gp: [N,k,chi] = [960,2,Mod(191,960)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(960, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([1, 0, 1, 0]))
N = Newforms(chi, 2, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("960.191");
S:= CuspForms(chi, 2);
N := Newforms(S);
Newform invariants
sage: traces = [4,0,-4,0,0,0,0,0,0]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(9)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the q q q -expansion are expressed in terms of a primitive root of unity ζ 8 \zeta_{8} ζ 8 .
We also show the integral q q q -expansion of the trace form .
Character values
We give the values of χ \chi χ on generators for ( Z / 960 Z ) × \left(\mathbb{Z}/960\mathbb{Z}\right)^\times ( Z / 9 6 0 Z ) × .
n n n
511 511 5 1 1
577 577 5 7 7
641 641 6 4 1
901 901 9 0 1
χ ( n ) \chi(n) χ ( n )
− 1 -1 − 1
1 1 1
− 1 -1 − 1
1 1 1
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S 2 n e w ( 960 , [ χ ] ) S_{2}^{\mathrm{new}}(960, [\chi]) S 2 n e w ( 9 6 0 , [ χ ] ) :
T 7 4 + 12 T 7 2 + 4 T_{7}^{4} + 12T_{7}^{2} + 4 T 7 4 + 1 2 T 7 2 + 4
T7^4 + 12*T7^2 + 4
T 11 2 − 8 T_{11}^{2} - 8 T 1 1 2 − 8
T11^2 - 8
T 23 2 − 12 T 23 + 34 T_{23}^{2} - 12T_{23} + 34 T 2 3 2 − 1 2 T 2 3 + 3 4
T23^2 - 12*T23 + 34
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
T 4 T^{4} T 4
T^4
3 3 3
T 4 + 4 T 3 + ⋯ + 9 T^{4} + 4 T^{3} + \cdots + 9 T 4 + 4 T 3 + ⋯ + 9
T^4 + 4*T^3 + 8*T^2 + 12*T + 9
5 5 5
( T 2 + 1 ) 2 (T^{2} + 1)^{2} ( T 2 + 1 ) 2
(T^2 + 1)^2
7 7 7
T 4 + 12 T 2 + 4 T^{4} + 12T^{2} + 4 T 4 + 1 2 T 2 + 4
T^4 + 12*T^2 + 4
11 11 1 1
( T 2 − 8 ) 2 (T^{2} - 8)^{2} ( T 2 − 8 ) 2
(T^2 - 8)^2
13 13 1 3
( T − 2 ) 4 (T - 2)^{4} ( T − 2 ) 4
(T - 2)^4
17 17 1 7
T 4 + 72 T 2 + 784 T^{4} + 72T^{2} + 784 T 4 + 7 2 T 2 + 7 8 4
T^4 + 72*T^2 + 784
19 19 1 9
( T 2 + 8 ) 2 (T^{2} + 8)^{2} ( T 2 + 8 ) 2
(T^2 + 8)^2
23 23 2 3
( T 2 − 12 T + 34 ) 2 (T^{2} - 12 T + 34)^{2} ( T 2 − 1 2 T + 3 4 ) 2
(T^2 - 12*T + 34)^2
29 29 2 9
( T 2 + 64 ) 2 (T^{2} + 64)^{2} ( T 2 + 6 4 ) 2
(T^2 + 64)^2
31 31 3 1
( T 2 + 32 ) 2 (T^{2} + 32)^{2} ( T 2 + 3 2 ) 2
(T^2 + 32)^2
37 37 3 7
( T 2 − 12 T + 4 ) 2 (T^{2} - 12 T + 4)^{2} ( T 2 − 1 2 T + 4 ) 2
(T^2 - 12*T + 4)^2
41 41 4 1
( T 2 + 4 ) 2 (T^{2} + 4)^{2} ( T 2 + 4 ) 2
(T^2 + 4)^2
43 43 4 3
T 4 + 204 T 2 + 8836 T^{4} + 204T^{2} + 8836 T 4 + 2 0 4 T 2 + 8 8 3 6
T^4 + 204*T^2 + 8836
47 47 4 7
( T 2 + 4 T − 14 ) 2 (T^{2} + 4 T - 14)^{2} ( T 2 + 4 T − 1 4 ) 2
(T^2 + 4*T - 14)^2
53 53 5 3
T 4 + 72 T 2 + 784 T^{4} + 72T^{2} + 784 T 4 + 7 2 T 2 + 7 8 4
T^4 + 72*T^2 + 784
59 59 5 9
( T 2 − 8 T − 16 ) 2 (T^{2} - 8 T - 16)^{2} ( T 2 − 8 T − 1 6 ) 2
(T^2 - 8*T - 16)^2
61 61 6 1
( T 2 − 32 ) 2 (T^{2} - 32)^{2} ( T 2 − 3 2 ) 2
(T^2 - 32)^2
67 67 6 7
T 4 + 172 T 2 + 196 T^{4} + 172T^{2} + 196 T 4 + 1 7 2 T 2 + 1 9 6
T^4 + 172*T^2 + 196
71 71 7 1
( T 2 − 8 T + 8 ) 2 (T^{2} - 8 T + 8)^{2} ( T 2 − 8 T + 8 ) 2
(T^2 - 8*T + 8)^2
73 73 7 3
( T 2 − 20 T + 68 ) 2 (T^{2} - 20 T + 68)^{2} ( T 2 − 2 0 T + 6 8 ) 2
(T^2 - 20*T + 68)^2
79 79 7 9
T 4 + 176 T 2 + 3136 T^{4} + 176T^{2} + 3136 T 4 + 1 7 6 T 2 + 3 1 3 6
T^4 + 176*T^2 + 3136
83 83 8 3
( T 2 − 4 T − 46 ) 2 (T^{2} - 4 T - 46)^{2} ( T 2 − 4 T − 4 6 ) 2
(T^2 - 4*T - 46)^2
89 89 8 9
T 4 + 288 T 2 + 12544 T^{4} + 288 T^{2} + 12544 T 4 + 2 8 8 T 2 + 1 2 5 4 4
T^4 + 288*T^2 + 12544
97 97 9 7
( T 2 − 4 T − 284 ) 2 (T^{2} - 4 T - 284)^{2} ( T 2 − 4 T − 2 8 4 ) 2
(T^2 - 4*T - 284)^2
show more
show less