Properties

Label 9520.2.a.bi
Level $9520$
Weight $2$
Character orbit 9520.a
Self dual yes
Analytic conductor $76.018$
Analytic rank $1$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [9520,2,Mod(1,9520)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(9520, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("9520.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 9520 = 2^{4} \cdot 5 \cdot 7 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 9520.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,-1,0,4,0,4,0,-1,0,1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(76.0175827243\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: 4.4.10889.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 5x^{2} + 2x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 4760)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_1 q^{3} + q^{5} + q^{7} + (\beta_{2} + \beta_1) q^{9} + ( - \beta_{3} + \beta_{2} + \beta_1 + 1) q^{11} + ( - \beta_{2} - 2) q^{13} - \beta_1 q^{15} - q^{17} + (2 \beta_{3} + 2 \beta_1 - 1) q^{19}+ \cdots + (4 \beta_{3} + \beta_{2} + 5 \beta_1 + 6) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - q^{3} + 4 q^{5} + 4 q^{7} - q^{9} + q^{11} - 6 q^{13} - q^{15} - 4 q^{17} + 2 q^{19} - q^{21} - 7 q^{23} + 4 q^{25} - 4 q^{27} - 6 q^{29} + 14 q^{31} - 12 q^{33} + 4 q^{35} - 8 q^{37} - 2 q^{39}+ \cdots + 35 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - x^{3} - 5x^{2} + 2x + 1 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - \nu - 3 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{3} - \nu^{2} - 5\nu + 2 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + \beta _1 + 3 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{3} + \beta_{2} + 6\beta _1 + 1 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
2.57951
0.669225
−0.296768
−1.95197
0 −2.57951 0 1.00000 0 1.00000 0 3.65388 0
1.2 0 −0.669225 0 1.00000 0 1.00000 0 −2.55214 0
1.3 0 0.296768 0 1.00000 0 1.00000 0 −2.91193 0
1.4 0 1.95197 0 1.00000 0 1.00000 0 0.810183 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(5\) \( -1 \)
\(7\) \( -1 \)
\(17\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 9520.2.a.bi 4
4.b odd 2 1 4760.2.a.i 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
4760.2.a.i 4 4.b odd 2 1
9520.2.a.bi 4 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(9520))\):

\( T_{3}^{4} + T_{3}^{3} - 5T_{3}^{2} - 2T_{3} + 1 \) Copy content Toggle raw display
\( T_{11}^{4} - T_{11}^{3} - 27T_{11}^{2} + 33T_{11} + 2 \) Copy content Toggle raw display
\( T_{13}^{4} + 6T_{13}^{3} + T_{13}^{2} - 21T_{13} + 11 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \) Copy content Toggle raw display
$3$ \( T^{4} + T^{3} - 5 T^{2} + \cdots + 1 \) Copy content Toggle raw display
$5$ \( (T - 1)^{4} \) Copy content Toggle raw display
$7$ \( (T - 1)^{4} \) Copy content Toggle raw display
$11$ \( T^{4} - T^{3} - 27 T^{2} + \cdots + 2 \) Copy content Toggle raw display
$13$ \( T^{4} + 6 T^{3} + \cdots + 11 \) Copy content Toggle raw display
$17$ \( (T + 1)^{4} \) Copy content Toggle raw display
$19$ \( T^{4} - 2 T^{3} + \cdots + 179 \) Copy content Toggle raw display
$23$ \( T^{4} + 7 T^{3} + \cdots - 22 \) Copy content Toggle raw display
$29$ \( T^{4} + 6 T^{3} + \cdots + 53 \) Copy content Toggle raw display
$31$ \( T^{4} - 14 T^{3} + \cdots + 53 \) Copy content Toggle raw display
$37$ \( T^{4} + 8 T^{3} + \cdots + 1138 \) Copy content Toggle raw display
$41$ \( T^{4} + 11 T^{3} + \cdots + 14 \) Copy content Toggle raw display
$43$ \( T^{4} - 3 T^{3} + \cdots - 88 \) Copy content Toggle raw display
$47$ \( T^{4} + 8 T^{3} + \cdots - 89 \) Copy content Toggle raw display
$53$ \( T^{4} + 10 T^{3} + \cdots - 659 \) Copy content Toggle raw display
$59$ \( T^{4} - 14 T^{3} + \cdots + 1687 \) Copy content Toggle raw display
$61$ \( T^{4} + 6 T^{3} + \cdots + 2857 \) Copy content Toggle raw display
$67$ \( T^{4} + 11 T^{3} + \cdots - 1996 \) Copy content Toggle raw display
$71$ \( T^{4} - 2 T^{3} + \cdots + 1057 \) Copy content Toggle raw display
$73$ \( T^{4} + 2 T^{3} + \cdots + 4153 \) Copy content Toggle raw display
$79$ \( T^{4} + 8 T^{3} + \cdots + 1076 \) Copy content Toggle raw display
$83$ \( T^{4} + 6 T^{3} + \cdots + 242 \) Copy content Toggle raw display
$89$ \( T^{4} + 50 T^{3} + \cdots + 20027 \) Copy content Toggle raw display
$97$ \( T^{4} + 9 T^{3} + \cdots + 487 \) Copy content Toggle raw display
show more
show less