Properties

Label 9522.2.a.bp.1.3
Level $9522$
Weight $2$
Character 9522.1
Self dual yes
Analytic conductor $76.034$
Analytic rank $0$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [9522,2,Mod(1,9522)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(9522, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("9522.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 9522 = 2 \cdot 3^{2} \cdot 23^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 9522.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [5,-5,0,5,-8,0,7,-5,0,8,-5,0,-7,-7,0,5,-13,0,12,-8,0,5,0,0,1, 7,0,7,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(29)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(76.0335528047\)
Analytic rank: \(0\)
Dimension: \(5\)
Coefficient field: \(\Q(\zeta_{22})^+\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - x^{4} - 4x^{3} + 3x^{2} + 3x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 46)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(-1.68251\) of defining polynomial
Character \(\chi\) \(=\) 9522.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{2} +1.00000 q^{4} -2.37279 q^{5} -0.397877 q^{7} -1.00000 q^{8} +2.37279 q^{10} +3.21076 q^{11} +0.155465 q^{13} +0.397877 q^{14} +1.00000 q^{16} -3.28242 q^{17} +2.84574 q^{19} -2.37279 q^{20} -3.21076 q^{22} +0.630111 q^{25} -0.155465 q^{26} -0.397877 q^{28} -0.378719 q^{29} +2.74692 q^{31} -1.00000 q^{32} +3.28242 q^{34} +0.944078 q^{35} +6.42128 q^{37} -2.84574 q^{38} +2.37279 q^{40} +4.00379 q^{41} +7.43011 q^{43} +3.21076 q^{44} -2.97017 q^{47} -6.84169 q^{49} -0.630111 q^{50} +0.155465 q^{52} -13.0325 q^{53} -7.61844 q^{55} +0.397877 q^{56} +0.378719 q^{58} -8.64612 q^{59} +11.1436 q^{61} -2.74692 q^{62} +1.00000 q^{64} -0.368885 q^{65} +8.40761 q^{67} -3.28242 q^{68} -0.944078 q^{70} -0.356673 q^{71} +5.63594 q^{73} -6.42128 q^{74} +2.84574 q^{76} -1.27749 q^{77} -7.53843 q^{79} -2.37279 q^{80} -4.00379 q^{82} -13.3899 q^{83} +7.78847 q^{85} -7.43011 q^{86} -3.21076 q^{88} -2.16071 q^{89} -0.0618559 q^{91} +2.97017 q^{94} -6.75234 q^{95} -2.63000 q^{97} +6.84169 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q - 5 q^{2} + 5 q^{4} - 8 q^{5} + 7 q^{7} - 5 q^{8} + 8 q^{10} - 5 q^{11} - 7 q^{13} - 7 q^{14} + 5 q^{16} - 13 q^{17} + 12 q^{19} - 8 q^{20} + 5 q^{22} + q^{25} + 7 q^{26} + 7 q^{28} + 4 q^{29} + 6 q^{31}+ \cdots + 12 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 −0.707107
\(3\) 0 0
\(4\) 1.00000 0.500000
\(5\) −2.37279 −1.06114 −0.530571 0.847641i \(-0.678022\pi\)
−0.530571 + 0.847641i \(0.678022\pi\)
\(6\) 0 0
\(7\) −0.397877 −0.150384 −0.0751918 0.997169i \(-0.523957\pi\)
−0.0751918 + 0.997169i \(0.523957\pi\)
\(8\) −1.00000 −0.353553
\(9\) 0 0
\(10\) 2.37279 0.750341
\(11\) 3.21076 0.968080 0.484040 0.875046i \(-0.339169\pi\)
0.484040 + 0.875046i \(0.339169\pi\)
\(12\) 0 0
\(13\) 0.155465 0.0431182 0.0215591 0.999768i \(-0.493137\pi\)
0.0215591 + 0.999768i \(0.493137\pi\)
\(14\) 0.397877 0.106337
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) −3.28242 −0.796103 −0.398052 0.917363i \(-0.630314\pi\)
−0.398052 + 0.917363i \(0.630314\pi\)
\(18\) 0 0
\(19\) 2.84574 0.652858 0.326429 0.945222i \(-0.394155\pi\)
0.326429 + 0.945222i \(0.394155\pi\)
\(20\) −2.37279 −0.530571
\(21\) 0 0
\(22\) −3.21076 −0.684536
\(23\) 0 0
\(24\) 0 0
\(25\) 0.630111 0.126022
\(26\) −0.155465 −0.0304892
\(27\) 0 0
\(28\) −0.397877 −0.0751918
\(29\) −0.378719 −0.0703264 −0.0351632 0.999382i \(-0.511195\pi\)
−0.0351632 + 0.999382i \(0.511195\pi\)
\(30\) 0 0
\(31\) 2.74692 0.493361 0.246681 0.969097i \(-0.420660\pi\)
0.246681 + 0.969097i \(0.420660\pi\)
\(32\) −1.00000 −0.176777
\(33\) 0 0
\(34\) 3.28242 0.562930
\(35\) 0.944078 0.159578
\(36\) 0 0
\(37\) 6.42128 1.05565 0.527826 0.849353i \(-0.323007\pi\)
0.527826 + 0.849353i \(0.323007\pi\)
\(38\) −2.84574 −0.461641
\(39\) 0 0
\(40\) 2.37279 0.375170
\(41\) 4.00379 0.625288 0.312644 0.949870i \(-0.398785\pi\)
0.312644 + 0.949870i \(0.398785\pi\)
\(42\) 0 0
\(43\) 7.43011 1.13308 0.566541 0.824034i \(-0.308281\pi\)
0.566541 + 0.824034i \(0.308281\pi\)
\(44\) 3.21076 0.484040
\(45\) 0 0
\(46\) 0 0
\(47\) −2.97017 −0.433244 −0.216622 0.976256i \(-0.569504\pi\)
−0.216622 + 0.976256i \(0.569504\pi\)
\(48\) 0 0
\(49\) −6.84169 −0.977385
\(50\) −0.630111 −0.0891112
\(51\) 0 0
\(52\) 0.155465 0.0215591
\(53\) −13.0325 −1.79015 −0.895076 0.445914i \(-0.852879\pi\)
−0.895076 + 0.445914i \(0.852879\pi\)
\(54\) 0 0
\(55\) −7.61844 −1.02727
\(56\) 0.397877 0.0531686
\(57\) 0 0
\(58\) 0.378719 0.0497283
\(59\) −8.64612 −1.12563 −0.562814 0.826583i \(-0.690281\pi\)
−0.562814 + 0.826583i \(0.690281\pi\)
\(60\) 0 0
\(61\) 11.1436 1.42680 0.713399 0.700758i \(-0.247155\pi\)
0.713399 + 0.700758i \(0.247155\pi\)
\(62\) −2.74692 −0.348859
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) −0.368885 −0.0457545
\(66\) 0 0
\(67\) 8.40761 1.02715 0.513576 0.858044i \(-0.328320\pi\)
0.513576 + 0.858044i \(0.328320\pi\)
\(68\) −3.28242 −0.398052
\(69\) 0 0
\(70\) −0.944078 −0.112839
\(71\) −0.356673 −0.0423294 −0.0211647 0.999776i \(-0.506737\pi\)
−0.0211647 + 0.999776i \(0.506737\pi\)
\(72\) 0 0
\(73\) 5.63594 0.659637 0.329818 0.944044i \(-0.393012\pi\)
0.329818 + 0.944044i \(0.393012\pi\)
\(74\) −6.42128 −0.746459
\(75\) 0 0
\(76\) 2.84574 0.326429
\(77\) −1.27749 −0.145583
\(78\) 0 0
\(79\) −7.53843 −0.848140 −0.424070 0.905630i \(-0.639399\pi\)
−0.424070 + 0.905630i \(0.639399\pi\)
\(80\) −2.37279 −0.265285
\(81\) 0 0
\(82\) −4.00379 −0.442145
\(83\) −13.3899 −1.46973 −0.734864 0.678215i \(-0.762754\pi\)
−0.734864 + 0.678215i \(0.762754\pi\)
\(84\) 0 0
\(85\) 7.78847 0.844779
\(86\) −7.43011 −0.801209
\(87\) 0 0
\(88\) −3.21076 −0.342268
\(89\) −2.16071 −0.229035 −0.114518 0.993421i \(-0.536532\pi\)
−0.114518 + 0.993421i \(0.536532\pi\)
\(90\) 0 0
\(91\) −0.0618559 −0.00648426
\(92\) 0 0
\(93\) 0 0
\(94\) 2.97017 0.306350
\(95\) −6.75234 −0.692775
\(96\) 0 0
\(97\) −2.63000 −0.267037 −0.133518 0.991046i \(-0.542627\pi\)
−0.133518 + 0.991046i \(0.542627\pi\)
\(98\) 6.84169 0.691115
\(99\) 0 0
\(100\) 0.630111 0.0630111
\(101\) 8.73694 0.869358 0.434679 0.900586i \(-0.356862\pi\)
0.434679 + 0.900586i \(0.356862\pi\)
\(102\) 0 0
\(103\) 4.28331 0.422048 0.211024 0.977481i \(-0.432320\pi\)
0.211024 + 0.977481i \(0.432320\pi\)
\(104\) −0.155465 −0.0152446
\(105\) 0 0
\(106\) 13.0325 1.26583
\(107\) 18.0123 1.74132 0.870659 0.491887i \(-0.163693\pi\)
0.870659 + 0.491887i \(0.163693\pi\)
\(108\) 0 0
\(109\) −9.53659 −0.913440 −0.456720 0.889611i \(-0.650976\pi\)
−0.456720 + 0.889611i \(0.650976\pi\)
\(110\) 7.61844 0.726390
\(111\) 0 0
\(112\) −0.397877 −0.0375959
\(113\) 6.28331 0.591085 0.295542 0.955330i \(-0.404500\pi\)
0.295542 + 0.955330i \(0.404500\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) −0.378719 −0.0351632
\(117\) 0 0
\(118\) 8.64612 0.795940
\(119\) 1.30600 0.119721
\(120\) 0 0
\(121\) −0.691036 −0.0628215
\(122\) −11.1436 −1.00890
\(123\) 0 0
\(124\) 2.74692 0.246681
\(125\) 10.3688 0.927414
\(126\) 0 0
\(127\) −8.86900 −0.786996 −0.393498 0.919325i \(-0.628735\pi\)
−0.393498 + 0.919325i \(0.628735\pi\)
\(128\) −1.00000 −0.0883883
\(129\) 0 0
\(130\) 0.368885 0.0323533
\(131\) −5.20178 −0.454481 −0.227241 0.973839i \(-0.572970\pi\)
−0.227241 + 0.973839i \(0.572970\pi\)
\(132\) 0 0
\(133\) −1.13226 −0.0981791
\(134\) −8.40761 −0.726306
\(135\) 0 0
\(136\) 3.28242 0.281465
\(137\) 0.501086 0.0428107 0.0214053 0.999771i \(-0.493186\pi\)
0.0214053 + 0.999771i \(0.493186\pi\)
\(138\) 0 0
\(139\) −15.7509 −1.33598 −0.667989 0.744171i \(-0.732845\pi\)
−0.667989 + 0.744171i \(0.732845\pi\)
\(140\) 0.944078 0.0797891
\(141\) 0 0
\(142\) 0.356673 0.0299314
\(143\) 0.499160 0.0417418
\(144\) 0 0
\(145\) 0.898620 0.0746263
\(146\) −5.63594 −0.466434
\(147\) 0 0
\(148\) 6.42128 0.527826
\(149\) 3.86997 0.317040 0.158520 0.987356i \(-0.449328\pi\)
0.158520 + 0.987356i \(0.449328\pi\)
\(150\) 0 0
\(151\) −15.8518 −1.29000 −0.644999 0.764183i \(-0.723142\pi\)
−0.644999 + 0.764183i \(0.723142\pi\)
\(152\) −2.84574 −0.230820
\(153\) 0 0
\(154\) 1.27749 0.102943
\(155\) −6.51785 −0.523526
\(156\) 0 0
\(157\) 20.8710 1.66568 0.832842 0.553511i \(-0.186712\pi\)
0.832842 + 0.553511i \(0.186712\pi\)
\(158\) 7.53843 0.599725
\(159\) 0 0
\(160\) 2.37279 0.187585
\(161\) 0 0
\(162\) 0 0
\(163\) 23.7839 1.86290 0.931450 0.363869i \(-0.118545\pi\)
0.931450 + 0.363869i \(0.118545\pi\)
\(164\) 4.00379 0.312644
\(165\) 0 0
\(166\) 13.3899 1.03925
\(167\) −5.58734 −0.432361 −0.216181 0.976353i \(-0.569360\pi\)
−0.216181 + 0.976353i \(0.569360\pi\)
\(168\) 0 0
\(169\) −12.9758 −0.998141
\(170\) −7.78847 −0.597349
\(171\) 0 0
\(172\) 7.43011 0.566541
\(173\) 22.7623 1.73059 0.865294 0.501264i \(-0.167132\pi\)
0.865294 + 0.501264i \(0.167132\pi\)
\(174\) 0 0
\(175\) −0.250707 −0.0189517
\(176\) 3.21076 0.242020
\(177\) 0 0
\(178\) 2.16071 0.161952
\(179\) −2.49235 −0.186287 −0.0931435 0.995653i \(-0.529692\pi\)
−0.0931435 + 0.995653i \(0.529692\pi\)
\(180\) 0 0
\(181\) 10.1004 0.750754 0.375377 0.926872i \(-0.377513\pi\)
0.375377 + 0.926872i \(0.377513\pi\)
\(182\) 0.0618559 0.00458507
\(183\) 0 0
\(184\) 0 0
\(185\) −15.2363 −1.12020
\(186\) 0 0
\(187\) −10.5390 −0.770691
\(188\) −2.97017 −0.216622
\(189\) 0 0
\(190\) 6.75234 0.489866
\(191\) −2.57056 −0.185999 −0.0929995 0.995666i \(-0.529645\pi\)
−0.0929995 + 0.995666i \(0.529645\pi\)
\(192\) 0 0
\(193\) −22.5870 −1.62585 −0.812923 0.582371i \(-0.802125\pi\)
−0.812923 + 0.582371i \(0.802125\pi\)
\(194\) 2.63000 0.188823
\(195\) 0 0
\(196\) −6.84169 −0.488692
\(197\) −0.512278 −0.0364983 −0.0182491 0.999833i \(-0.505809\pi\)
−0.0182491 + 0.999833i \(0.505809\pi\)
\(198\) 0 0
\(199\) −1.31542 −0.0932477 −0.0466238 0.998913i \(-0.514846\pi\)
−0.0466238 + 0.998913i \(0.514846\pi\)
\(200\) −0.630111 −0.0445556
\(201\) 0 0
\(202\) −8.73694 −0.614729
\(203\) 0.150684 0.0105759
\(204\) 0 0
\(205\) −9.50015 −0.663519
\(206\) −4.28331 −0.298433
\(207\) 0 0
\(208\) 0.155465 0.0107795
\(209\) 9.13699 0.632019
\(210\) 0 0
\(211\) −7.01387 −0.482855 −0.241427 0.970419i \(-0.577616\pi\)
−0.241427 + 0.970419i \(0.577616\pi\)
\(212\) −13.0325 −0.895076
\(213\) 0 0
\(214\) −18.0123 −1.23130
\(215\) −17.6301 −1.20236
\(216\) 0 0
\(217\) −1.09294 −0.0741934
\(218\) 9.53659 0.645899
\(219\) 0 0
\(220\) −7.61844 −0.513635
\(221\) −0.510301 −0.0343265
\(222\) 0 0
\(223\) 12.8998 0.863837 0.431919 0.901913i \(-0.357837\pi\)
0.431919 + 0.901913i \(0.357837\pi\)
\(224\) 0.397877 0.0265843
\(225\) 0 0
\(226\) −6.28331 −0.417960
\(227\) 0.770428 0.0511351 0.0255676 0.999673i \(-0.491861\pi\)
0.0255676 + 0.999673i \(0.491861\pi\)
\(228\) 0 0
\(229\) −19.2701 −1.27341 −0.636703 0.771109i \(-0.719702\pi\)
−0.636703 + 0.771109i \(0.719702\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0.378719 0.0248641
\(233\) −8.46744 −0.554721 −0.277360 0.960766i \(-0.589460\pi\)
−0.277360 + 0.960766i \(0.589460\pi\)
\(234\) 0 0
\(235\) 7.04758 0.459734
\(236\) −8.64612 −0.562814
\(237\) 0 0
\(238\) −1.30600 −0.0846554
\(239\) −7.94660 −0.514023 −0.257011 0.966408i \(-0.582738\pi\)
−0.257011 + 0.966408i \(0.582738\pi\)
\(240\) 0 0
\(241\) 13.4446 0.866043 0.433022 0.901384i \(-0.357447\pi\)
0.433022 + 0.901384i \(0.357447\pi\)
\(242\) 0.691036 0.0444215
\(243\) 0 0
\(244\) 11.1436 0.713399
\(245\) 16.2339 1.03714
\(246\) 0 0
\(247\) 0.442413 0.0281501
\(248\) −2.74692 −0.174430
\(249\) 0 0
\(250\) −10.3688 −0.655781
\(251\) −15.0551 −0.950268 −0.475134 0.879913i \(-0.657600\pi\)
−0.475134 + 0.879913i \(0.657600\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 8.86900 0.556490
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) 4.70307 0.293369 0.146685 0.989183i \(-0.453140\pi\)
0.146685 + 0.989183i \(0.453140\pi\)
\(258\) 0 0
\(259\) −2.55488 −0.158753
\(260\) −0.368885 −0.0228773
\(261\) 0 0
\(262\) 5.20178 0.321367
\(263\) 20.6640 1.27420 0.637098 0.770782i \(-0.280134\pi\)
0.637098 + 0.770782i \(0.280134\pi\)
\(264\) 0 0
\(265\) 30.9233 1.89961
\(266\) 1.13226 0.0694231
\(267\) 0 0
\(268\) 8.40761 0.513576
\(269\) −16.7791 −1.02304 −0.511519 0.859272i \(-0.670917\pi\)
−0.511519 + 0.859272i \(0.670917\pi\)
\(270\) 0 0
\(271\) 10.2655 0.623586 0.311793 0.950150i \(-0.399070\pi\)
0.311793 + 0.950150i \(0.399070\pi\)
\(272\) −3.28242 −0.199026
\(273\) 0 0
\(274\) −0.501086 −0.0302717
\(275\) 2.02314 0.122000
\(276\) 0 0
\(277\) 25.2836 1.51914 0.759572 0.650423i \(-0.225408\pi\)
0.759572 + 0.650423i \(0.225408\pi\)
\(278\) 15.7509 0.944679
\(279\) 0 0
\(280\) −0.944078 −0.0564194
\(281\) 13.4458 0.802110 0.401055 0.916054i \(-0.368644\pi\)
0.401055 + 0.916054i \(0.368644\pi\)
\(282\) 0 0
\(283\) −4.38852 −0.260870 −0.130435 0.991457i \(-0.541637\pi\)
−0.130435 + 0.991457i \(0.541637\pi\)
\(284\) −0.356673 −0.0211647
\(285\) 0 0
\(286\) −0.499160 −0.0295159
\(287\) −1.59302 −0.0940330
\(288\) 0 0
\(289\) −6.22573 −0.366220
\(290\) −0.898620 −0.0527688
\(291\) 0 0
\(292\) 5.63594 0.329818
\(293\) 5.50794 0.321777 0.160889 0.986973i \(-0.448564\pi\)
0.160889 + 0.986973i \(0.448564\pi\)
\(294\) 0 0
\(295\) 20.5154 1.19445
\(296\) −6.42128 −0.373229
\(297\) 0 0
\(298\) −3.86997 −0.224181
\(299\) 0 0
\(300\) 0 0
\(301\) −2.95627 −0.170397
\(302\) 15.8518 0.912167
\(303\) 0 0
\(304\) 2.84574 0.163215
\(305\) −26.4415 −1.51403
\(306\) 0 0
\(307\) −25.5133 −1.45612 −0.728060 0.685513i \(-0.759578\pi\)
−0.728060 + 0.685513i \(0.759578\pi\)
\(308\) −1.27749 −0.0727916
\(309\) 0 0
\(310\) 6.51785 0.370189
\(311\) −10.0559 −0.570219 −0.285110 0.958495i \(-0.592030\pi\)
−0.285110 + 0.958495i \(0.592030\pi\)
\(312\) 0 0
\(313\) −3.51695 −0.198790 −0.0993949 0.995048i \(-0.531691\pi\)
−0.0993949 + 0.995048i \(0.531691\pi\)
\(314\) −20.8710 −1.17782
\(315\) 0 0
\(316\) −7.53843 −0.424070
\(317\) 34.9502 1.96300 0.981499 0.191466i \(-0.0613241\pi\)
0.981499 + 0.191466i \(0.0613241\pi\)
\(318\) 0 0
\(319\) −1.21598 −0.0680816
\(320\) −2.37279 −0.132643
\(321\) 0 0
\(322\) 0 0
\(323\) −9.34092 −0.519743
\(324\) 0 0
\(325\) 0.0979602 0.00543385
\(326\) −23.7839 −1.31727
\(327\) 0 0
\(328\) −4.00379 −0.221073
\(329\) 1.18176 0.0651528
\(330\) 0 0
\(331\) 2.35635 0.129517 0.0647584 0.997901i \(-0.479372\pi\)
0.0647584 + 0.997901i \(0.479372\pi\)
\(332\) −13.3899 −0.734864
\(333\) 0 0
\(334\) 5.58734 0.305726
\(335\) −19.9494 −1.08995
\(336\) 0 0
\(337\) 17.8166 0.970530 0.485265 0.874367i \(-0.338723\pi\)
0.485265 + 0.874367i \(0.338723\pi\)
\(338\) 12.9758 0.705792
\(339\) 0 0
\(340\) 7.78847 0.422389
\(341\) 8.81969 0.477613
\(342\) 0 0
\(343\) 5.50730 0.297366
\(344\) −7.43011 −0.400605
\(345\) 0 0
\(346\) −22.7623 −1.22371
\(347\) 23.1166 1.24097 0.620483 0.784220i \(-0.286937\pi\)
0.620483 + 0.784220i \(0.286937\pi\)
\(348\) 0 0
\(349\) 9.92941 0.531509 0.265755 0.964041i \(-0.414379\pi\)
0.265755 + 0.964041i \(0.414379\pi\)
\(350\) 0.250707 0.0134009
\(351\) 0 0
\(352\) −3.21076 −0.171134
\(353\) 9.79362 0.521262 0.260631 0.965439i \(-0.416069\pi\)
0.260631 + 0.965439i \(0.416069\pi\)
\(354\) 0 0
\(355\) 0.846310 0.0449175
\(356\) −2.16071 −0.114518
\(357\) 0 0
\(358\) 2.49235 0.131725
\(359\) 26.9003 1.41974 0.709872 0.704331i \(-0.248753\pi\)
0.709872 + 0.704331i \(0.248753\pi\)
\(360\) 0 0
\(361\) −10.9017 −0.573776
\(362\) −10.1004 −0.530864
\(363\) 0 0
\(364\) −0.0618559 −0.00324213
\(365\) −13.3729 −0.699968
\(366\) 0 0
\(367\) 20.9617 1.09419 0.547097 0.837069i \(-0.315733\pi\)
0.547097 + 0.837069i \(0.315733\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 15.2363 0.792099
\(371\) 5.18534 0.269209
\(372\) 0 0
\(373\) 27.4107 1.41927 0.709637 0.704568i \(-0.248859\pi\)
0.709637 + 0.704568i \(0.248859\pi\)
\(374\) 10.5390 0.544961
\(375\) 0 0
\(376\) 2.97017 0.153175
\(377\) −0.0588775 −0.00303235
\(378\) 0 0
\(379\) −4.06405 −0.208756 −0.104378 0.994538i \(-0.533285\pi\)
−0.104378 + 0.994538i \(0.533285\pi\)
\(380\) −6.75234 −0.346388
\(381\) 0 0
\(382\) 2.57056 0.131521
\(383\) 17.4544 0.891879 0.445940 0.895063i \(-0.352870\pi\)
0.445940 + 0.895063i \(0.352870\pi\)
\(384\) 0 0
\(385\) 3.03120 0.154484
\(386\) 22.5870 1.14965
\(387\) 0 0
\(388\) −2.63000 −0.133518
\(389\) −11.0073 −0.558094 −0.279047 0.960277i \(-0.590018\pi\)
−0.279047 + 0.960277i \(0.590018\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 6.84169 0.345558
\(393\) 0 0
\(394\) 0.512278 0.0258082
\(395\) 17.8871 0.899996
\(396\) 0 0
\(397\) 22.4799 1.12824 0.564118 0.825694i \(-0.309216\pi\)
0.564118 + 0.825694i \(0.309216\pi\)
\(398\) 1.31542 0.0659361
\(399\) 0 0
\(400\) 0.630111 0.0315056
\(401\) 0.647541 0.0323367 0.0161683 0.999869i \(-0.494853\pi\)
0.0161683 + 0.999869i \(0.494853\pi\)
\(402\) 0 0
\(403\) 0.427049 0.0212728
\(404\) 8.73694 0.434679
\(405\) 0 0
\(406\) −0.150684 −0.00747831
\(407\) 20.6172 1.02196
\(408\) 0 0
\(409\) 23.9213 1.18283 0.591416 0.806366i \(-0.298569\pi\)
0.591416 + 0.806366i \(0.298569\pi\)
\(410\) 9.50015 0.469179
\(411\) 0 0
\(412\) 4.28331 0.211024
\(413\) 3.44009 0.169276
\(414\) 0 0
\(415\) 31.7712 1.55959
\(416\) −0.155465 −0.00762229
\(417\) 0 0
\(418\) −9.13699 −0.446905
\(419\) 32.7060 1.59779 0.798897 0.601468i \(-0.205417\pi\)
0.798897 + 0.601468i \(0.205417\pi\)
\(420\) 0 0
\(421\) −27.9916 −1.36423 −0.682114 0.731245i \(-0.738939\pi\)
−0.682114 + 0.731245i \(0.738939\pi\)
\(422\) 7.01387 0.341430
\(423\) 0 0
\(424\) 13.0325 0.632914
\(425\) −2.06829 −0.100327
\(426\) 0 0
\(427\) −4.43380 −0.214567
\(428\) 18.0123 0.870659
\(429\) 0 0
\(430\) 17.6301 0.850197
\(431\) −6.00349 −0.289178 −0.144589 0.989492i \(-0.546186\pi\)
−0.144589 + 0.989492i \(0.546186\pi\)
\(432\) 0 0
\(433\) 10.6707 0.512800 0.256400 0.966571i \(-0.417464\pi\)
0.256400 + 0.966571i \(0.417464\pi\)
\(434\) 1.09294 0.0524627
\(435\) 0 0
\(436\) −9.53659 −0.456720
\(437\) 0 0
\(438\) 0 0
\(439\) 32.8435 1.56754 0.783768 0.621054i \(-0.213295\pi\)
0.783768 + 0.621054i \(0.213295\pi\)
\(440\) 7.61844 0.363195
\(441\) 0 0
\(442\) 0.510301 0.0242725
\(443\) 0.412897 0.0196173 0.00980867 0.999952i \(-0.496878\pi\)
0.00980867 + 0.999952i \(0.496878\pi\)
\(444\) 0 0
\(445\) 5.12691 0.243039
\(446\) −12.8998 −0.610825
\(447\) 0 0
\(448\) −0.397877 −0.0187979
\(449\) 9.42926 0.444994 0.222497 0.974933i \(-0.428579\pi\)
0.222497 + 0.974933i \(0.428579\pi\)
\(450\) 0 0
\(451\) 12.8552 0.605328
\(452\) 6.28331 0.295542
\(453\) 0 0
\(454\) −0.770428 −0.0361580
\(455\) 0.146771 0.00688073
\(456\) 0 0
\(457\) −31.0334 −1.45168 −0.725840 0.687864i \(-0.758549\pi\)
−0.725840 + 0.687864i \(0.758549\pi\)
\(458\) 19.2701 0.900434
\(459\) 0 0
\(460\) 0 0
\(461\) 33.0117 1.53751 0.768753 0.639546i \(-0.220878\pi\)
0.768753 + 0.639546i \(0.220878\pi\)
\(462\) 0 0
\(463\) −17.6701 −0.821201 −0.410600 0.911815i \(-0.634681\pi\)
−0.410600 + 0.911815i \(0.634681\pi\)
\(464\) −0.378719 −0.0175816
\(465\) 0 0
\(466\) 8.46744 0.392247
\(467\) 11.1053 0.513892 0.256946 0.966426i \(-0.417284\pi\)
0.256946 + 0.966426i \(0.417284\pi\)
\(468\) 0 0
\(469\) −3.34520 −0.154467
\(470\) −7.04758 −0.325081
\(471\) 0 0
\(472\) 8.64612 0.397970
\(473\) 23.8563 1.09691
\(474\) 0 0
\(475\) 1.79314 0.0822747
\(476\) 1.30600 0.0598604
\(477\) 0 0
\(478\) 7.94660 0.363469
\(479\) 10.3037 0.470789 0.235394 0.971900i \(-0.424362\pi\)
0.235394 + 0.971900i \(0.424362\pi\)
\(480\) 0 0
\(481\) 0.998283 0.0455178
\(482\) −13.4446 −0.612385
\(483\) 0 0
\(484\) −0.691036 −0.0314107
\(485\) 6.24044 0.283364
\(486\) 0 0
\(487\) −11.2887 −0.511538 −0.255769 0.966738i \(-0.582329\pi\)
−0.255769 + 0.966738i \(0.582329\pi\)
\(488\) −11.1436 −0.504449
\(489\) 0 0
\(490\) −16.2339 −0.733372
\(491\) 9.15794 0.413292 0.206646 0.978416i \(-0.433745\pi\)
0.206646 + 0.978416i \(0.433745\pi\)
\(492\) 0 0
\(493\) 1.24311 0.0559871
\(494\) −0.442413 −0.0199051
\(495\) 0 0
\(496\) 2.74692 0.123340
\(497\) 0.141912 0.00636564
\(498\) 0 0
\(499\) −31.2250 −1.39782 −0.698912 0.715208i \(-0.746332\pi\)
−0.698912 + 0.715208i \(0.746332\pi\)
\(500\) 10.3688 0.463707
\(501\) 0 0
\(502\) 15.0551 0.671941
\(503\) −17.0084 −0.758367 −0.379183 0.925322i \(-0.623795\pi\)
−0.379183 + 0.925322i \(0.623795\pi\)
\(504\) 0 0
\(505\) −20.7309 −0.922512
\(506\) 0 0
\(507\) 0 0
\(508\) −8.86900 −0.393498
\(509\) −18.3615 −0.813861 −0.406931 0.913459i \(-0.633401\pi\)
−0.406931 + 0.913459i \(0.633401\pi\)
\(510\) 0 0
\(511\) −2.24241 −0.0991985
\(512\) −1.00000 −0.0441942
\(513\) 0 0
\(514\) −4.70307 −0.207443
\(515\) −10.1634 −0.447852
\(516\) 0 0
\(517\) −9.53651 −0.419415
\(518\) 2.55488 0.112255
\(519\) 0 0
\(520\) 0.368885 0.0161767
\(521\) 26.2822 1.15144 0.575721 0.817646i \(-0.304721\pi\)
0.575721 + 0.817646i \(0.304721\pi\)
\(522\) 0 0
\(523\) −34.2705 −1.49855 −0.749273 0.662262i \(-0.769597\pi\)
−0.749273 + 0.662262i \(0.769597\pi\)
\(524\) −5.20178 −0.227241
\(525\) 0 0
\(526\) −20.6640 −0.900993
\(527\) −9.01654 −0.392766
\(528\) 0 0
\(529\) 0 0
\(530\) −30.9233 −1.34322
\(531\) 0 0
\(532\) −1.13226 −0.0490896
\(533\) 0.622449 0.0269613
\(534\) 0 0
\(535\) −42.7394 −1.84779
\(536\) −8.40761 −0.363153
\(537\) 0 0
\(538\) 16.7791 0.723397
\(539\) −21.9670 −0.946186
\(540\) 0 0
\(541\) 8.01966 0.344792 0.172396 0.985028i \(-0.444849\pi\)
0.172396 + 0.985028i \(0.444849\pi\)
\(542\) −10.2655 −0.440942
\(543\) 0 0
\(544\) 3.28242 0.140732
\(545\) 22.6283 0.969289
\(546\) 0 0
\(547\) 14.1044 0.603059 0.301530 0.953457i \(-0.402503\pi\)
0.301530 + 0.953457i \(0.402503\pi\)
\(548\) 0.501086 0.0214053
\(549\) 0 0
\(550\) −2.02314 −0.0862668
\(551\) −1.07774 −0.0459132
\(552\) 0 0
\(553\) 2.99937 0.127546
\(554\) −25.2836 −1.07420
\(555\) 0 0
\(556\) −15.7509 −0.667989
\(557\) 6.54420 0.277286 0.138643 0.990342i \(-0.455726\pi\)
0.138643 + 0.990342i \(0.455726\pi\)
\(558\) 0 0
\(559\) 1.15512 0.0488564
\(560\) 0.944078 0.0398946
\(561\) 0 0
\(562\) −13.4458 −0.567177
\(563\) 18.1561 0.765190 0.382595 0.923916i \(-0.375030\pi\)
0.382595 + 0.923916i \(0.375030\pi\)
\(564\) 0 0
\(565\) −14.9090 −0.627225
\(566\) 4.38852 0.184463
\(567\) 0 0
\(568\) 0.356673 0.0149657
\(569\) 3.87946 0.162636 0.0813178 0.996688i \(-0.474087\pi\)
0.0813178 + 0.996688i \(0.474087\pi\)
\(570\) 0 0
\(571\) 33.0657 1.38376 0.691878 0.722014i \(-0.256783\pi\)
0.691878 + 0.722014i \(0.256783\pi\)
\(572\) 0.499160 0.0208709
\(573\) 0 0
\(574\) 1.59302 0.0664913
\(575\) 0 0
\(576\) 0 0
\(577\) 19.8949 0.828237 0.414118 0.910223i \(-0.364090\pi\)
0.414118 + 0.910223i \(0.364090\pi\)
\(578\) 6.22573 0.258956
\(579\) 0 0
\(580\) 0.898620 0.0373131
\(581\) 5.32752 0.221023
\(582\) 0 0
\(583\) −41.8442 −1.73301
\(584\) −5.63594 −0.233217
\(585\) 0 0
\(586\) −5.50794 −0.227531
\(587\) 2.76600 0.114165 0.0570826 0.998369i \(-0.481820\pi\)
0.0570826 + 0.998369i \(0.481820\pi\)
\(588\) 0 0
\(589\) 7.81703 0.322095
\(590\) −20.5154 −0.844605
\(591\) 0 0
\(592\) 6.42128 0.263913
\(593\) −42.6402 −1.75102 −0.875511 0.483197i \(-0.839475\pi\)
−0.875511 + 0.483197i \(0.839475\pi\)
\(594\) 0 0
\(595\) −3.09886 −0.127041
\(596\) 3.86997 0.158520
\(597\) 0 0
\(598\) 0 0
\(599\) 20.1889 0.824895 0.412448 0.910981i \(-0.364674\pi\)
0.412448 + 0.910981i \(0.364674\pi\)
\(600\) 0 0
\(601\) −14.9028 −0.607899 −0.303950 0.952688i \(-0.598305\pi\)
−0.303950 + 0.952688i \(0.598305\pi\)
\(602\) 2.95627 0.120489
\(603\) 0 0
\(604\) −15.8518 −0.644999
\(605\) 1.63968 0.0666625
\(606\) 0 0
\(607\) 30.7143 1.24666 0.623328 0.781961i \(-0.285780\pi\)
0.623328 + 0.781961i \(0.285780\pi\)
\(608\) −2.84574 −0.115410
\(609\) 0 0
\(610\) 26.4415 1.07058
\(611\) −0.461757 −0.0186807
\(612\) 0 0
\(613\) 18.9197 0.764157 0.382079 0.924130i \(-0.375208\pi\)
0.382079 + 0.924130i \(0.375208\pi\)
\(614\) 25.5133 1.02963
\(615\) 0 0
\(616\) 1.27749 0.0514715
\(617\) 21.3603 0.859934 0.429967 0.902845i \(-0.358525\pi\)
0.429967 + 0.902845i \(0.358525\pi\)
\(618\) 0 0
\(619\) 8.05295 0.323675 0.161838 0.986817i \(-0.448258\pi\)
0.161838 + 0.986817i \(0.448258\pi\)
\(620\) −6.51785 −0.261763
\(621\) 0 0
\(622\) 10.0559 0.403206
\(623\) 0.859699 0.0344431
\(624\) 0 0
\(625\) −27.7535 −1.11014
\(626\) 3.51695 0.140566
\(627\) 0 0
\(628\) 20.8710 0.832842
\(629\) −21.0773 −0.840408
\(630\) 0 0
\(631\) 27.0590 1.07720 0.538600 0.842561i \(-0.318953\pi\)
0.538600 + 0.842561i \(0.318953\pi\)
\(632\) 7.53843 0.299863
\(633\) 0 0
\(634\) −34.9502 −1.38805
\(635\) 21.0442 0.835115
\(636\) 0 0
\(637\) −1.06364 −0.0421431
\(638\) 1.21598 0.0481409
\(639\) 0 0
\(640\) 2.37279 0.0937926
\(641\) 39.7357 1.56946 0.784732 0.619835i \(-0.212800\pi\)
0.784732 + 0.619835i \(0.212800\pi\)
\(642\) 0 0
\(643\) −1.75237 −0.0691066 −0.0345533 0.999403i \(-0.511001\pi\)
−0.0345533 + 0.999403i \(0.511001\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 9.34092 0.367514
\(647\) −8.90302 −0.350014 −0.175007 0.984567i \(-0.555995\pi\)
−0.175007 + 0.984567i \(0.555995\pi\)
\(648\) 0 0
\(649\) −27.7606 −1.08970
\(650\) −0.0979602 −0.00384231
\(651\) 0 0
\(652\) 23.7839 0.931450
\(653\) 22.9984 0.899995 0.449998 0.893030i \(-0.351425\pi\)
0.449998 + 0.893030i \(0.351425\pi\)
\(654\) 0 0
\(655\) 12.3427 0.482269
\(656\) 4.00379 0.156322
\(657\) 0 0
\(658\) −1.18176 −0.0460700
\(659\) −33.1406 −1.29097 −0.645486 0.763772i \(-0.723345\pi\)
−0.645486 + 0.763772i \(0.723345\pi\)
\(660\) 0 0
\(661\) −21.4839 −0.835627 −0.417813 0.908533i \(-0.637203\pi\)
−0.417813 + 0.908533i \(0.637203\pi\)
\(662\) −2.35635 −0.0915823
\(663\) 0 0
\(664\) 13.3899 0.519627
\(665\) 2.68660 0.104182
\(666\) 0 0
\(667\) 0 0
\(668\) −5.58734 −0.216181
\(669\) 0 0
\(670\) 19.9494 0.770714
\(671\) 35.7795 1.38125
\(672\) 0 0
\(673\) 25.5429 0.984605 0.492302 0.870424i \(-0.336155\pi\)
0.492302 + 0.870424i \(0.336155\pi\)
\(674\) −17.8166 −0.686269
\(675\) 0 0
\(676\) −12.9758 −0.499070
\(677\) 48.1558 1.85078 0.925390 0.379017i \(-0.123738\pi\)
0.925390 + 0.379017i \(0.123738\pi\)
\(678\) 0 0
\(679\) 1.04642 0.0401579
\(680\) −7.78847 −0.298674
\(681\) 0 0
\(682\) −8.81969 −0.337723
\(683\) 4.70614 0.180075 0.0900377 0.995938i \(-0.471301\pi\)
0.0900377 + 0.995938i \(0.471301\pi\)
\(684\) 0 0
\(685\) −1.18897 −0.0454282
\(686\) −5.50730 −0.210270
\(687\) 0 0
\(688\) 7.43011 0.283270
\(689\) −2.02610 −0.0771881
\(690\) 0 0
\(691\) −7.93027 −0.301682 −0.150841 0.988558i \(-0.548198\pi\)
−0.150841 + 0.988558i \(0.548198\pi\)
\(692\) 22.7623 0.865294
\(693\) 0 0
\(694\) −23.1166 −0.877495
\(695\) 37.3736 1.41766
\(696\) 0 0
\(697\) −13.1421 −0.497793
\(698\) −9.92941 −0.375834
\(699\) 0 0
\(700\) −0.250707 −0.00947584
\(701\) −32.6814 −1.23436 −0.617181 0.786822i \(-0.711725\pi\)
−0.617181 + 0.786822i \(0.711725\pi\)
\(702\) 0 0
\(703\) 18.2733 0.689191
\(704\) 3.21076 0.121010
\(705\) 0 0
\(706\) −9.79362 −0.368588
\(707\) −3.47623 −0.130737
\(708\) 0 0
\(709\) −49.4619 −1.85758 −0.928790 0.370608i \(-0.879149\pi\)
−0.928790 + 0.370608i \(0.879149\pi\)
\(710\) −0.846310 −0.0317614
\(711\) 0 0
\(712\) 2.16071 0.0809762
\(713\) 0 0
\(714\) 0 0
\(715\) −1.18440 −0.0442940
\(716\) −2.49235 −0.0931435
\(717\) 0 0
\(718\) −26.9003 −1.00391
\(719\) 28.1208 1.04873 0.524364 0.851494i \(-0.324303\pi\)
0.524364 + 0.851494i \(0.324303\pi\)
\(720\) 0 0
\(721\) −1.70423 −0.0634690
\(722\) 10.9017 0.405721
\(723\) 0 0
\(724\) 10.1004 0.375377
\(725\) −0.238635 −0.00886270
\(726\) 0 0
\(727\) 15.6528 0.580529 0.290264 0.956947i \(-0.406257\pi\)
0.290264 + 0.956947i \(0.406257\pi\)
\(728\) 0.0618559 0.00229253
\(729\) 0 0
\(730\) 13.3729 0.494952
\(731\) −24.3887 −0.902050
\(732\) 0 0
\(733\) −10.1204 −0.373807 −0.186904 0.982378i \(-0.559845\pi\)
−0.186904 + 0.982378i \(0.559845\pi\)
\(734\) −20.9617 −0.773712
\(735\) 0 0
\(736\) 0 0
\(737\) 26.9948 0.994366
\(738\) 0 0
\(739\) 12.7821 0.470197 0.235098 0.971972i \(-0.424459\pi\)
0.235098 + 0.971972i \(0.424459\pi\)
\(740\) −15.2363 −0.560098
\(741\) 0 0
\(742\) −5.18534 −0.190360
\(743\) 36.1598 1.32657 0.663287 0.748365i \(-0.269161\pi\)
0.663287 + 0.748365i \(0.269161\pi\)
\(744\) 0 0
\(745\) −9.18261 −0.336425
\(746\) −27.4107 −1.00358
\(747\) 0 0
\(748\) −10.5390 −0.385346
\(749\) −7.16670 −0.261866
\(750\) 0 0
\(751\) 17.6518 0.644124 0.322062 0.946719i \(-0.395624\pi\)
0.322062 + 0.946719i \(0.395624\pi\)
\(752\) −2.97017 −0.108311
\(753\) 0 0
\(754\) 0.0588775 0.00214419
\(755\) 37.6128 1.36887
\(756\) 0 0
\(757\) 49.4769 1.79827 0.899134 0.437673i \(-0.144197\pi\)
0.899134 + 0.437673i \(0.144197\pi\)
\(758\) 4.06405 0.147613
\(759\) 0 0
\(760\) 6.75234 0.244933
\(761\) 23.2497 0.842802 0.421401 0.906874i \(-0.361538\pi\)
0.421401 + 0.906874i \(0.361538\pi\)
\(762\) 0 0
\(763\) 3.79439 0.137366
\(764\) −2.57056 −0.0929995
\(765\) 0 0
\(766\) −17.4544 −0.630654
\(767\) −1.34417 −0.0485351
\(768\) 0 0
\(769\) 42.2272 1.52275 0.761377 0.648310i \(-0.224524\pi\)
0.761377 + 0.648310i \(0.224524\pi\)
\(770\) −3.03120 −0.109237
\(771\) 0 0
\(772\) −22.5870 −0.812923
\(773\) −13.1605 −0.473350 −0.236675 0.971589i \(-0.576058\pi\)
−0.236675 + 0.971589i \(0.576058\pi\)
\(774\) 0 0
\(775\) 1.73087 0.0621745
\(776\) 2.63000 0.0944117
\(777\) 0 0
\(778\) 11.0073 0.394632
\(779\) 11.3938 0.408224
\(780\) 0 0
\(781\) −1.14519 −0.0409782
\(782\) 0 0
\(783\) 0 0
\(784\) −6.84169 −0.244346
\(785\) −49.5223 −1.76753
\(786\) 0 0
\(787\) 37.6413 1.34177 0.670884 0.741562i \(-0.265915\pi\)
0.670884 + 0.741562i \(0.265915\pi\)
\(788\) −0.512278 −0.0182491
\(789\) 0 0
\(790\) −17.8871 −0.636394
\(791\) −2.49999 −0.0888894
\(792\) 0 0
\(793\) 1.73244 0.0615209
\(794\) −22.4799 −0.797783
\(795\) 0 0
\(796\) −1.31542 −0.0466238
\(797\) −6.37725 −0.225894 −0.112947 0.993601i \(-0.536029\pi\)
−0.112947 + 0.993601i \(0.536029\pi\)
\(798\) 0 0
\(799\) 9.74935 0.344907
\(800\) −0.630111 −0.0222778
\(801\) 0 0
\(802\) −0.647541 −0.0228655
\(803\) 18.0956 0.638581
\(804\) 0 0
\(805\) 0 0
\(806\) −0.427049 −0.0150422
\(807\) 0 0
\(808\) −8.73694 −0.307364
\(809\) −26.2928 −0.924407 −0.462203 0.886774i \(-0.652941\pi\)
−0.462203 + 0.886774i \(0.652941\pi\)
\(810\) 0 0
\(811\) −12.6663 −0.444773 −0.222387 0.974959i \(-0.571385\pi\)
−0.222387 + 0.974959i \(0.571385\pi\)
\(812\) 0.150684 0.00528797
\(813\) 0 0
\(814\) −20.6172 −0.722632
\(815\) −56.4341 −1.97680
\(816\) 0 0
\(817\) 21.1442 0.739742
\(818\) −23.9213 −0.836389
\(819\) 0 0
\(820\) −9.50015 −0.331759
\(821\) −49.5832 −1.73047 −0.865234 0.501369i \(-0.832830\pi\)
−0.865234 + 0.501369i \(0.832830\pi\)
\(822\) 0 0
\(823\) −29.9411 −1.04368 −0.521840 0.853043i \(-0.674754\pi\)
−0.521840 + 0.853043i \(0.674754\pi\)
\(824\) −4.28331 −0.149216
\(825\) 0 0
\(826\) −3.44009 −0.119696
\(827\) −19.8427 −0.689998 −0.344999 0.938603i \(-0.612121\pi\)
−0.344999 + 0.938603i \(0.612121\pi\)
\(828\) 0 0
\(829\) 38.9517 1.35285 0.676425 0.736512i \(-0.263528\pi\)
0.676425 + 0.736512i \(0.263528\pi\)
\(830\) −31.7712 −1.10280
\(831\) 0 0
\(832\) 0.155465 0.00538977
\(833\) 22.4573 0.778099
\(834\) 0 0
\(835\) 13.2576 0.458797
\(836\) 9.13699 0.316009
\(837\) 0 0
\(838\) −32.7060 −1.12981
\(839\) 46.7337 1.61343 0.806713 0.590944i \(-0.201244\pi\)
0.806713 + 0.590944i \(0.201244\pi\)
\(840\) 0 0
\(841\) −28.8566 −0.995054
\(842\) 27.9916 0.964655
\(843\) 0 0
\(844\) −7.01387 −0.241427
\(845\) 30.7889 1.05917
\(846\) 0 0
\(847\) 0.274948 0.00944732
\(848\) −13.0325 −0.447538
\(849\) 0 0
\(850\) 2.06829 0.0709417
\(851\) 0 0
\(852\) 0 0
\(853\) 17.7689 0.608395 0.304197 0.952609i \(-0.401612\pi\)
0.304197 + 0.952609i \(0.401612\pi\)
\(854\) 4.43380 0.151722
\(855\) 0 0
\(856\) −18.0123 −0.615649
\(857\) 23.5901 0.805822 0.402911 0.915239i \(-0.367998\pi\)
0.402911 + 0.915239i \(0.367998\pi\)
\(858\) 0 0
\(859\) 23.1877 0.791154 0.395577 0.918433i \(-0.370545\pi\)
0.395577 + 0.918433i \(0.370545\pi\)
\(860\) −17.6301 −0.601180
\(861\) 0 0
\(862\) 6.00349 0.204480
\(863\) −35.2374 −1.19950 −0.599748 0.800189i \(-0.704732\pi\)
−0.599748 + 0.800189i \(0.704732\pi\)
\(864\) 0 0
\(865\) −54.0101 −1.83640
\(866\) −10.6707 −0.362604
\(867\) 0 0
\(868\) −1.09294 −0.0370967
\(869\) −24.2041 −0.821067
\(870\) 0 0
\(871\) 1.30709 0.0442890
\(872\) 9.53659 0.322950
\(873\) 0 0
\(874\) 0 0
\(875\) −4.12551 −0.139468
\(876\) 0 0
\(877\) 33.2073 1.12133 0.560665 0.828043i \(-0.310545\pi\)
0.560665 + 0.828043i \(0.310545\pi\)
\(878\) −32.8435 −1.10841
\(879\) 0 0
\(880\) −7.61844 −0.256818
\(881\) −12.4825 −0.420547 −0.210274 0.977643i \(-0.567436\pi\)
−0.210274 + 0.977643i \(0.567436\pi\)
\(882\) 0 0
\(883\) −20.6454 −0.694774 −0.347387 0.937722i \(-0.612931\pi\)
−0.347387 + 0.937722i \(0.612931\pi\)
\(884\) −0.510301 −0.0171633
\(885\) 0 0
\(886\) −0.412897 −0.0138716
\(887\) −22.9594 −0.770900 −0.385450 0.922729i \(-0.625954\pi\)
−0.385450 + 0.922729i \(0.625954\pi\)
\(888\) 0 0
\(889\) 3.52877 0.118351
\(890\) −5.12691 −0.171854
\(891\) 0 0
\(892\) 12.8998 0.431919
\(893\) −8.45235 −0.282847
\(894\) 0 0
\(895\) 5.91381 0.197677
\(896\) 0.397877 0.0132922
\(897\) 0 0
\(898\) −9.42926 −0.314659
\(899\) −1.04031 −0.0346963
\(900\) 0 0
\(901\) 42.7781 1.42515
\(902\) −12.8552 −0.428032
\(903\) 0 0
\(904\) −6.28331 −0.208980
\(905\) −23.9660 −0.796657
\(906\) 0 0
\(907\) 25.2028 0.836847 0.418423 0.908252i \(-0.362583\pi\)
0.418423 + 0.908252i \(0.362583\pi\)
\(908\) 0.770428 0.0255676
\(909\) 0 0
\(910\) −0.146771 −0.00486541
\(911\) −29.1090 −0.964423 −0.482212 0.876055i \(-0.660166\pi\)
−0.482212 + 0.876055i \(0.660166\pi\)
\(912\) 0 0
\(913\) −42.9916 −1.42281
\(914\) 31.0334 1.02649
\(915\) 0 0
\(916\) −19.2701 −0.636703
\(917\) 2.06967 0.0683465
\(918\) 0 0
\(919\) 22.9832 0.758147 0.379074 0.925367i \(-0.376243\pi\)
0.379074 + 0.925367i \(0.376243\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) −33.0117 −1.08718
\(923\) −0.0554502 −0.00182516
\(924\) 0 0
\(925\) 4.04612 0.133036
\(926\) 17.6701 0.580676
\(927\) 0 0
\(928\) 0.378719 0.0124321
\(929\) 17.5736 0.576571 0.288285 0.957545i \(-0.406915\pi\)
0.288285 + 0.957545i \(0.406915\pi\)
\(930\) 0 0
\(931\) −19.4697 −0.638094
\(932\) −8.46744 −0.277360
\(933\) 0 0
\(934\) −11.1053 −0.363377
\(935\) 25.0069 0.817813
\(936\) 0 0
\(937\) 18.9264 0.618298 0.309149 0.951014i \(-0.399956\pi\)
0.309149 + 0.951014i \(0.399956\pi\)
\(938\) 3.34520 0.109225
\(939\) 0 0
\(940\) 7.04758 0.229867
\(941\) 40.7284 1.32771 0.663853 0.747863i \(-0.268920\pi\)
0.663853 + 0.747863i \(0.268920\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) −8.64612 −0.281407
\(945\) 0 0
\(946\) −23.8563 −0.775635
\(947\) 15.8069 0.513656 0.256828 0.966457i \(-0.417323\pi\)
0.256828 + 0.966457i \(0.417323\pi\)
\(948\) 0 0
\(949\) 0.876190 0.0284423
\(950\) −1.79314 −0.0581770
\(951\) 0 0
\(952\) −1.30600 −0.0423277
\(953\) 16.2387 0.526024 0.263012 0.964792i \(-0.415284\pi\)
0.263012 + 0.964792i \(0.415284\pi\)
\(954\) 0 0
\(955\) 6.09938 0.197371
\(956\) −7.94660 −0.257011
\(957\) 0 0
\(958\) −10.3037 −0.332898
\(959\) −0.199371 −0.00643802
\(960\) 0 0
\(961\) −23.4544 −0.756595
\(962\) −0.998283 −0.0321859
\(963\) 0 0
\(964\) 13.4446 0.433022
\(965\) 53.5941 1.72525
\(966\) 0 0
\(967\) −22.9012 −0.736453 −0.368226 0.929736i \(-0.620035\pi\)
−0.368226 + 0.929736i \(0.620035\pi\)
\(968\) 0.691036 0.0222107
\(969\) 0 0
\(970\) −6.24044 −0.200368
\(971\) −26.9582 −0.865129 −0.432564 0.901603i \(-0.642391\pi\)
−0.432564 + 0.901603i \(0.642391\pi\)
\(972\) 0 0
\(973\) 6.26695 0.200909
\(974\) 11.2887 0.361712
\(975\) 0 0
\(976\) 11.1436 0.356699
\(977\) −27.7321 −0.887229 −0.443615 0.896218i \(-0.646304\pi\)
−0.443615 + 0.896218i \(0.646304\pi\)
\(978\) 0 0
\(979\) −6.93753 −0.221724
\(980\) 16.2339 0.518572
\(981\) 0 0
\(982\) −9.15794 −0.292242
\(983\) −44.7433 −1.42709 −0.713545 0.700609i \(-0.752912\pi\)
−0.713545 + 0.700609i \(0.752912\pi\)
\(984\) 0 0
\(985\) 1.21553 0.0387299
\(986\) −1.24311 −0.0395888
\(987\) 0 0
\(988\) 0.442413 0.0140750
\(989\) 0 0
\(990\) 0 0
\(991\) 2.16949 0.0689161 0.0344581 0.999406i \(-0.489029\pi\)
0.0344581 + 0.999406i \(0.489029\pi\)
\(992\) −2.74692 −0.0872148
\(993\) 0 0
\(994\) −0.141912 −0.00450119
\(995\) 3.12121 0.0989490
\(996\) 0 0
\(997\) 10.9055 0.345381 0.172691 0.984976i \(-0.444754\pi\)
0.172691 + 0.984976i \(0.444754\pi\)
\(998\) 31.2250 0.988410
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 9522.2.a.bp.1.3 5
3.2 odd 2 1058.2.a.m.1.1 5
12.11 even 2 8464.2.a.bx.1.5 5
23.4 even 11 414.2.i.f.361.1 10
23.6 even 11 414.2.i.f.289.1 10
23.22 odd 2 9522.2.a.bu.1.3 5
69.29 odd 22 46.2.c.a.13.1 10
69.50 odd 22 46.2.c.a.39.1 yes 10
69.68 even 2 1058.2.a.l.1.1 5
276.119 even 22 368.2.m.b.177.1 10
276.167 even 22 368.2.m.b.289.1 10
276.275 odd 2 8464.2.a.bw.1.5 5
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
46.2.c.a.13.1 10 69.29 odd 22
46.2.c.a.39.1 yes 10 69.50 odd 22
368.2.m.b.177.1 10 276.119 even 22
368.2.m.b.289.1 10 276.167 even 22
414.2.i.f.289.1 10 23.6 even 11
414.2.i.f.361.1 10 23.4 even 11
1058.2.a.l.1.1 5 69.68 even 2
1058.2.a.m.1.1 5 3.2 odd 2
8464.2.a.bw.1.5 5 276.275 odd 2
8464.2.a.bx.1.5 5 12.11 even 2
9522.2.a.bp.1.3 5 1.1 even 1 trivial
9522.2.a.bu.1.3 5 23.22 odd 2