Properties

Label 96.4
Level 96
Weight 4
Dimension 314
Nonzero newspaces 6
Newform subspaces 12
Sturm bound 2048
Trace bound 5

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 96 = 2^{5} \cdot 3 \)
Weight: \( k \) = \( 4 \)
Nonzero newspaces: \( 6 \)
Newform subspaces: \( 12 \)
Sturm bound: \(2048\)
Trace bound: \(5\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_1(96))\).

Total New Old
Modular forms 832 334 498
Cusp forms 704 314 390
Eisenstein series 128 20 108

Trace form

\( 314 q - 2 q^{3} - 8 q^{4} - 4 q^{5} - 4 q^{6} - 36 q^{7} - 26 q^{9} - 248 q^{10} + 44 q^{12} + 228 q^{13} + 416 q^{14} + 52 q^{15} + 592 q^{16} + 208 q^{17} + 68 q^{18} + 20 q^{19} - 160 q^{20} + 12 q^{21}+ \cdots - 9428 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_1(96))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
96.4.a \(\chi_{96}(1, \cdot)\) 96.4.a.a 1 1
96.4.a.b 1
96.4.a.c 1
96.4.a.d 1
96.4.a.e 1
96.4.a.f 1
96.4.c \(\chi_{96}(95, \cdot)\) 96.4.c.a 12 1
96.4.d \(\chi_{96}(49, \cdot)\) 96.4.d.a 6 1
96.4.f \(\chi_{96}(47, \cdot)\) 96.4.f.a 2 1
96.4.f.b 8
96.4.j \(\chi_{96}(25, \cdot)\) None 0 2
96.4.k \(\chi_{96}(23, \cdot)\) None 0 2
96.4.n \(\chi_{96}(13, \cdot)\) 96.4.n.a 96 4
96.4.o \(\chi_{96}(11, \cdot)\) 96.4.o.a 184 4

Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_1(96))\) into lower level spaces

\( S_{4}^{\mathrm{old}}(\Gamma_1(96)) \cong \) \(S_{4}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 12}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 10}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(6))\)\(^{\oplus 5}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(8))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(12))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(16))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(24))\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(32))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(48))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(96))\)\(^{\oplus 1}\)