Properties

Label 960.1.cl.a
Level 960960
Weight 11
Character orbit 960.cl
Analytic conductor 0.4790.479
Analytic rank 00
Dimension 1616
Projective image D16D_{16}
CM discriminant -15
Inner twists 88

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [960,1,Mod(29,960)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(960, base_ring=CyclotomicField(16)) chi = DirichletCharacter(H, H._module([0, 11, 8, 8])) N = Newforms(chi, 1, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("960.29"); S:= CuspForms(chi, 1); N := Newforms(S);
 
Level: N N == 960=2635 960 = 2^{6} \cdot 3 \cdot 5
Weight: k k == 1 1
Character orbit: [χ][\chi] == 960.cl (of order 1616, degree 88, minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 0.4791024121280.479102412128
Analytic rank: 00
Dimension: 1616
Relative dimension: 22 over Q(ζ16)\Q(\zeta_{16})
Coefficient field: Q(ζ32)\Q(\zeta_{32})
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x16+1 x^{16} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2]\Z[a_1, a_2]
Coefficient ring index: 1 1
Twist minimal: yes
Projective image: D16D_{16}
Projective field: Galois closure of Q[x]/(x16)\mathbb{Q}[x]/(x^{16} - \cdots)

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

The qq-expansion and trace form are shown below.

f(q)f(q) == qζ3213q2+ζ32q3ζ3210q4+ζ3211q5ζ3214q6ζ327q8+ζ322q9+ζ328q10ζ3211q12+ζ329q98+O(q100) q - \zeta_{32}^{13} q^{2} + \zeta_{32} q^{3} - \zeta_{32}^{10} q^{4} + \zeta_{32}^{11} q^{5} - \zeta_{32}^{14} q^{6} - \zeta_{32}^{7} q^{8} + \zeta_{32}^{2} q^{9} + \zeta_{32}^{8} q^{10} - \zeta_{32}^{11} q^{12} + \cdots - \zeta_{32}^{9} q^{98} +O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 16q16q51+16q54+16q7616q7916q94+O(q100) 16 q - 16 q^{51} + 16 q^{54} + 16 q^{76} - 16 q^{79} - 16 q^{94}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/960Z)×\left(\mathbb{Z}/960\mathbb{Z}\right)^\times.

nn 511511 577577 641641 901901
χ(n)\chi(n) 11 1-1 1-1 ζ326-\zeta_{32}^{6}

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
29.1
−0.980785 0.195090i
0.980785 + 0.195090i
0.195090 + 0.980785i
−0.195090 0.980785i
0.831470 0.555570i
−0.831470 + 0.555570i
0.831470 + 0.555570i
−0.831470 0.555570i
0.195090 0.980785i
−0.195090 + 0.980785i
−0.980785 + 0.195090i
0.980785 0.195090i
0.555570 + 0.831470i
−0.555570 0.831470i
0.555570 0.831470i
−0.555570 + 0.831470i
−0.831470 + 0.555570i −0.980785 0.195090i 0.382683 0.923880i 0.555570 0.831470i 0.923880 0.382683i 0 0.195090 + 0.980785i 0.923880 + 0.382683i 1.00000i
29.2 0.831470 0.555570i 0.980785 + 0.195090i 0.382683 0.923880i −0.555570 + 0.831470i 0.923880 0.382683i 0 −0.195090 0.980785i 0.923880 + 0.382683i 1.00000i
149.1 −0.555570 + 0.831470i 0.195090 + 0.980785i −0.382683 0.923880i −0.831470 + 0.555570i −0.923880 0.382683i 0 0.980785 + 0.195090i −0.923880 + 0.382683i 1.00000i
149.2 0.555570 0.831470i −0.195090 0.980785i −0.382683 0.923880i 0.831470 0.555570i −0.923880 0.382683i 0 −0.980785 0.195090i −0.923880 + 0.382683i 1.00000i
269.1 −0.195090 + 0.980785i 0.831470 0.555570i −0.923880 0.382683i 0.980785 0.195090i 0.382683 + 0.923880i 0 0.555570 0.831470i 0.382683 0.923880i 1.00000i
269.2 0.195090 0.980785i −0.831470 + 0.555570i −0.923880 0.382683i −0.980785 + 0.195090i 0.382683 + 0.923880i 0 −0.555570 + 0.831470i 0.382683 0.923880i 1.00000i
389.1 −0.195090 0.980785i 0.831470 + 0.555570i −0.923880 + 0.382683i 0.980785 + 0.195090i 0.382683 0.923880i 0 0.555570 + 0.831470i 0.382683 + 0.923880i 1.00000i
389.2 0.195090 + 0.980785i −0.831470 0.555570i −0.923880 + 0.382683i −0.980785 0.195090i 0.382683 0.923880i 0 −0.555570 0.831470i 0.382683 + 0.923880i 1.00000i
509.1 −0.555570 0.831470i 0.195090 0.980785i −0.382683 + 0.923880i −0.831470 0.555570i −0.923880 + 0.382683i 0 0.980785 0.195090i −0.923880 0.382683i 1.00000i
509.2 0.555570 + 0.831470i −0.195090 + 0.980785i −0.382683 + 0.923880i 0.831470 + 0.555570i −0.923880 + 0.382683i 0 −0.980785 + 0.195090i −0.923880 0.382683i 1.00000i
629.1 −0.831470 0.555570i −0.980785 + 0.195090i 0.382683 + 0.923880i 0.555570 + 0.831470i 0.923880 + 0.382683i 0 0.195090 0.980785i 0.923880 0.382683i 1.00000i
629.2 0.831470 + 0.555570i 0.980785 0.195090i 0.382683 + 0.923880i −0.555570 0.831470i 0.923880 + 0.382683i 0 −0.195090 + 0.980785i 0.923880 0.382683i 1.00000i
749.1 −0.980785 0.195090i 0.555570 + 0.831470i 0.923880 + 0.382683i −0.195090 0.980785i −0.382683 0.923880i 0 −0.831470 0.555570i −0.382683 + 0.923880i 1.00000i
749.2 0.980785 + 0.195090i −0.555570 0.831470i 0.923880 + 0.382683i 0.195090 + 0.980785i −0.382683 0.923880i 0 0.831470 + 0.555570i −0.382683 + 0.923880i 1.00000i
869.1 −0.980785 + 0.195090i 0.555570 0.831470i 0.923880 0.382683i −0.195090 + 0.980785i −0.382683 + 0.923880i 0 −0.831470 + 0.555570i −0.382683 0.923880i 1.00000i
869.2 0.980785 0.195090i −0.555570 + 0.831470i 0.923880 0.382683i 0.195090 0.980785i −0.382683 + 0.923880i 0 0.831470 0.555570i −0.382683 0.923880i 1.00000i
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 29.2
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
15.d odd 2 1 CM by Q(15)\Q(\sqrt{-15})
3.b odd 2 1 inner
5.b even 2 1 inner
64.i even 16 1 inner
192.q odd 16 1 inner
320.bf even 16 1 inner
960.cl odd 16 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 960.1.cl.a 16
3.b odd 2 1 inner 960.1.cl.a 16
4.b odd 2 1 3840.1.cl.a 16
5.b even 2 1 inner 960.1.cl.a 16
12.b even 2 1 3840.1.cl.a 16
15.d odd 2 1 CM 960.1.cl.a 16
20.d odd 2 1 3840.1.cl.a 16
60.h even 2 1 3840.1.cl.a 16
64.i even 16 1 inner 960.1.cl.a 16
64.j odd 16 1 3840.1.cl.a 16
192.q odd 16 1 inner 960.1.cl.a 16
192.s even 16 1 3840.1.cl.a 16
320.bf even 16 1 inner 960.1.cl.a 16
320.bh odd 16 1 3840.1.cl.a 16
960.cl odd 16 1 inner 960.1.cl.a 16
960.cp even 16 1 3840.1.cl.a 16
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
960.1.cl.a 16 1.a even 1 1 trivial
960.1.cl.a 16 3.b odd 2 1 inner
960.1.cl.a 16 5.b even 2 1 inner
960.1.cl.a 16 15.d odd 2 1 CM
960.1.cl.a 16 64.i even 16 1 inner
960.1.cl.a 16 192.q odd 16 1 inner
960.1.cl.a 16 320.bf even 16 1 inner
960.1.cl.a 16 960.cl odd 16 1 inner
3840.1.cl.a 16 4.b odd 2 1
3840.1.cl.a 16 12.b even 2 1
3840.1.cl.a 16 20.d odd 2 1
3840.1.cl.a 16 60.h even 2 1
3840.1.cl.a 16 64.j odd 16 1
3840.1.cl.a 16 192.s even 16 1
3840.1.cl.a 16 320.bh odd 16 1
3840.1.cl.a 16 960.cp even 16 1

Hecke kernels

This newform subspace is the entire newspace S1new(960,[χ])S_{1}^{\mathrm{new}}(960, [\chi]).

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T16+1 T^{16} + 1 Copy content Toggle raw display
33 T16+1 T^{16} + 1 Copy content Toggle raw display
55 T16+1 T^{16} + 1 Copy content Toggle raw display
77 T16 T^{16} Copy content Toggle raw display
1111 T16 T^{16} Copy content Toggle raw display
1313 T16 T^{16} Copy content Toggle raw display
1717 T16+24T12++4 T^{16} + 24 T^{12} + \cdots + 4 Copy content Toggle raw display
1919 (T88T5+2T4++2)2 (T^{8} - 8 T^{5} + 2 T^{4} + \cdots + 2)^{2} Copy content Toggle raw display
2323 T16+16T10++4 T^{16} + 16 T^{10} + \cdots + 4 Copy content Toggle raw display
2929 T16 T^{16} Copy content Toggle raw display
3131 (T4+4T2+2)4 (T^{4} + 4 T^{2} + 2)^{4} Copy content Toggle raw display
3737 T16 T^{16} Copy content Toggle raw display
4141 T16 T^{16} Copy content Toggle raw display
4343 T16 T^{16} Copy content Toggle raw display
4747 T16+24T12++4 T^{16} + 24 T^{12} + \cdots + 4 Copy content Toggle raw display
5353 T1616T12++16 T^{16} - 16 T^{12} + \cdots + 16 Copy content Toggle raw display
5959 T16 T^{16} Copy content Toggle raw display
6161 (T8+4T6+6T4++2)2 (T^{8} + 4 T^{6} + 6 T^{4} + \cdots + 2)^{2} Copy content Toggle raw display
6767 T16 T^{16} Copy content Toggle raw display
7171 T16 T^{16} Copy content Toggle raw display
7373 T16 T^{16} Copy content Toggle raw display
7979 (T2+2T+2)8 (T^{2} + 2 T + 2)^{8} Copy content Toggle raw display
8383 T16+16T12++16 T^{16} + 16 T^{12} + \cdots + 16 Copy content Toggle raw display
8989 T16 T^{16} Copy content Toggle raw display
9797 T16 T^{16} Copy content Toggle raw display
show more
show less