gp: [N,k,chi] = [960,1,Mod(287,960)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("960.287");
S:= CuspForms(chi, 1);
N := Newforms(S);
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(960, base_ring=CyclotomicField(4))
chi = DirichletCharacter(H, H._module([2, 2, 2, 1]))
B = ModularForms(chi, 1).cuspidal_submodule().basis()
N = [B[i] for i in range(len(B))]
Newform invariants
sage: traces = [4,0,0,0,0,0,-4]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
The q q q -expansion and trace form are shown below.
Character values
We give the values of χ \chi χ on generators for ( Z / 960 Z ) × \left(\mathbb{Z}/960\mathbb{Z}\right)^\times ( Z / 9 6 0 Z ) × .
n n n
511 511 5 1 1
577 577 5 7 7
641 641 6 4 1
901 901 9 0 1
χ ( n ) \chi(n) χ ( n )
− 1 -1 − 1
− ζ 8 2 -\zeta_{8}^{2} − ζ 8 2
− 1 -1 − 1
− 1 -1 − 1
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
This newform subspace can be constructed as the kernel of the linear operator
T 7 2 + 2 T 7 + 2 T_{7}^{2} + 2T_{7} + 2 T 7 2 + 2 T 7 + 2
T7^2 + 2*T7 + 2
acting on S 1 n e w ( 960 , [ χ ] ) S_{1}^{\mathrm{new}}(960, [\chi]) S 1 n e w ( 9 6 0 , [ χ ] ) .
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
T 4 T^{4} T 4
T^4
3 3 3
T 4 + 1 T^{4} + 1 T 4 + 1
T^4 + 1
5 5 5
T 4 + 1 T^{4} + 1 T 4 + 1
T^4 + 1
7 7 7
( T 2 + 2 T + 2 ) 2 (T^{2} + 2 T + 2)^{2} ( T 2 + 2 T + 2 ) 2
(T^2 + 2*T + 2)^2
11 11 1 1
( T 2 + 2 ) 2 (T^{2} + 2)^{2} ( T 2 + 2 ) 2
(T^2 + 2)^2
13 13 1 3
T 4 T^{4} T 4
T^4
17 17 1 7
T 4 T^{4} T 4
T^4
19 19 1 9
T 4 T^{4} T 4
T^4
23 23 2 3
T 4 T^{4} T 4
T^4
29 29 2 9
( T 2 + 2 ) 2 (T^{2} + 2)^{2} ( T 2 + 2 ) 2
(T^2 + 2)^2
31 31 3 1
T 4 T^{4} T 4
T^4
37 37 3 7
T 4 T^{4} T 4
T^4
41 41 4 1
T 4 T^{4} T 4
T^4
43 43 4 3
T 4 T^{4} T 4
T^4
47 47 4 7
T 4 T^{4} T 4
T^4
53 53 5 3
T 4 + 16 T^{4} + 16 T 4 + 1 6
T^4 + 16
59 59 5 9
( T 2 − 2 ) 2 (T^{2} - 2)^{2} ( T 2 − 2 ) 2
(T^2 - 2)^2
61 61 6 1
T 4 T^{4} T 4
T^4
67 67 6 7
T 4 T^{4} T 4
T^4
71 71 7 1
T 4 T^{4} T 4
T^4
73 73 7 3
( T 2 + 2 T + 2 ) 2 (T^{2} + 2 T + 2)^{2} ( T 2 + 2 T + 2 ) 2
(T^2 + 2*T + 2)^2
79 79 7 9
T 4 T^{4} T 4
T^4
83 83 8 3
T 4 T^{4} T 4
T^4
89 89 8 9
T 4 T^{4} T 4
T^4
97 97 9 7
( T 2 + 2 T + 2 ) 2 (T^{2} + 2 T + 2)^{2} ( T 2 + 2 T + 2 ) 2
(T^2 + 2*T + 2)^2
show more
show less