Properties

Label 96.10.a.c
Level $96$
Weight $10$
Character orbit 96.a
Self dual yes
Analytic conductor $49.443$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [96,10,Mod(1,96)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("96.1"); S:= CuspForms(chi, 10); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(96, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 10, names="a")
 
Level: \( N \) \(=\) \( 96 = 2^{5} \cdot 3 \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 96.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,-162,0,596] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(49.4434402717\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{46}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 46 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{4}\cdot 3 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = 48\sqrt{46}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - 81 q^{3} + (\beta + 298) q^{5} + ( - 17 \beta + 2652) q^{7} + 6561 q^{9} + (166 \beta + 12012) q^{11} + ( - 494 \beta - 4530) q^{13} + ( - 81 \beta - 24138) q^{15} + (1018 \beta - 218230) q^{17} + ( - 1114 \beta + 124212) q^{19}+ \cdots + (1089126 \beta + 78810732) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 162 q^{3} + 596 q^{5} + 5304 q^{7} + 13122 q^{9} + 24024 q^{11} - 9060 q^{13} - 48276 q^{15} - 436460 q^{17} + 248424 q^{19} - 429624 q^{21} + 377184 q^{23} - 3516674 q^{25} - 1062882 q^{27} - 156812 q^{29}+ \cdots + 157621464 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−6.78233
6.78233
0 −81.0000 0 −27.5518 0 8186.38 0 6561.00 0
1.2 0 −81.0000 0 623.552 0 −2882.38 0 6561.00 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(3\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 96.10.a.c 2
3.b odd 2 1 288.10.a.g 2
4.b odd 2 1 96.10.a.f yes 2
8.b even 2 1 192.10.a.s 2
8.d odd 2 1 192.10.a.o 2
12.b even 2 1 288.10.a.f 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
96.10.a.c 2 1.a even 1 1 trivial
96.10.a.f yes 2 4.b odd 2 1
192.10.a.o 2 8.d odd 2 1
192.10.a.s 2 8.b even 2 1
288.10.a.f 2 12.b even 2 1
288.10.a.g 2 3.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{10}^{\mathrm{new}}(\Gamma_0(96))\):

\( T_{5}^{2} - 596T_{5} - 17180 \) Copy content Toggle raw display
\( T_{7}^{2} - 5304T_{7} - 23596272 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( (T + 81)^{2} \) Copy content Toggle raw display
$5$ \( T^{2} - 596T - 17180 \) Copy content Toggle raw display
$7$ \( T^{2} - 5304 T - 23596272 \) Copy content Toggle raw display
$11$ \( T^{2} + \cdots - 2776206960 \) Copy content Toggle raw display
$13$ \( T^{2} + \cdots - 25843390524 \) Copy content Toggle raw display
$17$ \( T^{2} + \cdots - 62209429916 \) Copy content Toggle raw display
$19$ \( T^{2} + \cdots - 116097099120 \) Copy content Toggle raw display
$23$ \( T^{2} + \cdots - 1525603237632 \) Copy content Toggle raw display
$29$ \( T^{2} + \cdots - 5606206497500 \) Copy content Toggle raw display
$31$ \( T^{2} + \cdots - 21456001704816 \) Copy content Toggle raw display
$37$ \( T^{2} + \cdots - 12311178604412 \) Copy content Toggle raw display
$41$ \( T^{2} + \cdots - 150213628799804 \) Copy content Toggle raw display
$43$ \( T^{2} + \cdots + 455488413078672 \) Copy content Toggle raw display
$47$ \( T^{2} + \cdots + 589985752076352 \) Copy content Toggle raw display
$53$ \( T^{2} + \cdots + 25\!\cdots\!80 \) Copy content Toggle raw display
$59$ \( T^{2} + \cdots + 60\!\cdots\!92 \) Copy content Toggle raw display
$61$ \( T^{2} + \cdots + 14\!\cdots\!80 \) Copy content Toggle raw display
$67$ \( T^{2} + \cdots + 30\!\cdots\!20 \) Copy content Toggle raw display
$71$ \( T^{2} + \cdots + 36\!\cdots\!08 \) Copy content Toggle raw display
$73$ \( T^{2} + \cdots - 26\!\cdots\!20 \) Copy content Toggle raw display
$79$ \( T^{2} + \cdots + 33\!\cdots\!12 \) Copy content Toggle raw display
$83$ \( T^{2} + \cdots + 20\!\cdots\!76 \) Copy content Toggle raw display
$89$ \( T^{2} + \cdots + 13\!\cdots\!76 \) Copy content Toggle raw display
$97$ \( T^{2} + \cdots - 39\!\cdots\!24 \) Copy content Toggle raw display
show more
show less