gp: [N,k,chi] = [960,1,Mod(29,960)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(960, base_ring=CyclotomicField(16))
chi = DirichletCharacter(H, H._module([0, 11, 8, 8]))
N = Newforms(chi, 1, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("960.29");
S:= CuspForms(chi, 1);
N := Newforms(S);
Newform invariants
sage: traces = []
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
The q q q -expansion and trace form are shown below.
Character values
We give the values of χ \chi χ on generators for ( Z / 960 Z ) × \left(\mathbb{Z}/960\mathbb{Z}\right)^\times ( Z / 9 6 0 Z ) × .
n n n
511 511 5 1 1
577 577 5 7 7
641 641 6 4 1
901 901 9 0 1
χ ( n ) \chi(n) χ ( n )
1 1 1
− 1 -1 − 1
− 1 -1 − 1
− ζ 32 6 -\zeta_{32}^{6} − ζ 3 2 6
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
This newform subspace is the entire newspace S 1 n e w ( 960 , [ χ ] ) S_{1}^{\mathrm{new}}(960, [\chi]) S 1 n e w ( 9 6 0 , [ χ ] ) .
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
T 16 + 1 T^{16} + 1 T 1 6 + 1
T^16 + 1
3 3 3
T 16 + 1 T^{16} + 1 T 1 6 + 1
T^16 + 1
5 5 5
T 16 + 1 T^{16} + 1 T 1 6 + 1
T^16 + 1
7 7 7
T 16 T^{16} T 1 6
T^16
11 11 1 1
T 16 T^{16} T 1 6
T^16
13 13 1 3
T 16 T^{16} T 1 6
T^16
17 17 1 7
T 16 + 24 T 12 + ⋯ + 4 T^{16} + 24 T^{12} + \cdots + 4 T 1 6 + 2 4 T 1 2 + ⋯ + 4
T^16 + 24*T^12 + 148*T^8 + 176*T^4 + 4
19 19 1 9
( T 8 − 8 T 5 + 2 T 4 + ⋯ + 2 ) 2 (T^{8} - 8 T^{5} + 2 T^{4} + \cdots + 2)^{2} ( T 8 − 8 T 5 + 2 T 4 + ⋯ + 2 ) 2
(T^8 - 8*T^5 + 2*T^4 + 12*T^2 + 8*T + 2)^2
23 23 2 3
T 16 + 16 T 10 + ⋯ + 4 T^{16} + 16 T^{10} + \cdots + 4 T 1 6 + 1 6 T 1 0 + ⋯ + 4
T^16 + 16*T^10 + 140*T^8 + 192*T^6 + 128*T^4 - 32*T^2 + 4
29 29 2 9
T 16 T^{16} T 1 6
T^16
31 31 3 1
( T 4 + 4 T 2 + 2 ) 4 (T^{4} + 4 T^{2} + 2)^{4} ( T 4 + 4 T 2 + 2 ) 4
(T^4 + 4*T^2 + 2)^4
37 37 3 7
T 16 T^{16} T 1 6
T^16
41 41 4 1
T 16 T^{16} T 1 6
T^16
43 43 4 3
T 16 T^{16} T 1 6
T^16
47 47 4 7
T 16 + 24 T 12 + ⋯ + 4 T^{16} + 24 T^{12} + \cdots + 4 T 1 6 + 2 4 T 1 2 + ⋯ + 4
T^16 + 24*T^12 + 148*T^8 + 176*T^4 + 4
53 53 5 3
T 16 − 16 T 12 + ⋯ + 16 T^{16} - 16 T^{12} + \cdots + 16 T 1 6 − 1 6 T 1 2 + ⋯ + 1 6
T^16 - 16*T^12 + 128*T^8 + 64*T^4 + 16
59 59 5 9
T 16 T^{16} T 1 6
T^16
61 61 6 1
( T 8 + 4 T 6 + 6 T 4 + ⋯ + 2 ) 2 (T^{8} + 4 T^{6} + 6 T^{4} + \cdots + 2)^{2} ( T 8 + 4 T 6 + 6 T 4 + ⋯ + 2 ) 2
(T^8 + 4*T^6 + 6*T^4 - 8*T^3 + 4*T^2 + 8*T + 2)^2
67 67 6 7
T 16 T^{16} T 1 6
T^16
71 71 7 1
T 16 T^{16} T 1 6
T^16
73 73 7 3
T 16 T^{16} T 1 6
T^16
79 79 7 9
( T 2 + 2 T + 2 ) 8 (T^{2} + 2 T + 2)^{8} ( T 2 + 2 T + 2 ) 8
(T^2 + 2*T + 2)^8
83 83 8 3
T 16 + 16 T 12 + ⋯ + 16 T^{16} + 16 T^{12} + \cdots + 16 T 1 6 + 1 6 T 1 2 + ⋯ + 1 6
T^16 + 16*T^12 + 128*T^8 - 64*T^4 + 16
89 89 8 9
T 16 T^{16} T 1 6
T^16
97 97 9 7
T 16 T^{16} T 1 6
T^16
show more
show less