Properties

Label 960.1.u.a
Level 960960
Weight 11
Character orbit 960.u
Analytic conductor 0.4790.479
Analytic rank 00
Dimension 44
Projective image D4D_{4}
CM discriminant -24
Inner twists 88

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [960,1,Mod(287,960)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("960.287"); S:= CuspForms(chi, 1); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(960, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([2, 2, 2, 1])) B = ModularForms(chi, 1).cuspidal_submodule().basis() N = [B[i] for i in range(len(B))]
 
Level: N N == 960=2635 960 = 2^{6} \cdot 3 \cdot 5
Weight: k k == 1 1
Character orbit: [χ][\chi] == 960.u (of order 44, degree 22, minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,0,0,0,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 0.4791024121280.479102412128
Analytic rank: 00
Dimension: 44
Relative dimension: 22 over Q(i)\Q(i)
Coefficient field: Q(ζ8)\Q(\zeta_{8})
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x4+1 x^{4} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2,a3]\Z[a_1, a_2, a_3]
Coefficient ring index: 1 1
Twist minimal: yes
Projective image: D4D_{4}
Projective field: Galois closure of 4.0.9000.1

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

The qq-expansion and trace form are shown below.

f(q)f(q) == qζ83q3ζ83q5+(ζ821)q7ζ82q9+(ζ83+ζ8)q11ζ82q15+(ζ83ζ8)q21ζ82q25++(ζ83+ζ8)q99+O(q100) q - \zeta_{8}^{3} q^{3} - \zeta_{8}^{3} q^{5} + ( - \zeta_{8}^{2} - 1) q^{7} - \zeta_{8}^{2} q^{9} + (\zeta_{8}^{3} + \zeta_{8}) q^{11} - \zeta_{8}^{2} q^{15} + (\zeta_{8}^{3} - \zeta_{8}) q^{21} - \zeta_{8}^{2} q^{25} + \cdots + ( - \zeta_{8}^{3} + \zeta_{8}) q^{99} +O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q4q7+4q33+4q554q634q734q81+4q874q97+O(q100) 4 q - 4 q^{7} + 4 q^{33} + 4 q^{55} - 4 q^{63} - 4 q^{73} - 4 q^{81} + 4 q^{87} - 4 q^{97}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/960Z)×\left(\mathbb{Z}/960\mathbb{Z}\right)^\times.

nn 511511 577577 641641 901901
χ(n)\chi(n) 1-1 ζ82-\zeta_{8}^{2} 1-1 1-1

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
287.1
−0.707107 + 0.707107i
0.707107 0.707107i
−0.707107 0.707107i
0.707107 + 0.707107i
0 −0.707107 0.707107i 0 −0.707107 0.707107i 0 −1.00000 + 1.00000i 0 1.00000i 0
287.2 0 0.707107 + 0.707107i 0 0.707107 + 0.707107i 0 −1.00000 + 1.00000i 0 1.00000i 0
863.1 0 −0.707107 + 0.707107i 0 −0.707107 + 0.707107i 0 −1.00000 1.00000i 0 1.00000i 0
863.2 0 0.707107 0.707107i 0 0.707107 0.707107i 0 −1.00000 1.00000i 0 1.00000i 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
24.h odd 2 1 CM by Q(6)\Q(\sqrt{-6})
3.b odd 2 1 inner
8.b even 2 1 inner
20.e even 4 1 inner
40.k even 4 1 inner
60.l odd 4 1 inner
120.q odd 4 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 960.1.u.a 4
3.b odd 2 1 inner 960.1.u.a 4
4.b odd 2 1 960.1.u.b yes 4
5.c odd 4 1 960.1.u.b yes 4
8.b even 2 1 inner 960.1.u.a 4
8.d odd 2 1 960.1.u.b yes 4
12.b even 2 1 960.1.u.b yes 4
15.e even 4 1 960.1.u.b yes 4
16.e even 4 2 3840.1.bj.c 4
16.f odd 4 2 3840.1.bj.b 4
20.e even 4 1 inner 960.1.u.a 4
24.f even 2 1 960.1.u.b yes 4
24.h odd 2 1 CM 960.1.u.a 4
40.i odd 4 1 960.1.u.b yes 4
40.k even 4 1 inner 960.1.u.a 4
48.i odd 4 2 3840.1.bj.c 4
48.k even 4 2 3840.1.bj.b 4
60.l odd 4 1 inner 960.1.u.a 4
80.i odd 4 1 3840.1.bj.b 4
80.j even 4 1 3840.1.bj.c 4
80.s even 4 1 3840.1.bj.c 4
80.t odd 4 1 3840.1.bj.b 4
120.q odd 4 1 inner 960.1.u.a 4
120.w even 4 1 960.1.u.b yes 4
240.z odd 4 1 3840.1.bj.c 4
240.bb even 4 1 3840.1.bj.b 4
240.bd odd 4 1 3840.1.bj.c 4
240.bf even 4 1 3840.1.bj.b 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
960.1.u.a 4 1.a even 1 1 trivial
960.1.u.a 4 3.b odd 2 1 inner
960.1.u.a 4 8.b even 2 1 inner
960.1.u.a 4 20.e even 4 1 inner
960.1.u.a 4 24.h odd 2 1 CM
960.1.u.a 4 40.k even 4 1 inner
960.1.u.a 4 60.l odd 4 1 inner
960.1.u.a 4 120.q odd 4 1 inner
960.1.u.b yes 4 4.b odd 2 1
960.1.u.b yes 4 5.c odd 4 1
960.1.u.b yes 4 8.d odd 2 1
960.1.u.b yes 4 12.b even 2 1
960.1.u.b yes 4 15.e even 4 1
960.1.u.b yes 4 24.f even 2 1
960.1.u.b yes 4 40.i odd 4 1
960.1.u.b yes 4 120.w even 4 1
3840.1.bj.b 4 16.f odd 4 2
3840.1.bj.b 4 48.k even 4 2
3840.1.bj.b 4 80.i odd 4 1
3840.1.bj.b 4 80.t odd 4 1
3840.1.bj.b 4 240.bb even 4 1
3840.1.bj.b 4 240.bf even 4 1
3840.1.bj.c 4 16.e even 4 2
3840.1.bj.c 4 48.i odd 4 2
3840.1.bj.c 4 80.j even 4 1
3840.1.bj.c 4 80.s even 4 1
3840.1.bj.c 4 240.z odd 4 1
3840.1.bj.c 4 240.bd odd 4 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T72+2T7+2 T_{7}^{2} + 2T_{7} + 2 acting on S1new(960,[χ])S_{1}^{\mathrm{new}}(960, [\chi]). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T4 T^{4} Copy content Toggle raw display
33 T4+1 T^{4} + 1 Copy content Toggle raw display
55 T4+1 T^{4} + 1 Copy content Toggle raw display
77 (T2+2T+2)2 (T^{2} + 2 T + 2)^{2} Copy content Toggle raw display
1111 (T2+2)2 (T^{2} + 2)^{2} Copy content Toggle raw display
1313 T4 T^{4} Copy content Toggle raw display
1717 T4 T^{4} Copy content Toggle raw display
1919 T4 T^{4} Copy content Toggle raw display
2323 T4 T^{4} Copy content Toggle raw display
2929 (T2+2)2 (T^{2} + 2)^{2} Copy content Toggle raw display
3131 T4 T^{4} Copy content Toggle raw display
3737 T4 T^{4} Copy content Toggle raw display
4141 T4 T^{4} Copy content Toggle raw display
4343 T4 T^{4} Copy content Toggle raw display
4747 T4 T^{4} Copy content Toggle raw display
5353 T4+16 T^{4} + 16 Copy content Toggle raw display
5959 (T22)2 (T^{2} - 2)^{2} Copy content Toggle raw display
6161 T4 T^{4} Copy content Toggle raw display
6767 T4 T^{4} Copy content Toggle raw display
7171 T4 T^{4} Copy content Toggle raw display
7373 (T2+2T+2)2 (T^{2} + 2 T + 2)^{2} Copy content Toggle raw display
7979 T4 T^{4} Copy content Toggle raw display
8383 T4 T^{4} Copy content Toggle raw display
8989 T4 T^{4} Copy content Toggle raw display
9797 (T2+2T+2)2 (T^{2} + 2 T + 2)^{2} Copy content Toggle raw display
show more
show less