Properties

Label 95.2.p
Level $95$
Weight $2$
Character orbit 95.p
Rep. character $\chi_{95}(4,\cdot)$
Character field $\Q(\zeta_{18})$
Dimension $48$
Newform subspaces $1$
Sturm bound $20$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 95 = 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 95.p (of order \(18\) and degree \(6\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 95 \)
Character field: \(\Q(\zeta_{18})\)
Newform subspaces: \( 1 \)
Sturm bound: \(20\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(95, [\chi])\).

Total New Old
Modular forms 72 72 0
Cusp forms 48 48 0
Eisenstein series 24 24 0

Trace form

\( 48 q - 18 q^{4} - 6 q^{5} - 6 q^{6} - 12 q^{9} - 15 q^{10} - 12 q^{11} + 6 q^{14} + 3 q^{15} - 42 q^{16} + 12 q^{19} + 42 q^{20} - 54 q^{21} + 24 q^{24} + 12 q^{25} + 12 q^{26} + 18 q^{30} - 42 q^{31} - 36 q^{34}+ \cdots - 36 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(95, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
95.2.p.a 95.p 95.p $48$ $0.759$ None 95.2.p.a \(0\) \(0\) \(-6\) \(0\) $\mathrm{SU}(2)[C_{18}]$