2 1
480.2.h.b 4 24.h odd 2 1
480.2.h.d yes 4 8.b even 2 1
480.2.h.d yes 4 24.f even 2 1
960.2.h.b 4 1.a even 1 1 trivial
960.2.h.b 4 12.b even 2 1 inner
960.2.h.f 4 3.b odd 2 1
960.2.h.f 4 4.b odd 2 1
2400.2.h.b 4 40.f even 2 1
2400.2.h.b 4 120.m even 2 1
2400.2.h.e 4 40.e odd 2 1
2400.2.h.e 4 120.i odd 2 1
2400.2.o.b 4 40.i odd 4 1
2400.2.o.b 4 120.q odd 4 1
2400.2.o.c 4 40.k even 4 1
2400.2.o.c 4 120.w even 4 1
2400.2.o.i 4 40.k even 4 1
2400.2.o.i 4 120.w even 4 1
2400.2.o.j 4 40.i odd 4 1
2400.2.o.j 4 120.q odd 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(960,[χ])S_{2}^{\mathrm{new}}(960, [\chi]):

T74+12T72+4 T_{7}^{4} + 12T_{7}^{2} + 4 Copy content Toggle raw display
T1128 T_{11}^{2} - 8 Copy content Toggle raw display
T23212T23+34 T_{23}^{2} - 12T_{23} + 34 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T4 T^{4} Copy content Toggle raw display
33 T4+4T3++9 T^{4} + 4 T^{3} + \cdots + 9 Copy content Toggle raw display
55 (T2+1)2 (T^{2} + 1)^{2} Copy content Toggle raw display
77 T4+12T2+4 T^{4} + 12T^{2} + 4 Copy content Toggle raw display
1111 (T28)2 (T^{2} - 8)^{2} Copy content Toggle raw display
1313 (T2)4 (T - 2)^{4} Copy content Toggle raw display
1717 T4+72T2+784 T^{4} + 72T^{2} + 784 Copy content Toggle raw display
1919 (T2+8)2 (T^{2} + 8)^{2} Copy content Toggle raw display
2323 (T212T+34)2 (T^{2} - 12 T + 34)^{2} Copy content Toggle raw display
2929 (T2+64)2 (T^{2} + 64)^{2} Copy content Toggle raw display
3131 (T2+32)2 (T^{2} + 32)^{2} Copy content Toggle raw display
3737 (T212T+4)2 (T^{2} - 12 T + 4)^{2} Copy content Toggle raw display
4141 (T2+4)2 (T^{2} + 4)^{2} Copy content Toggle raw display
4343 T4+204T2+8836 T^{4} + 204T^{2} + 8836 Copy content Toggle raw display
4747 (T2+4T14)2 (T^{2} + 4 T - 14)^{2} Copy content Toggle raw display
5353 T4+72T2+784 T^{4} + 72T^{2} + 784 Copy content Toggle raw display
5959 (T28T16)2 (T^{2} - 8 T - 16)^{2} Copy content Toggle raw display
6161 (T232)2 (T^{2} - 32)^{2} Copy content Toggle raw display
6767 T4+172T2+196 T^{4} + 172T^{2} + 196 Copy content Toggle raw display
7171 (T28T+8)2 (T^{2} - 8 T + 8)^{2} Copy content Toggle raw display
7373 (T220T+68)2 (T^{2} - 20 T + 68)^{2} Copy content Toggle raw display
7979 T4+176T2+3136 T^{4} + 176T^{2} + 3136 Copy content Toggle raw display
8383 (T24T46)2 (T^{2} - 4 T - 46)^{2} Copy content Toggle raw display
8989 T4+288T2+12544 T^{4} + 288 T^{2} + 12544 Copy content Toggle raw display
9797 (T24T284)2 (T^{2} - 4 T - 284)^{2} Copy content Toggle raw display
show more
show less