Defining parameters
Level: | \( N \) | \(=\) | \( 950 = 2 \cdot 5^{2} \cdot 19 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 950.e (of order \(3\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 19 \) |
Character field: | \(\Q(\zeta_{3})\) | ||
Newform subspaces: | \( 15 \) | ||
Sturm bound: | \(300\) | ||
Trace bound: | \(11\) | ||
Distinguishing \(T_p\): | \(3\), \(7\), \(11\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(950, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 324 | 66 | 258 |
Cusp forms | 276 | 66 | 210 |
Eisenstein series | 48 | 0 | 48 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(950, [\chi])\) into newform subspaces
Decomposition of \(S_{2}^{\mathrm{old}}(950, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(950, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(38, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(95, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(190, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(475, [\chi])\)\(^{\oplus 2}\)