Properties

Label 95.3.n
Level $95$
Weight $3$
Character orbit 95.n
Rep. character $\chi_{95}(21,\cdot)$
Character field $\Q(\zeta_{18})$
Dimension $84$
Newform subspaces $1$
Sturm bound $30$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 95 = 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 95.n (of order \(18\) and degree \(6\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 19 \)
Character field: \(\Q(\zeta_{18})\)
Newform subspaces: \( 1 \)
Sturm bound: \(30\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{3}(95, [\chi])\).

Total New Old
Modular forms 132 84 48
Cusp forms 108 84 24
Eisenstein series 24 0 24

Trace form

\( 84 q - 12 q^{3} - 6 q^{4} + 42 q^{6} + 36 q^{9} - 30 q^{10} - 144 q^{12} - 54 q^{13} - 48 q^{14} - 6 q^{16} - 60 q^{17} + 12 q^{19} - 90 q^{21} + 216 q^{22} + 60 q^{23} - 24 q^{26} + 36 q^{27} + 384 q^{28}+ \cdots - 78 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{3}^{\mathrm{new}}(95, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
95.3.n.a 95.n 19.f $84$ $2.589$ None 95.3.n.a \(0\) \(-12\) \(0\) \(0\) $\mathrm{SU}(2)[C_{18}]$

Decomposition of \(S_{3}^{\mathrm{old}}(95, [\chi])\) into lower level spaces

\( S_{3}^{\mathrm{old}}(95, [\chi]) \simeq \) \(S_{3}^{\mathrm{new}}(19, [\chi])\)\(^{\oplus 2}\)