Properties

Label 945.2.k.c.856.1
Level $945$
Weight $2$
Character 945.856
Analytic conductor $7.546$
Analytic rank $0$
Dimension $36$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [945,2,Mod(361,945)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(945, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([2, 0, 4])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("945.361"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 945 = 3^{3} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 945.k (of order \(3\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [36] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.54586299101\)
Analytic rank: \(0\)
Dimension: \(36\)
Relative dimension: \(18\) over \(\Q(\zeta_{3})\)
Twist minimal: no (minimal twist has level 315)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 856.1
Character \(\chi\) \(=\) 945.856
Dual form 945.2.k.c.361.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.34882 - 2.33623i) q^{2} +(-2.63865 + 4.57028i) q^{4} -1.00000 q^{5} +(-2.16746 + 1.51728i) q^{7} +8.84100 q^{8} +(1.34882 + 2.33623i) q^{10} +3.92366 q^{11} +(0.993996 + 1.72165i) q^{13} +(6.46823 + 3.01714i) q^{14} +(-6.64765 - 11.5141i) q^{16} +(-2.23716 - 3.87488i) q^{17} +(0.0804749 - 0.139387i) q^{19} +(2.63865 - 4.57028i) q^{20} +(-5.29232 - 9.16657i) q^{22} -6.22371 q^{23} +1.00000 q^{25} +(2.68145 - 4.64441i) q^{26} +(-1.21521 - 13.9094i) q^{28} +(0.384982 - 0.666809i) q^{29} +(4.01507 - 6.95430i) q^{31} +(-9.09202 + 15.7478i) q^{32} +(-6.03507 + 10.4530i) q^{34} +(2.16746 - 1.51728i) q^{35} +(-3.50272 + 6.06689i) q^{37} -0.434186 q^{38} -8.84100 q^{40} +(-1.42108 - 2.46138i) q^{41} +(-1.53771 + 2.66340i) q^{43} +(-10.3532 + 17.9322i) q^{44} +(8.39468 + 14.5400i) q^{46} +(-2.83830 - 4.91609i) q^{47} +(2.39574 - 6.57727i) q^{49} +(-1.34882 - 2.33623i) q^{50} -10.4912 q^{52} +(-5.50814 - 9.54037i) q^{53} -3.92366 q^{55} +(-19.1625 + 13.4143i) q^{56} -2.07709 q^{58} +(-1.68281 + 2.91472i) q^{59} +(3.44816 + 5.97239i) q^{61} -21.6625 q^{62} +22.4635 q^{64} +(-0.993996 - 1.72165i) q^{65} +(-5.04488 + 8.73799i) q^{67} +23.6123 q^{68} +(-6.46823 - 3.01714i) q^{70} -6.78242 q^{71} +(-7.20971 - 12.4876i) q^{73} +18.8982 q^{74} +(0.424690 + 0.735585i) q^{76} +(-8.50436 + 5.95327i) q^{77} +(-5.65914 - 9.80192i) q^{79} +(6.64765 + 11.5141i) q^{80} +(-3.83357 + 6.63994i) q^{82} +(2.40898 - 4.17248i) q^{83} +(2.23716 + 3.87488i) q^{85} +8.29642 q^{86} +34.6891 q^{88} +(-5.16019 + 8.93770i) q^{89} +(-4.76667 - 2.22344i) q^{91} +(16.4222 - 28.4441i) q^{92} +(-7.65674 + 13.2619i) q^{94} +(-0.0804749 + 0.139387i) q^{95} +(6.51896 - 11.2912i) q^{97} +(-18.5974 + 3.27456i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 36 q - 22 q^{4} - 36 q^{5} - q^{7} + 2 q^{11} + 2 q^{13} + 6 q^{14} - 30 q^{16} + 5 q^{17} - 2 q^{19} + 22 q^{20} - 19 q^{22} - 6 q^{23} + 36 q^{25} + 4 q^{26} + 5 q^{28} + 8 q^{29} - 10 q^{32} + 10 q^{34}+ \cdots - 16 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/945\mathbb{Z}\right)^\times\).

\(n\) \(136\) \(596\) \(757\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{2}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.34882 2.33623i −0.953762 1.65196i −0.737175 0.675702i \(-0.763841\pi\)
−0.216587 0.976263i \(-0.569493\pi\)
\(3\) 0 0
\(4\) −2.63865 + 4.57028i −1.31933 + 2.28514i
\(5\) −1.00000 −0.447214
\(6\) 0 0
\(7\) −2.16746 + 1.51728i −0.819222 + 0.573477i
\(8\) 8.84100 3.12577
\(9\) 0 0
\(10\) 1.34882 + 2.33623i 0.426536 + 0.738781i
\(11\) 3.92366 1.18303 0.591514 0.806295i \(-0.298531\pi\)
0.591514 + 0.806295i \(0.298531\pi\)
\(12\) 0 0
\(13\) 0.993996 + 1.72165i 0.275685 + 0.477500i 0.970308 0.241874i \(-0.0777620\pi\)
−0.694623 + 0.719374i \(0.744429\pi\)
\(14\) 6.46823 + 3.01714i 1.72871 + 0.806365i
\(15\) 0 0
\(16\) −6.64765 11.5141i −1.66191 2.87852i
\(17\) −2.23716 3.87488i −0.542591 0.939795i −0.998754 0.0498992i \(-0.984110\pi\)
0.456163 0.889896i \(-0.349223\pi\)
\(18\) 0 0
\(19\) 0.0804749 0.139387i 0.0184622 0.0319775i −0.856647 0.515904i \(-0.827456\pi\)
0.875109 + 0.483926i \(0.160790\pi\)
\(20\) 2.63865 4.57028i 0.590020 1.02195i
\(21\) 0 0
\(22\) −5.29232 9.16657i −1.12833 1.95432i
\(23\) −6.22371 −1.29773 −0.648866 0.760903i \(-0.724757\pi\)
−0.648866 + 0.760903i \(0.724757\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) 2.68145 4.64441i 0.525876 0.910843i
\(27\) 0 0
\(28\) −1.21521 13.9094i −0.229654 2.62864i
\(29\) 0.384982 0.666809i 0.0714894 0.123823i −0.828065 0.560632i \(-0.810558\pi\)
0.899554 + 0.436809i \(0.143891\pi\)
\(30\) 0 0
\(31\) 4.01507 6.95430i 0.721127 1.24903i −0.239421 0.970916i \(-0.576958\pi\)
0.960548 0.278113i \(-0.0897091\pi\)
\(32\) −9.09202 + 15.7478i −1.60726 + 2.78385i
\(33\) 0 0
\(34\) −6.03507 + 10.4530i −1.03501 + 1.79268i
\(35\) 2.16746 1.51728i 0.366367 0.256467i
\(36\) 0 0
\(37\) −3.50272 + 6.06689i −0.575843 + 0.997390i 0.420106 + 0.907475i \(0.361993\pi\)
−0.995949 + 0.0899150i \(0.971340\pi\)
\(38\) −0.434186 −0.0704342
\(39\) 0 0
\(40\) −8.84100 −1.39789
\(41\) −1.42108 2.46138i −0.221935 0.384404i 0.733460 0.679732i \(-0.237904\pi\)
−0.955396 + 0.295329i \(0.904571\pi\)
\(42\) 0 0
\(43\) −1.53771 + 2.66340i −0.234499 + 0.406165i −0.959127 0.282976i \(-0.908678\pi\)
0.724628 + 0.689140i \(0.242012\pi\)
\(44\) −10.3532 + 17.9322i −1.56080 + 2.70338i
\(45\) 0 0
\(46\) 8.39468 + 14.5400i 1.23773 + 2.14381i
\(47\) −2.83830 4.91609i −0.414009 0.717085i 0.581315 0.813679i \(-0.302538\pi\)
−0.995324 + 0.0965940i \(0.969205\pi\)
\(48\) 0 0
\(49\) 2.39574 6.57727i 0.342249 0.939609i
\(50\) −1.34882 2.33623i −0.190752 0.330393i
\(51\) 0 0
\(52\) −10.4912 −1.45487
\(53\) −5.50814 9.54037i −0.756601 1.31047i −0.944575 0.328297i \(-0.893525\pi\)
0.187974 0.982174i \(-0.439808\pi\)
\(54\) 0 0
\(55\) −3.92366 −0.529066
\(56\) −19.1625 + 13.4143i −2.56070 + 1.79255i
\(57\) 0 0
\(58\) −2.07709 −0.272736
\(59\) −1.68281 + 2.91472i −0.219084 + 0.379464i −0.954528 0.298121i \(-0.903640\pi\)
0.735444 + 0.677585i \(0.236973\pi\)
\(60\) 0 0
\(61\) 3.44816 + 5.97239i 0.441492 + 0.764686i 0.997800 0.0662898i \(-0.0211162\pi\)
−0.556309 + 0.830976i \(0.687783\pi\)
\(62\) −21.6625 −2.75114
\(63\) 0 0
\(64\) 22.4635 2.80794
\(65\) −0.993996 1.72165i −0.123290 0.213545i
\(66\) 0 0
\(67\) −5.04488 + 8.73799i −0.616330 + 1.06752i 0.373819 + 0.927502i \(0.378048\pi\)
−0.990150 + 0.140014i \(0.955285\pi\)
\(68\) 23.6123 2.86342
\(69\) 0 0
\(70\) −6.46823 3.01714i −0.773101 0.360617i
\(71\) −6.78242 −0.804925 −0.402463 0.915436i \(-0.631846\pi\)
−0.402463 + 0.915436i \(0.631846\pi\)
\(72\) 0 0
\(73\) −7.20971 12.4876i −0.843833 1.46156i −0.886631 0.462477i \(-0.846961\pi\)
0.0427985 0.999084i \(-0.486373\pi\)
\(74\) 18.8982 2.19687
\(75\) 0 0
\(76\) 0.424690 + 0.735585i 0.0487153 + 0.0843774i
\(77\) −8.50436 + 5.95327i −0.969162 + 0.678439i
\(78\) 0 0
\(79\) −5.65914 9.80192i −0.636703 1.10280i −0.986152 0.165846i \(-0.946964\pi\)
0.349449 0.936955i \(-0.386369\pi\)
\(80\) 6.64765 + 11.5141i 0.743230 + 1.28731i
\(81\) 0 0
\(82\) −3.83357 + 6.63994i −0.423347 + 0.733259i
\(83\) 2.40898 4.17248i 0.264420 0.457989i −0.702991 0.711198i \(-0.748153\pi\)
0.967412 + 0.253209i \(0.0814861\pi\)
\(84\) 0 0
\(85\) 2.23716 + 3.87488i 0.242654 + 0.420289i
\(86\) 8.29642 0.894626
\(87\) 0 0
\(88\) 34.6891 3.69787
\(89\) −5.16019 + 8.93770i −0.546979 + 0.947395i 0.451501 + 0.892271i \(0.350889\pi\)
−0.998480 + 0.0551241i \(0.982445\pi\)
\(90\) 0 0
\(91\) −4.76667 2.22344i −0.499682 0.233080i
\(92\) 16.4222 28.4441i 1.71213 2.96550i
\(93\) 0 0
\(94\) −7.65674 + 13.2619i −0.789733 + 1.36786i
\(95\) −0.0804749 + 0.139387i −0.00825655 + 0.0143008i
\(96\) 0 0
\(97\) 6.51896 11.2912i 0.661900 1.14644i −0.318216 0.948018i \(-0.603084\pi\)
0.980116 0.198426i \(-0.0635828\pi\)
\(98\) −18.5974 + 3.27456i −1.87863 + 0.330781i
\(99\) 0 0
\(100\) −2.63865 + 4.57028i −0.263865 + 0.457028i
\(101\) 1.92974 0.192016 0.0960079 0.995381i \(-0.469393\pi\)
0.0960079 + 0.995381i \(0.469393\pi\)
\(102\) 0 0
\(103\) 1.54457 0.152191 0.0760957 0.997101i \(-0.475755\pi\)
0.0760957 + 0.997101i \(0.475755\pi\)
\(104\) 8.78792 + 15.2211i 0.861727 + 1.49255i
\(105\) 0 0
\(106\) −14.8590 + 25.7366i −1.44323 + 2.49976i
\(107\) 0.350836 0.607665i 0.0339166 0.0587452i −0.848569 0.529085i \(-0.822535\pi\)
0.882485 + 0.470340i \(0.155869\pi\)
\(108\) 0 0
\(109\) −6.34253 10.9856i −0.607504 1.05223i −0.991650 0.128956i \(-0.958837\pi\)
0.384146 0.923272i \(-0.374496\pi\)
\(110\) 5.29232 + 9.16657i 0.504603 + 0.873998i
\(111\) 0 0
\(112\) 31.8785 + 14.8699i 3.01224 + 1.40508i
\(113\) −3.27999 5.68110i −0.308555 0.534433i 0.669491 0.742820i \(-0.266512\pi\)
−0.978047 + 0.208387i \(0.933179\pi\)
\(114\) 0 0
\(115\) 6.22371 0.580364
\(116\) 2.03167 + 3.51895i 0.188636 + 0.326726i
\(117\) 0 0
\(118\) 9.07927 0.835815
\(119\) 10.7282 + 5.00424i 0.983453 + 0.458738i
\(120\) 0 0
\(121\) 4.39509 0.399553
\(122\) 9.30192 16.1114i 0.842156 1.45866i
\(123\) 0 0
\(124\) 21.1887 + 36.6999i 1.90280 + 3.29575i
\(125\) −1.00000 −0.0894427
\(126\) 0 0
\(127\) 6.28822 0.557989 0.278994 0.960293i \(-0.409999\pi\)
0.278994 + 0.960293i \(0.409999\pi\)
\(128\) −12.1153 20.9843i −1.07085 1.85477i
\(129\) 0 0
\(130\) −2.68145 + 4.64441i −0.235179 + 0.407342i
\(131\) 9.66738 0.844643 0.422321 0.906446i \(-0.361215\pi\)
0.422321 + 0.906446i \(0.361215\pi\)
\(132\) 0 0
\(133\) 0.0370622 + 0.424217i 0.00321370 + 0.0367843i
\(134\) 27.2186 2.35133
\(135\) 0 0
\(136\) −19.7787 34.2578i −1.69601 2.93758i
\(137\) 3.29165 0.281224 0.140612 0.990065i \(-0.455093\pi\)
0.140612 + 0.990065i \(0.455093\pi\)
\(138\) 0 0
\(139\) 5.50800 + 9.54013i 0.467182 + 0.809183i 0.999297 0.0374890i \(-0.0119359\pi\)
−0.532115 + 0.846672i \(0.678603\pi\)
\(140\) 1.21521 + 13.9094i 0.102704 + 1.17556i
\(141\) 0 0
\(142\) 9.14829 + 15.8453i 0.767708 + 1.32971i
\(143\) 3.90010 + 6.75517i 0.326143 + 0.564896i
\(144\) 0 0
\(145\) −0.384982 + 0.666809i −0.0319710 + 0.0553755i
\(146\) −19.4493 + 33.6871i −1.60963 + 2.78796i
\(147\) 0 0
\(148\) −18.4849 32.0168i −1.51945 2.63176i
\(149\) −16.2101 −1.32798 −0.663992 0.747740i \(-0.731139\pi\)
−0.663992 + 0.747740i \(0.731139\pi\)
\(150\) 0 0
\(151\) −19.1653 −1.55965 −0.779827 0.625996i \(-0.784693\pi\)
−0.779827 + 0.625996i \(0.784693\pi\)
\(152\) 0.711479 1.23232i 0.0577086 0.0999542i
\(153\) 0 0
\(154\) 25.3791 + 11.8382i 2.04511 + 0.953952i
\(155\) −4.01507 + 6.95430i −0.322498 + 0.558583i
\(156\) 0 0
\(157\) 3.60535 6.24465i 0.287738 0.498377i −0.685531 0.728043i \(-0.740430\pi\)
0.973270 + 0.229666i \(0.0737633\pi\)
\(158\) −15.2664 + 26.4421i −1.21453 + 2.10362i
\(159\) 0 0
\(160\) 9.09202 15.7478i 0.718787 1.24498i
\(161\) 13.4896 9.44309i 1.06313 0.744219i
\(162\) 0 0
\(163\) 4.40268 7.62567i 0.344845 0.597288i −0.640481 0.767974i \(-0.721265\pi\)
0.985326 + 0.170686i \(0.0545983\pi\)
\(164\) 14.9989 1.17122
\(165\) 0 0
\(166\) −12.9972 −1.00878
\(167\) −0.470408 0.814771i −0.0364013 0.0630488i 0.847251 0.531193i \(-0.178256\pi\)
−0.883652 + 0.468144i \(0.844923\pi\)
\(168\) 0 0
\(169\) 4.52394 7.83570i 0.347996 0.602746i
\(170\) 6.03507 10.4530i 0.462869 0.801712i
\(171\) 0 0
\(172\) −8.11498 14.0556i −0.618762 1.07173i
\(173\) −4.76243 8.24877i −0.362081 0.627142i 0.626222 0.779645i \(-0.284600\pi\)
−0.988303 + 0.152502i \(0.951267\pi\)
\(174\) 0 0
\(175\) −2.16746 + 1.51728i −0.163844 + 0.114695i
\(176\) −26.0831 45.1773i −1.96609 3.40537i
\(177\) 0 0
\(178\) 27.8407 2.08675
\(179\) −11.9714 20.7351i −0.894784 1.54981i −0.834071 0.551657i \(-0.813996\pi\)
−0.0607130 0.998155i \(-0.519337\pi\)
\(180\) 0 0
\(181\) −2.51843 −0.187193 −0.0935967 0.995610i \(-0.529836\pi\)
−0.0935967 + 0.995610i \(0.529836\pi\)
\(182\) 1.23492 + 14.1351i 0.0915387 + 1.04776i
\(183\) 0 0
\(184\) −55.0238 −4.05641
\(185\) 3.50272 6.06689i 0.257525 0.446046i
\(186\) 0 0
\(187\) −8.77785 15.2037i −0.641900 1.11180i
\(188\) 29.9572 2.18485
\(189\) 0 0
\(190\) 0.434186 0.0314991
\(191\) −4.70573 8.15057i −0.340495 0.589755i 0.644030 0.765000i \(-0.277261\pi\)
−0.984525 + 0.175246i \(0.943928\pi\)
\(192\) 0 0
\(193\) −3.77743 + 6.54271i −0.271906 + 0.470954i −0.969350 0.245685i \(-0.920987\pi\)
0.697444 + 0.716639i \(0.254321\pi\)
\(194\) −35.1717 −2.52518
\(195\) 0 0
\(196\) 23.7384 + 28.3043i 1.69560 + 2.02174i
\(197\) −21.1556 −1.50727 −0.753637 0.657291i \(-0.771702\pi\)
−0.753637 + 0.657291i \(0.771702\pi\)
\(198\) 0 0
\(199\) −0.0783738 0.135747i −0.00555577 0.00962288i 0.863234 0.504804i \(-0.168435\pi\)
−0.868790 + 0.495181i \(0.835102\pi\)
\(200\) 8.84100 0.625153
\(201\) 0 0
\(202\) −2.60287 4.50831i −0.183138 0.317203i
\(203\) 0.177301 + 2.02940i 0.0124441 + 0.142436i
\(204\) 0 0
\(205\) 1.42108 + 2.46138i 0.0992526 + 0.171910i
\(206\) −2.08336 3.60848i −0.145154 0.251415i
\(207\) 0 0
\(208\) 13.2155 22.8899i 0.916329 1.58713i
\(209\) 0.315756 0.546905i 0.0218413 0.0378302i
\(210\) 0 0
\(211\) 2.20424 + 3.81786i 0.151746 + 0.262832i 0.931870 0.362794i \(-0.118177\pi\)
−0.780123 + 0.625626i \(0.784844\pi\)
\(212\) 58.1362 3.99281
\(213\) 0 0
\(214\) −1.89286 −0.129393
\(215\) 1.53771 2.66340i 0.104871 0.181642i
\(216\) 0 0
\(217\) 1.84911 + 21.1651i 0.125526 + 1.43678i
\(218\) −17.1099 + 29.6352i −1.15883 + 2.00715i
\(219\) 0 0
\(220\) 10.3532 17.9322i 0.698010 1.20899i
\(221\) 4.44746 7.70322i 0.299168 0.518175i
\(222\) 0 0
\(223\) −2.93191 + 5.07822i −0.196335 + 0.340063i −0.947337 0.320237i \(-0.896237\pi\)
0.751002 + 0.660300i \(0.229571\pi\)
\(224\) −4.18727 47.9279i −0.279774 3.20232i
\(225\) 0 0
\(226\) −8.84825 + 15.3256i −0.588577 + 1.01944i
\(227\) 11.6794 0.775190 0.387595 0.921830i \(-0.373306\pi\)
0.387595 + 0.921830i \(0.373306\pi\)
\(228\) 0 0
\(229\) −17.0028 −1.12358 −0.561790 0.827280i \(-0.689887\pi\)
−0.561790 + 0.827280i \(0.689887\pi\)
\(230\) −8.39468 14.5400i −0.553529 0.958740i
\(231\) 0 0
\(232\) 3.40363 5.89526i 0.223459 0.387043i
\(233\) −0.351193 + 0.608285i −0.0230074 + 0.0398501i −0.877300 0.479943i \(-0.840657\pi\)
0.854292 + 0.519793i \(0.173991\pi\)
\(234\) 0 0
\(235\) 2.83830 + 4.91609i 0.185150 + 0.320690i
\(236\) −8.88071 15.3818i −0.578085 1.00127i
\(237\) 0 0
\(238\) −2.77941 31.8134i −0.180162 2.06216i
\(239\) 1.37629 + 2.38380i 0.0890246 + 0.154195i 0.907099 0.420917i \(-0.138292\pi\)
−0.818074 + 0.575112i \(0.804958\pi\)
\(240\) 0 0
\(241\) 15.2330 0.981243 0.490622 0.871373i \(-0.336770\pi\)
0.490622 + 0.871373i \(0.336770\pi\)
\(242\) −5.92820 10.2679i −0.381079 0.660048i
\(243\) 0 0
\(244\) −36.3940 −2.32988
\(245\) −2.39574 + 6.57727i −0.153058 + 0.420206i
\(246\) 0 0
\(247\) 0.319967 0.0203590
\(248\) 35.4972 61.4830i 2.25408 3.90417i
\(249\) 0 0
\(250\) 1.34882 + 2.33623i 0.0853071 + 0.147756i
\(251\) 15.2671 0.963651 0.481825 0.876267i \(-0.339974\pi\)
0.481825 + 0.876267i \(0.339974\pi\)
\(252\) 0 0
\(253\) −24.4197 −1.53525
\(254\) −8.48169 14.6907i −0.532189 0.921778i
\(255\) 0 0
\(256\) −10.2193 + 17.7003i −0.638704 + 1.10627i
\(257\) −28.5573 −1.78136 −0.890678 0.454635i \(-0.849770\pi\)
−0.890678 + 0.454635i \(0.849770\pi\)
\(258\) 0 0
\(259\) −1.61315 18.4643i −0.100237 1.14732i
\(260\) 10.4912 0.650639
\(261\) 0 0
\(262\) −13.0396 22.5852i −0.805589 1.39532i
\(263\) 13.7018 0.844892 0.422446 0.906388i \(-0.361172\pi\)
0.422446 + 0.906388i \(0.361172\pi\)
\(264\) 0 0
\(265\) 5.50814 + 9.54037i 0.338362 + 0.586060i
\(266\) 0.941079 0.658780i 0.0577013 0.0403924i
\(267\) 0 0
\(268\) −26.6234 46.1130i −1.62628 2.81680i
\(269\) 9.33523 + 16.1691i 0.569179 + 0.985847i 0.996647 + 0.0818164i \(0.0260721\pi\)
−0.427469 + 0.904030i \(0.640595\pi\)
\(270\) 0 0
\(271\) 12.3195 21.3380i 0.748356 1.29619i −0.200254 0.979744i \(-0.564177\pi\)
0.948610 0.316447i \(-0.102490\pi\)
\(272\) −29.7437 + 51.5177i −1.80348 + 3.12372i
\(273\) 0 0
\(274\) −4.43985 7.69004i −0.268221 0.464573i
\(275\) 3.92366 0.236605
\(276\) 0 0
\(277\) −14.7577 −0.886703 −0.443352 0.896348i \(-0.646211\pi\)
−0.443352 + 0.896348i \(0.646211\pi\)
\(278\) 14.8586 25.7359i 0.891161 1.54354i
\(279\) 0 0
\(280\) 19.1625 13.4143i 1.14518 0.801655i
\(281\) 6.43418 11.1443i 0.383831 0.664815i −0.607775 0.794109i \(-0.707938\pi\)
0.991606 + 0.129294i \(0.0412712\pi\)
\(282\) 0 0
\(283\) −6.31761 + 10.9424i −0.375543 + 0.650459i −0.990408 0.138173i \(-0.955877\pi\)
0.614865 + 0.788632i \(0.289210\pi\)
\(284\) 17.8964 30.9975i 1.06196 1.83937i
\(285\) 0 0
\(286\) 10.5211 18.2231i 0.622125 1.07755i
\(287\) 6.81473 + 3.17877i 0.402261 + 0.187637i
\(288\) 0 0
\(289\) −1.50977 + 2.61501i −0.0888103 + 0.153824i
\(290\) 2.07709 0.121971
\(291\) 0 0
\(292\) 76.0956 4.45316
\(293\) 5.42891 + 9.40315i 0.317160 + 0.549338i 0.979894 0.199517i \(-0.0639374\pi\)
−0.662734 + 0.748855i \(0.730604\pi\)
\(294\) 0 0
\(295\) 1.68281 2.91472i 0.0979772 0.169701i
\(296\) −30.9676 + 53.6374i −1.79995 + 3.11761i
\(297\) 0 0
\(298\) 21.8646 + 37.8705i 1.26658 + 2.19378i
\(299\) −6.18634 10.7151i −0.357765 0.619667i
\(300\) 0 0
\(301\) −0.708184 8.10594i −0.0408191 0.467219i
\(302\) 25.8507 + 44.7747i 1.48754 + 2.57649i
\(303\) 0 0
\(304\) −2.13988 −0.122730
\(305\) −3.44816 5.97239i −0.197441 0.341978i
\(306\) 0 0
\(307\) 11.8223 0.674737 0.337368 0.941373i \(-0.390463\pi\)
0.337368 + 0.941373i \(0.390463\pi\)
\(308\) −4.76808 54.5759i −0.271687 3.10975i
\(309\) 0 0
\(310\) 21.6625 1.23035
\(311\) −9.73145 + 16.8554i −0.551820 + 0.955780i 0.446324 + 0.894872i \(0.352733\pi\)
−0.998143 + 0.0609083i \(0.980600\pi\)
\(312\) 0 0
\(313\) −7.09490 12.2887i −0.401027 0.694600i 0.592823 0.805333i \(-0.298013\pi\)
−0.993850 + 0.110733i \(0.964680\pi\)
\(314\) −19.4519 −1.09774
\(315\) 0 0
\(316\) 59.7300 3.36007
\(317\) −3.87392 6.70982i −0.217581 0.376861i 0.736487 0.676452i \(-0.236483\pi\)
−0.954068 + 0.299591i \(0.903150\pi\)
\(318\) 0 0
\(319\) 1.51054 2.61633i 0.0845739 0.146486i
\(320\) −22.4635 −1.25575
\(321\) 0 0
\(322\) −40.2563 18.7778i −2.24340 1.04645i
\(323\) −0.720141 −0.0400697
\(324\) 0 0
\(325\) 0.993996 + 1.72165i 0.0551370 + 0.0955000i
\(326\) −23.7538 −1.31560
\(327\) 0 0
\(328\) −12.5638 21.7611i −0.693719 1.20156i
\(329\) 13.6110 + 6.34891i 0.750397 + 0.350027i
\(330\) 0 0
\(331\) 13.9027 + 24.0803i 0.764164 + 1.32357i 0.940687 + 0.339275i \(0.110182\pi\)
−0.176523 + 0.984296i \(0.556485\pi\)
\(332\) 12.7129 + 22.0194i 0.697712 + 1.20847i
\(333\) 0 0
\(334\) −1.26899 + 2.19796i −0.0694363 + 0.120267i
\(335\) 5.04488 8.73799i 0.275631 0.477407i
\(336\) 0 0
\(337\) 1.53501 + 2.65871i 0.0836172 + 0.144829i 0.904801 0.425834i \(-0.140019\pi\)
−0.821184 + 0.570664i \(0.806686\pi\)
\(338\) −24.4080 −1.32762
\(339\) 0 0
\(340\) −23.6123 −1.28056
\(341\) 15.7538 27.2863i 0.853113 1.47764i
\(342\) 0 0
\(343\) 4.78686 + 17.8909i 0.258466 + 0.966020i
\(344\) −13.5949 + 23.5471i −0.732990 + 1.26958i
\(345\) 0 0
\(346\) −12.8474 + 22.2523i −0.690678 + 1.19629i
\(347\) −13.3050 + 23.0449i −0.714247 + 1.23711i 0.249002 + 0.968503i \(0.419898\pi\)
−0.963249 + 0.268610i \(0.913436\pi\)
\(348\) 0 0
\(349\) −9.78331 + 16.9452i −0.523688 + 0.907055i 0.475931 + 0.879482i \(0.342111\pi\)
−0.999620 + 0.0275725i \(0.991222\pi\)
\(350\) 6.46823 + 3.01714i 0.345741 + 0.161273i
\(351\) 0 0
\(352\) −35.6740 + 61.7891i −1.90143 + 3.29337i
\(353\) 7.48500 0.398386 0.199193 0.979960i \(-0.436168\pi\)
0.199193 + 0.979960i \(0.436168\pi\)
\(354\) 0 0
\(355\) 6.78242 0.359974
\(356\) −27.2319 47.1670i −1.44329 2.49984i
\(357\) 0 0
\(358\) −32.2946 + 55.9359i −1.70682 + 2.95630i
\(359\) 1.89571 3.28347i 0.100052 0.173295i −0.811654 0.584139i \(-0.801432\pi\)
0.911706 + 0.410844i \(0.134766\pi\)
\(360\) 0 0
\(361\) 9.48705 + 16.4320i 0.499318 + 0.864845i
\(362\) 3.39692 + 5.88363i 0.178538 + 0.309237i
\(363\) 0 0
\(364\) 22.7393 15.9181i 1.19186 0.834335i
\(365\) 7.20971 + 12.4876i 0.377373 + 0.653630i
\(366\) 0 0
\(367\) 32.4384 1.69327 0.846634 0.532175i \(-0.178625\pi\)
0.846634 + 0.532175i \(0.178625\pi\)
\(368\) 41.3730 + 71.6602i 2.15672 + 3.73555i
\(369\) 0 0
\(370\) −18.8982 −0.982471
\(371\) 26.4140 + 12.3210i 1.37135 + 0.639673i
\(372\) 0 0
\(373\) 8.11950 0.420412 0.210206 0.977657i \(-0.432587\pi\)
0.210206 + 0.977657i \(0.432587\pi\)
\(374\) −23.6795 + 41.0142i −1.22444 + 2.12079i
\(375\) 0 0
\(376\) −25.0935 43.4631i −1.29410 2.24144i
\(377\) 1.53068 0.0788342
\(378\) 0 0
\(379\) 22.3585 1.14848 0.574240 0.818687i \(-0.305298\pi\)
0.574240 + 0.818687i \(0.305298\pi\)
\(380\) −0.424690 0.735585i −0.0217862 0.0377347i
\(381\) 0 0
\(382\) −12.6944 + 21.9874i −0.649503 + 1.12497i
\(383\) −1.93040 −0.0986387 −0.0493194 0.998783i \(-0.515705\pi\)
−0.0493194 + 0.998783i \(0.515705\pi\)
\(384\) 0 0
\(385\) 8.50436 5.95327i 0.433422 0.303407i
\(386\) 20.3804 1.03733
\(387\) 0 0
\(388\) 34.4025 + 59.5869i 1.74652 + 3.02506i
\(389\) −30.9899 −1.57125 −0.785625 0.618704i \(-0.787658\pi\)
−0.785625 + 0.618704i \(0.787658\pi\)
\(390\) 0 0
\(391\) 13.9234 + 24.1161i 0.704138 + 1.21960i
\(392\) 21.1808 58.1496i 1.06979 2.93700i
\(393\) 0 0
\(394\) 28.5352 + 49.4244i 1.43758 + 2.48996i
\(395\) 5.65914 + 9.80192i 0.284742 + 0.493188i
\(396\) 0 0
\(397\) 8.46510 14.6620i 0.424851 0.735864i −0.571555 0.820563i \(-0.693660\pi\)
0.996407 + 0.0846997i \(0.0269931\pi\)
\(398\) −0.211425 + 0.366199i −0.0105978 + 0.0183559i
\(399\) 0 0
\(400\) −6.64765 11.5141i −0.332383 0.575704i
\(401\) 16.8343 0.840665 0.420332 0.907370i \(-0.361913\pi\)
0.420332 + 0.907370i \(0.361913\pi\)
\(402\) 0 0
\(403\) 15.9638 0.795216
\(404\) −5.09190 + 8.81943i −0.253331 + 0.438783i
\(405\) 0 0
\(406\) 4.50201 3.15153i 0.223431 0.156408i
\(407\) −13.7435 + 23.8044i −0.681238 + 1.17994i
\(408\) 0 0
\(409\) 5.95910 10.3215i 0.294659 0.510364i −0.680247 0.732983i \(-0.738127\pi\)
0.974905 + 0.222619i \(0.0714607\pi\)
\(410\) 3.83357 6.63994i 0.189327 0.327924i
\(411\) 0 0
\(412\) −4.07559 + 7.05913i −0.200790 + 0.347778i
\(413\) −0.775008 8.87082i −0.0381357 0.436505i
\(414\) 0 0
\(415\) −2.40898 + 4.17248i −0.118252 + 0.204819i
\(416\) −36.1497 −1.77239
\(417\) 0 0
\(418\) −1.70360 −0.0833256
\(419\) −5.83768 10.1112i −0.285189 0.493962i 0.687466 0.726217i \(-0.258723\pi\)
−0.972655 + 0.232254i \(0.925390\pi\)
\(420\) 0 0
\(421\) −2.08963 + 3.61935i −0.101843 + 0.176396i −0.912444 0.409202i \(-0.865807\pi\)
0.810601 + 0.585599i \(0.199140\pi\)
\(422\) 5.94627 10.2992i 0.289460 0.501359i
\(423\) 0 0
\(424\) −48.6974 84.3464i −2.36496 4.09623i
\(425\) −2.23716 3.87488i −0.108518 0.187959i
\(426\) 0 0
\(427\) −16.5355 7.71308i −0.800209 0.373262i
\(428\) 1.85147 + 3.20683i 0.0894940 + 0.155008i
\(429\) 0 0
\(430\) −8.29642 −0.400089
\(431\) 4.48625 + 7.77041i 0.216095 + 0.374288i 0.953611 0.301042i \(-0.0973346\pi\)
−0.737516 + 0.675330i \(0.764001\pi\)
\(432\) 0 0
\(433\) 9.18475 0.441391 0.220696 0.975343i \(-0.429167\pi\)
0.220696 + 0.975343i \(0.429167\pi\)
\(434\) 46.9525 32.8680i 2.25379 1.57771i
\(435\) 0 0
\(436\) 66.9429 3.20598
\(437\) −0.500852 + 0.867501i −0.0239590 + 0.0414982i
\(438\) 0 0
\(439\) −16.0846 27.8593i −0.767674 1.32965i −0.938821 0.344405i \(-0.888081\pi\)
0.171148 0.985245i \(-0.445253\pi\)
\(440\) −34.6891 −1.65374
\(441\) 0 0
\(442\) −23.9953 −1.14134
\(443\) 11.5386 + 19.9854i 0.548214 + 0.949534i 0.998397 + 0.0565981i \(0.0180254\pi\)
−0.450183 + 0.892936i \(0.648641\pi\)
\(444\) 0 0
\(445\) 5.16019 8.93770i 0.244616 0.423688i
\(446\) 15.8185 0.749029
\(447\) 0 0
\(448\) −48.6887 + 34.0834i −2.30033 + 1.61029i
\(449\) −25.7100 −1.21333 −0.606664 0.794958i \(-0.707493\pi\)
−0.606664 + 0.794958i \(0.707493\pi\)
\(450\) 0 0
\(451\) −5.57583 9.65763i −0.262556 0.454760i
\(452\) 34.6190 1.62834
\(453\) 0 0
\(454\) −15.7535 27.2858i −0.739347 1.28059i
\(455\) 4.76667 + 2.22344i 0.223465 + 0.104236i
\(456\) 0 0
\(457\) −8.76619 15.1835i −0.410065 0.710253i 0.584832 0.811155i \(-0.301161\pi\)
−0.994896 + 0.100902i \(0.967827\pi\)
\(458\) 22.9338 + 39.7226i 1.07163 + 1.85611i
\(459\) 0 0
\(460\) −16.4222 + 28.4441i −0.765688 + 1.32621i
\(461\) −13.7588 + 23.8310i −0.640811 + 1.10992i 0.344440 + 0.938808i \(0.388069\pi\)
−0.985252 + 0.171110i \(0.945265\pi\)
\(462\) 0 0
\(463\) 9.93332 + 17.2050i 0.461641 + 0.799585i 0.999043 0.0437411i \(-0.0139277\pi\)
−0.537402 + 0.843326i \(0.680594\pi\)
\(464\) −10.2369 −0.475237
\(465\) 0 0
\(466\) 1.89479 0.0877746
\(467\) 12.7739 22.1250i 0.591106 1.02382i −0.402978 0.915210i \(-0.632025\pi\)
0.994084 0.108615i \(-0.0346417\pi\)
\(468\) 0 0
\(469\) −2.32339 26.5937i −0.107284 1.22798i
\(470\) 7.65674 13.2619i 0.353179 0.611724i
\(471\) 0 0
\(472\) −14.8778 + 25.7690i −0.684804 + 1.18612i
\(473\) −6.03346 + 10.4503i −0.277419 + 0.480504i
\(474\) 0 0
\(475\) 0.0804749 0.139387i 0.00369244 0.00639550i
\(476\) −51.1787 + 35.8265i −2.34577 + 1.64210i
\(477\) 0 0
\(478\) 3.71274 6.43065i 0.169817 0.294131i
\(479\) 0.190231 0.00869185 0.00434593 0.999991i \(-0.498617\pi\)
0.00434593 + 0.999991i \(0.498617\pi\)
\(480\) 0 0
\(481\) −13.9268 −0.635005
\(482\) −20.5466 35.5878i −0.935873 1.62098i
\(483\) 0 0
\(484\) −11.5971 + 20.0868i −0.527141 + 0.913035i
\(485\) −6.51896 + 11.2912i −0.296011 + 0.512705i
\(486\) 0 0
\(487\) 2.65585 + 4.60007i 0.120348 + 0.208449i 0.919905 0.392141i \(-0.128266\pi\)
−0.799557 + 0.600590i \(0.794932\pi\)
\(488\) 30.4852 + 52.8019i 1.38000 + 2.39023i
\(489\) 0 0
\(490\) 18.5974 3.27456i 0.840147 0.147930i
\(491\) 10.1203 + 17.5288i 0.456721 + 0.791065i 0.998785 0.0492725i \(-0.0156903\pi\)
−0.542064 + 0.840337i \(0.682357\pi\)
\(492\) 0 0
\(493\) −3.44507 −0.155158
\(494\) −0.431579 0.747517i −0.0194177 0.0336324i
\(495\) 0 0
\(496\) −106.763 −4.79381
\(497\) 14.7006 10.2908i 0.659412 0.461606i
\(498\) 0 0
\(499\) −2.42997 −0.108780 −0.0543902 0.998520i \(-0.517321\pi\)
−0.0543902 + 0.998520i \(0.517321\pi\)
\(500\) 2.63865 4.57028i 0.118004 0.204389i
\(501\) 0 0
\(502\) −20.5926 35.6675i −0.919094 1.59192i
\(503\) −11.8338 −0.527644 −0.263822 0.964571i \(-0.584983\pi\)
−0.263822 + 0.964571i \(0.584983\pi\)
\(504\) 0 0
\(505\) −1.92974 −0.0858721
\(506\) 32.9379 + 57.0500i 1.46427 + 2.53618i
\(507\) 0 0
\(508\) −16.5924 + 28.7389i −0.736169 + 1.27508i
\(509\) 16.1165 0.714351 0.357176 0.934037i \(-0.383740\pi\)
0.357176 + 0.934037i \(0.383740\pi\)
\(510\) 0 0
\(511\) 34.5739 + 16.1272i 1.52946 + 0.713424i
\(512\) 6.67474 0.294985
\(513\) 0 0
\(514\) 38.5188 + 66.7164i 1.69899 + 2.94274i
\(515\) −1.54457 −0.0680620
\(516\) 0 0
\(517\) −11.1365 19.2890i −0.489784 0.848331i
\(518\) −40.9610 + 28.6738i −1.79972 + 1.25985i
\(519\) 0 0
\(520\) −8.78792 15.2211i −0.385376 0.667491i
\(521\) −14.6673 25.4044i −0.642584 1.11299i −0.984854 0.173386i \(-0.944529\pi\)
0.342270 0.939602i \(-0.388804\pi\)
\(522\) 0 0
\(523\) −2.13586 + 3.69941i −0.0933945 + 0.161764i −0.908937 0.416933i \(-0.863105\pi\)
0.815543 + 0.578697i \(0.196438\pi\)
\(524\) −25.5088 + 44.1826i −1.11436 + 1.93013i
\(525\) 0 0
\(526\) −18.4814 32.0107i −0.805826 1.39573i
\(527\) −35.9294 −1.56511
\(528\) 0 0
\(529\) 15.7345 0.684110
\(530\) 14.8590 25.7366i 0.645434 1.11792i
\(531\) 0 0
\(532\) −2.03658 0.949977i −0.0882971 0.0411867i
\(533\) 2.82510 4.89321i 0.122369 0.211948i
\(534\) 0 0
\(535\) −0.350836 + 0.607665i −0.0151680 + 0.0262717i
\(536\) −44.6018 + 77.2526i −1.92650 + 3.33680i
\(537\) 0 0
\(538\) 25.1831 43.6185i 1.08572 1.88053i
\(539\) 9.40007 25.8069i 0.404890 1.11158i
\(540\) 0 0
\(541\) −13.6460 + 23.6356i −0.586688 + 1.01617i 0.407975 + 0.912993i \(0.366235\pi\)
−0.994663 + 0.103180i \(0.967098\pi\)
\(542\) −66.4673 −2.85502
\(543\) 0 0
\(544\) 81.3613 3.48833
\(545\) 6.34253 + 10.9856i 0.271684 + 0.470571i
\(546\) 0 0
\(547\) 4.33062 7.50086i 0.185164 0.320713i −0.758468 0.651711i \(-0.774052\pi\)
0.943632 + 0.330997i \(0.107385\pi\)
\(548\) −8.68550 + 15.0437i −0.371026 + 0.642636i
\(549\) 0 0
\(550\) −5.29232 9.16657i −0.225665 0.390864i
\(551\) −0.0619628 0.107323i −0.00263971 0.00457210i
\(552\) 0 0
\(553\) 27.1382 + 12.6588i 1.15403 + 0.538305i
\(554\) 19.9055 + 34.4774i 0.845704 + 1.46480i
\(555\) 0 0
\(556\) −58.1347 −2.46546
\(557\) 21.6429 + 37.4865i 0.917037 + 1.58835i 0.803891 + 0.594777i \(0.202759\pi\)
0.113146 + 0.993578i \(0.463907\pi\)
\(558\) 0 0
\(559\) −6.11393 −0.258592
\(560\) −31.8785 14.8699i −1.34711 0.628369i
\(561\) 0 0
\(562\) −34.7143 −1.46433
\(563\) 16.9386 29.3385i 0.713876 1.23647i −0.249515 0.968371i \(-0.580271\pi\)
0.963391 0.268099i \(-0.0863954\pi\)
\(564\) 0 0
\(565\) 3.27999 + 5.68110i 0.137990 + 0.239006i
\(566\) 34.0853 1.43271
\(567\) 0 0
\(568\) −59.9634 −2.51601
\(569\) 16.3249 + 28.2755i 0.684374 + 1.18537i 0.973633 + 0.228120i \(0.0732579\pi\)
−0.289259 + 0.957251i \(0.593409\pi\)
\(570\) 0 0
\(571\) −0.585599 + 1.01429i −0.0245065 + 0.0424466i −0.878019 0.478627i \(-0.841135\pi\)
0.853512 + 0.521073i \(0.174468\pi\)
\(572\) −41.1640 −1.72115
\(573\) 0 0
\(574\) −1.76553 20.2084i −0.0736917 0.843482i
\(575\) −6.22371 −0.259546
\(576\) 0 0
\(577\) 0.527159 + 0.913066i 0.0219459 + 0.0380114i 0.876790 0.480874i \(-0.159681\pi\)
−0.854844 + 0.518885i \(0.826347\pi\)
\(578\) 8.14568 0.338816
\(579\) 0 0
\(580\) −2.03167 3.51895i −0.0843604 0.146117i
\(581\) 1.10944 + 12.6988i 0.0460274 + 0.526834i
\(582\) 0 0
\(583\) −21.6120 37.4331i −0.895079 1.55032i
\(584\) −63.7411 110.403i −2.63762 4.56850i
\(585\) 0 0
\(586\) 14.6453 25.3664i 0.604991 1.04788i
\(587\) 11.9179 20.6425i 0.491906 0.852006i −0.508051 0.861327i \(-0.669634\pi\)
0.999957 + 0.00932152i \(0.00296717\pi\)
\(588\) 0 0
\(589\) −0.646224 1.11929i −0.0266272 0.0461197i
\(590\) −9.07927 −0.373788
\(591\) 0 0
\(592\) 93.1394 3.82801
\(593\) −3.25508 + 5.63796i −0.133670 + 0.231523i −0.925089 0.379751i \(-0.876010\pi\)
0.791419 + 0.611275i \(0.209343\pi\)
\(594\) 0 0
\(595\) −10.7282 5.00424i −0.439814 0.205154i
\(596\) 42.7728 74.0847i 1.75204 3.03463i
\(597\) 0 0
\(598\) −16.6886 + 28.9054i −0.682446 + 1.18203i
\(599\) 8.49145 14.7076i 0.346951 0.600937i −0.638755 0.769410i \(-0.720550\pi\)
0.985706 + 0.168473i \(0.0538836\pi\)
\(600\) 0 0
\(601\) −13.0322 + 22.5724i −0.531594 + 0.920748i 0.467726 + 0.883874i \(0.345073\pi\)
−0.999320 + 0.0368744i \(0.988260\pi\)
\(602\) −17.9821 + 12.5880i −0.732897 + 0.513047i
\(603\) 0 0
\(604\) 50.5706 87.5909i 2.05769 3.56402i
\(605\) −4.39509 −0.178686
\(606\) 0 0
\(607\) −19.5786 −0.794670 −0.397335 0.917674i \(-0.630065\pi\)
−0.397335 + 0.917674i \(0.630065\pi\)
\(608\) 1.46336 + 2.53461i 0.0593471 + 0.102792i
\(609\) 0 0
\(610\) −9.30192 + 16.1114i −0.376624 + 0.652331i
\(611\) 5.64252 9.77314i 0.228272 0.395379i
\(612\) 0 0
\(613\) −19.4227 33.6411i −0.784475 1.35875i −0.929312 0.369295i \(-0.879599\pi\)
0.144837 0.989456i \(-0.453734\pi\)
\(614\) −15.9463 27.6197i −0.643539 1.11464i
\(615\) 0 0
\(616\) −75.1871 + 52.6329i −3.02937 + 2.12064i
\(617\) −16.5821 28.7211i −0.667571 1.15627i −0.978581 0.205861i \(-0.934001\pi\)
0.311010 0.950407i \(-0.399333\pi\)
\(618\) 0 0
\(619\) 29.8135 1.19830 0.599152 0.800635i \(-0.295504\pi\)
0.599152 + 0.800635i \(0.295504\pi\)
\(620\) −21.1887 36.6999i −0.850960 1.47391i
\(621\) 0 0
\(622\) 52.5040 2.10522
\(623\) −2.37649 27.2015i −0.0952120 1.08981i
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) −19.1395 + 33.1507i −0.764970 + 1.32497i
\(627\) 0 0
\(628\) 19.0265 + 32.9549i 0.759241 + 1.31504i
\(629\) 31.3446 1.24979
\(630\) 0 0
\(631\) 8.52204 0.339257 0.169629 0.985508i \(-0.445743\pi\)
0.169629 + 0.985508i \(0.445743\pi\)
\(632\) −50.0325 86.6588i −1.99018 3.44710i
\(633\) 0 0
\(634\) −10.4505 + 18.1007i −0.415041 + 0.718872i
\(635\) −6.28822 −0.249540
\(636\) 0 0
\(637\) 13.7051 2.41314i 0.543016 0.0956122i
\(638\) −8.14980 −0.322654
\(639\) 0 0
\(640\) 12.1153 + 20.9843i 0.478899 + 0.829477i
\(641\) −1.54670 −0.0610909 −0.0305455 0.999533i \(-0.509724\pi\)
−0.0305455 + 0.999533i \(0.509724\pi\)
\(642\) 0 0
\(643\) −3.48336 6.03336i −0.137370 0.237933i 0.789130 0.614226i \(-0.210532\pi\)
−0.926500 + 0.376294i \(0.877198\pi\)
\(644\) 7.56313 + 86.5683i 0.298029 + 3.41127i
\(645\) 0 0
\(646\) 0.971343 + 1.68242i 0.0382170 + 0.0661938i
\(647\) 23.3064 + 40.3678i 0.916268 + 1.58702i 0.805034 + 0.593229i \(0.202147\pi\)
0.111234 + 0.993794i \(0.464520\pi\)
\(648\) 0 0
\(649\) −6.60278 + 11.4364i −0.259182 + 0.448916i
\(650\) 2.68145 4.64441i 0.105175 0.182169i
\(651\) 0 0
\(652\) 23.2343 + 40.2429i 0.909924 + 1.57603i
\(653\) 22.2475 0.870614 0.435307 0.900282i \(-0.356640\pi\)
0.435307 + 0.900282i \(0.356640\pi\)
\(654\) 0 0
\(655\) −9.66738 −0.377736
\(656\) −18.8937 + 32.7249i −0.737675 + 1.27769i
\(657\) 0 0
\(658\) −3.52626 40.3619i −0.137468 1.57347i
\(659\) −4.70312 + 8.14605i −0.183208 + 0.317325i −0.942971 0.332875i \(-0.891981\pi\)
0.759763 + 0.650200i \(0.225315\pi\)
\(660\) 0 0
\(661\) 8.49414 14.7123i 0.330384 0.572241i −0.652203 0.758044i \(-0.726155\pi\)
0.982587 + 0.185803i \(0.0594886\pi\)
\(662\) 37.5047 64.9601i 1.45766 2.52474i
\(663\) 0 0
\(664\) 21.2978 36.8889i 0.826516 1.43157i
\(665\) −0.0370622 0.424217i −0.00143721 0.0164504i
\(666\) 0 0
\(667\) −2.39602 + 4.15002i −0.0927741 + 0.160690i
\(668\) 4.96497 0.192100
\(669\) 0 0
\(670\) −27.2186 −1.05155
\(671\) 13.5294 + 23.4336i 0.522297 + 0.904644i
\(672\) 0 0
\(673\) 9.96125 17.2534i 0.383978 0.665069i −0.607649 0.794206i \(-0.707887\pi\)
0.991627 + 0.129136i \(0.0412205\pi\)
\(674\) 4.14091 7.17227i 0.159502 0.276265i
\(675\) 0 0
\(676\) 23.8742 + 41.3514i 0.918239 + 1.59044i
\(677\) 16.7021 + 28.9289i 0.641914 + 1.11183i 0.985005 + 0.172526i \(0.0551928\pi\)
−0.343091 + 0.939302i \(0.611474\pi\)
\(678\) 0 0
\(679\) 3.00226 + 34.3642i 0.115216 + 1.31878i
\(680\) 19.7787 + 34.2578i 0.758480 + 1.31373i
\(681\) 0 0
\(682\) −84.9961 −3.25467
\(683\) 7.65577 + 13.2602i 0.292940 + 0.507387i 0.974504 0.224372i \(-0.0720331\pi\)
−0.681564 + 0.731759i \(0.738700\pi\)
\(684\) 0 0
\(685\) −3.29165 −0.125767
\(686\) 35.3407 35.3150i 1.34932 1.34833i
\(687\) 0 0
\(688\) 40.8888 1.55887
\(689\) 10.9501 18.9662i 0.417167 0.722554i
\(690\) 0 0
\(691\) 4.77665 + 8.27339i 0.181712 + 0.314735i 0.942464 0.334309i \(-0.108503\pi\)
−0.760752 + 0.649043i \(0.775169\pi\)
\(692\) 50.2656 1.91081
\(693\) 0 0
\(694\) 71.7842 2.72489
\(695\) −5.50800 9.54013i −0.208930 0.361878i
\(696\) 0 0
\(697\) −6.35837 + 11.0130i −0.240840 + 0.417148i
\(698\) 52.7838 1.99790
\(699\) 0 0
\(700\) −1.21521 13.9094i −0.0459307 0.525728i
\(701\) −39.6830 −1.49881 −0.749403 0.662114i \(-0.769660\pi\)
−0.749403 + 0.662114i \(0.769660\pi\)
\(702\) 0 0
\(703\) 0.563762 + 0.976464i 0.0212627 + 0.0368280i
\(704\) 88.1392 3.32187
\(705\) 0 0
\(706\) −10.0959 17.4867i −0.379966 0.658120i
\(707\) −4.18262 + 2.92794i −0.157304 + 0.110117i
\(708\) 0 0
\(709\) 8.24428 + 14.2795i 0.309620 + 0.536278i 0.978279 0.207291i \(-0.0664647\pi\)
−0.668659 + 0.743569i \(0.733131\pi\)
\(710\) −9.14829 15.8453i −0.343329 0.594664i
\(711\) 0 0
\(712\) −45.6212 + 79.0183i −1.70973 + 2.96134i
\(713\) −24.9886 + 43.2815i −0.935831 + 1.62091i
\(714\) 0 0
\(715\) −3.90010 6.75517i −0.145855 0.252629i
\(716\) 126.353 4.72205
\(717\) 0 0
\(718\) −10.2279 −0.381703
\(719\) −13.3872 + 23.1873i −0.499259 + 0.864742i −1.00000 0.000855526i \(-0.999728\pi\)
0.500741 + 0.865597i \(0.333061\pi\)
\(720\) 0 0
\(721\) −3.34780 + 2.34355i −0.124678 + 0.0872782i
\(722\) 25.5927 44.3279i 0.952462 1.64971i
\(723\) 0 0
\(724\) 6.64526 11.5099i 0.246969 0.427763i
\(725\) 0.384982 0.666809i 0.0142979 0.0247647i
\(726\) 0 0
\(727\) −21.6715 + 37.5362i −0.803752 + 1.39214i 0.113378 + 0.993552i \(0.463833\pi\)
−0.917130 + 0.398587i \(0.869501\pi\)
\(728\) −42.1421 19.6574i −1.56189 0.728553i
\(729\) 0 0
\(730\) 19.4493 33.6871i 0.719849 1.24682i
\(731\) 13.7605 0.508949
\(732\) 0 0
\(733\) −18.3671 −0.678406 −0.339203 0.940713i \(-0.610157\pi\)
−0.339203 + 0.940713i \(0.610157\pi\)
\(734\) −43.7536 75.7835i −1.61498 2.79722i
\(735\) 0 0
\(736\) 56.5861 98.0100i 2.08579 3.61270i
\(737\) −19.7944 + 34.2849i −0.729135 + 1.26290i
\(738\) 0 0
\(739\) −15.5586 26.9484i −0.572334 0.991312i −0.996326 0.0856457i \(-0.972705\pi\)
0.423992 0.905666i \(-0.360629\pi\)
\(740\) 18.4849 + 32.0168i 0.679519 + 1.17696i
\(741\) 0 0
\(742\) −6.84322 78.3281i −0.251222 2.87552i
\(743\) 2.83876 + 4.91687i 0.104144 + 0.180382i 0.913388 0.407090i \(-0.133456\pi\)
−0.809244 + 0.587472i \(0.800123\pi\)
\(744\) 0 0
\(745\) 16.2101 0.593892
\(746\) −10.9518 18.9690i −0.400973 0.694506i
\(747\) 0 0
\(748\) 92.6467 3.38750
\(749\) 0.161575 + 1.84940i 0.00590382 + 0.0675757i
\(750\) 0 0
\(751\) 19.6756 0.717972 0.358986 0.933343i \(-0.383123\pi\)
0.358986 + 0.933343i \(0.383123\pi\)
\(752\) −37.7361 + 65.3609i −1.37609 + 2.38347i
\(753\) 0 0
\(754\) −2.06462 3.57603i −0.0751891 0.130231i
\(755\) 19.1653 0.697498
\(756\) 0 0
\(757\) −15.9595 −0.580056 −0.290028 0.957018i \(-0.593665\pi\)
−0.290028 + 0.957018i \(0.593665\pi\)
\(758\) −30.1577 52.2346i −1.09538 1.89725i
\(759\) 0 0
\(760\) −0.711479 + 1.23232i −0.0258081 + 0.0447009i
\(761\) 11.0211 0.399515 0.199757 0.979845i \(-0.435985\pi\)
0.199757 + 0.979845i \(0.435985\pi\)
\(762\) 0 0
\(763\) 30.4153 + 14.1874i 1.10111 + 0.513619i
\(764\) 49.6672 1.79689
\(765\) 0 0
\(766\) 2.60377 + 4.50985i 0.0940779 + 0.162948i
\(767\) −6.69084 −0.241592
\(768\) 0 0
\(769\) −18.7097 32.4061i −0.674688 1.16859i −0.976560 0.215245i \(-0.930945\pi\)
0.301873 0.953348i \(-0.402388\pi\)
\(770\) −25.3791 11.8382i −0.914600 0.426620i
\(771\) 0 0
\(772\) −19.9347 34.5278i −0.717464 1.24268i
\(773\) −3.56136 6.16845i −0.128093 0.221864i 0.794845 0.606813i \(-0.207552\pi\)
−0.922938 + 0.384949i \(0.874219\pi\)
\(774\) 0 0
\(775\) 4.01507 6.95430i 0.144225 0.249806i
\(776\) 57.6341 99.8252i 2.06894 3.58352i
\(777\) 0 0
\(778\) 41.7999 + 72.3995i 1.49860 + 2.59565i
\(779\) −0.457445 −0.0163897
\(780\) 0 0
\(781\) −26.6119 −0.952249
\(782\) 37.5605 65.0567i 1.34316 2.32642i
\(783\) 0 0
\(784\) −91.6572 + 16.1386i −3.27347 + 0.576380i
\(785\) −3.60535 + 6.24465i −0.128680 + 0.222881i
\(786\) 0 0
\(787\) 4.57800 7.92933i 0.163188 0.282650i −0.772822 0.634622i \(-0.781156\pi\)
0.936010 + 0.351973i \(0.114489\pi\)
\(788\) 55.8222 96.6870i 1.98859 3.44433i
\(789\) 0 0
\(790\) 15.2664 26.4421i 0.543153 0.940768i
\(791\) 15.7290 + 7.33690i 0.559260 + 0.260870i
\(792\) 0 0
\(793\) −6.85491 + 11.8731i −0.243425 + 0.421625i
\(794\) −45.6717 −1.62083
\(795\) 0 0
\(796\) 0.827204 0.0293195
\(797\) 21.7602 + 37.6897i 0.770785 + 1.33504i 0.937133 + 0.348972i \(0.113469\pi\)
−0.166348 + 0.986067i \(0.553198\pi\)
\(798\) 0 0
\(799\) −12.6995 + 21.9961i −0.449275 + 0.778168i
\(800\) −9.09202 + 15.7478i −0.321452 + 0.556770i
\(801\) 0 0
\(802\) −22.7065 39.3288i −0.801795 1.38875i
\(803\) −28.2884 48.9970i −0.998277 1.72907i
\(804\) 0 0
\(805\) −13.4896 + 9.44309i −0.475447 + 0.332825i
\(806\) −21.5324 37.2952i −0.758447 1.31367i
\(807\) 0 0
\(808\) 17.0608 0.600197
\(809\) −17.9148 31.0293i −0.629850 1.09093i −0.987581 0.157108i \(-0.949783\pi\)
0.357731 0.933825i \(-0.383550\pi\)
\(810\) 0 0
\(811\) 21.5972 0.758379 0.379190 0.925319i \(-0.376203\pi\)
0.379190 + 0.925319i \(0.376203\pi\)
\(812\) −9.74278 4.54457i −0.341904 0.159483i
\(813\) 0 0
\(814\) 74.1501 2.59896
\(815\) −4.40268 + 7.62567i −0.154219 + 0.267115i
\(816\) 0 0
\(817\) 0.247495 + 0.428674i 0.00865875 + 0.0149974i
\(818\) −32.1511 −1.12414
\(819\) 0 0
\(820\) −14.9989 −0.523786
\(821\) −12.7736 22.1246i −0.445803 0.772154i 0.552304 0.833643i \(-0.313749\pi\)
−0.998108 + 0.0614883i \(0.980415\pi\)
\(822\) 0 0
\(823\) −20.4120 + 35.3546i −0.711518 + 1.23239i 0.252769 + 0.967527i \(0.418659\pi\)
−0.964287 + 0.264859i \(0.914675\pi\)
\(824\) 13.6556 0.475715
\(825\) 0 0
\(826\) −19.6789 + 13.7758i −0.684718 + 0.479320i
\(827\) 2.26313 0.0786968 0.0393484 0.999226i \(-0.487472\pi\)
0.0393484 + 0.999226i \(0.487472\pi\)
\(828\) 0 0
\(829\) −0.766415 1.32747i −0.0266187 0.0461049i 0.852409 0.522875i \(-0.175141\pi\)
−0.879028 + 0.476770i \(0.841807\pi\)
\(830\) 12.9972 0.451138
\(831\) 0 0
\(832\) 22.3287 + 38.6744i 0.774107 + 1.34079i
\(833\) −30.8457 + 5.43120i −1.06874 + 0.188180i
\(834\) 0 0
\(835\) 0.470408 + 0.814771i 0.0162791 + 0.0281963i
\(836\) 1.66634 + 2.88618i 0.0576315 + 0.0998208i
\(837\) 0 0
\(838\) −15.7480 + 27.2763i −0.544006 + 0.942245i
\(839\) 10.1354 17.5550i 0.349911 0.606064i −0.636322 0.771424i \(-0.719545\pi\)
0.986233 + 0.165359i \(0.0528783\pi\)
\(840\) 0 0
\(841\) 14.2036 + 24.6013i 0.489779 + 0.848321i
\(842\) 11.2742 0.388534
\(843\) 0 0
\(844\) −23.2649 −0.800811
\(845\) −4.52394 + 7.83570i −0.155628 + 0.269556i
\(846\) 0 0
\(847\) −9.52616 + 6.66856i −0.327323 + 0.229135i
\(848\) −73.2324 + 126.842i −2.51481 + 4.35578i
\(849\) 0 0
\(850\) −6.03507 + 10.4530i −0.207001 + 0.358537i
\(851\) 21.7999 37.7585i 0.747291 1.29435i
\(852\) 0 0
\(853\) 21.0061 36.3836i 0.719234 1.24575i −0.242070 0.970259i \(-0.577826\pi\)
0.961304 0.275490i \(-0.0888402\pi\)
\(854\) 4.28394 + 49.0343i 0.146593 + 1.67792i
\(855\) 0 0
\(856\) 3.10174 5.37237i 0.106015 0.183624i
\(857\) −51.5059 −1.75941 −0.879703 0.475523i \(-0.842259\pi\)
−0.879703 + 0.475523i \(0.842259\pi\)
\(858\) 0 0
\(859\) −20.9322 −0.714198 −0.357099 0.934067i \(-0.616234\pi\)
−0.357099 + 0.934067i \(0.616234\pi\)
\(860\) 8.11498 + 14.0556i 0.276719 + 0.479291i
\(861\) 0 0
\(862\) 12.1023 20.9618i 0.412207 0.713963i
\(863\) 2.54430 4.40686i 0.0866090 0.150011i −0.819467 0.573127i \(-0.805730\pi\)
0.906076 + 0.423116i \(0.139064\pi\)
\(864\) 0 0
\(865\) 4.76243 + 8.24877i 0.161927 + 0.280467i
\(866\) −12.3886 21.4577i −0.420982 0.729162i
\(867\) 0 0
\(868\) −101.610 47.3964i −3.44886 1.60874i
\(869\) −22.2045 38.4594i −0.753237 1.30464i
\(870\) 0 0
\(871\) −20.0584 −0.679652
\(872\) −56.0743 97.1236i −1.89892 3.28902i
\(873\) 0 0
\(874\) 2.70224 0.0914048
\(875\) 2.16746 1.51728i 0.0732734 0.0512933i
\(876\) 0 0
\(877\) 5.75163 0.194219 0.0971094 0.995274i \(-0.469040\pi\)
0.0971094 + 0.995274i \(0.469040\pi\)
\(878\) −43.3904 + 75.1545i −1.46436 + 2.53634i
\(879\) 0 0
\(880\) 26.0831 + 45.1773i 0.879262 + 1.52293i
\(881\) −38.0306 −1.28129 −0.640643 0.767839i \(-0.721332\pi\)
−0.640643 + 0.767839i \(0.721332\pi\)
\(882\) 0 0
\(883\) −43.8909 −1.47705 −0.738523 0.674228i \(-0.764476\pi\)
−0.738523 + 0.674228i \(0.764476\pi\)
\(884\) 23.4706 + 40.6522i 0.789401 + 1.36728i
\(885\) 0 0
\(886\) 31.1270 53.9135i 1.04573 1.81126i
\(887\) −3.66354 −0.123010 −0.0615049 0.998107i \(-0.519590\pi\)
−0.0615049 + 0.998107i \(0.519590\pi\)
\(888\) 0 0
\(889\) −13.6294 + 9.54096i −0.457117 + 0.319994i
\(890\) −27.8407 −0.933223
\(891\) 0 0
\(892\) −15.4726 26.7993i −0.518061 0.897307i
\(893\) −0.913649 −0.0305741
\(894\) 0 0
\(895\) 11.9714 + 20.7351i 0.400160 + 0.693097i
\(896\) 58.0984 + 27.1003i 1.94093 + 0.905358i
\(897\) 0 0
\(898\) 34.6782 + 60.0644i 1.15723 + 2.00438i
\(899\) −3.09146 5.35457i −0.103106 0.178585i
\(900\) 0 0
\(901\) −24.6452 + 42.6867i −0.821050 + 1.42210i
\(902\) −15.0416 + 26.0529i −0.500832 + 0.867466i
\(903\) 0 0
\(904\) −28.9984 50.2267i −0.964472 1.67051i
\(905\) 2.51843 0.0837154
\(906\) 0 0
\(907\) 34.9389 1.16013 0.580063 0.814571i \(-0.303028\pi\)
0.580063 + 0.814571i \(0.303028\pi\)
\(908\) −30.8179 + 53.3782i −1.02273 + 1.77142i
\(909\) 0 0
\(910\) −1.23492 14.1351i −0.0409373 0.468573i
\(911\) 5.69235 9.85944i 0.188596 0.326658i −0.756186 0.654356i \(-0.772940\pi\)
0.944782 + 0.327699i \(0.106273\pi\)
\(912\) 0 0
\(913\) 9.45202 16.3714i 0.312816 0.541814i
\(914\) −23.6481 + 40.9597i −0.782209 + 1.35483i
\(915\) 0 0
\(916\) 44.8646 77.7077i 1.48237 2.56754i
\(917\) −20.9536 + 14.6681i −0.691950 + 0.484383i
\(918\) 0 0
\(919\) −17.6042 + 30.4913i −0.580708 + 1.00582i 0.414688 + 0.909964i \(0.363891\pi\)
−0.995396 + 0.0958515i \(0.969443\pi\)
\(920\) 55.0238 1.81408
\(921\) 0 0
\(922\) 74.2328 2.44473
\(923\) −6.74170 11.6770i −0.221906 0.384352i
\(924\) 0 0
\(925\) −3.50272 + 6.06689i −0.115169 + 0.199478i
\(926\) 26.7966 46.4131i 0.880591 1.52523i
\(927\) 0 0
\(928\) 7.00054 + 12.1253i 0.229804 + 0.398032i
\(929\) 20.6589 + 35.7823i 0.677797 + 1.17398i 0.975643 + 0.219365i \(0.0703986\pi\)
−0.297846 + 0.954614i \(0.596268\pi\)
\(930\) 0 0
\(931\) −0.723986 0.863239i −0.0237277 0.0282915i
\(932\) −1.85335 3.21010i −0.0607086 0.105150i
\(933\) 0 0
\(934\) −68.9190 −2.25510
\(935\) 8.77785 + 15.2037i 0.287066 + 0.497214i
\(936\) 0 0
\(937\) −37.0566 −1.21059 −0.605293 0.796003i \(-0.706944\pi\)
−0.605293 + 0.796003i \(0.706944\pi\)
\(938\) −58.9952 + 41.2982i −1.92626 + 1.34843i
\(939\) 0 0
\(940\) −29.9572 −0.977095
\(941\) 15.0482 26.0642i 0.490556 0.849668i −0.509385 0.860539i \(-0.670127\pi\)
0.999941 + 0.0108709i \(0.00346037\pi\)
\(942\) 0 0
\(943\) 8.84439 + 15.3189i 0.288013 + 0.498853i
\(944\) 44.7470 1.45639
\(945\) 0 0
\(946\) 32.5523 1.05837
\(947\) 29.2879 + 50.7282i 0.951730 + 1.64844i 0.741681 + 0.670753i \(0.234029\pi\)
0.210049 + 0.977691i \(0.432638\pi\)
\(948\) 0 0
\(949\) 14.3328 24.8252i 0.465264 0.805860i
\(950\) −0.434186 −0.0140868
\(951\) 0 0
\(952\) 94.8481 + 44.2425i 3.07405 + 1.43391i
\(953\) −33.7935 −1.09468 −0.547340 0.836910i \(-0.684359\pi\)
−0.547340 + 0.836910i \(0.684359\pi\)
\(954\) 0 0
\(955\) 4.70573 + 8.15057i 0.152274 + 0.263746i
\(956\) −14.5262 −0.469810
\(957\) 0 0
\(958\) −0.256587 0.444422i −0.00828996 0.0143586i
\(959\) −7.13450 + 4.99434i −0.230385 + 0.161276i
\(960\) 0 0
\(961\) −16.7415 28.9972i −0.540050 0.935393i
\(962\) 18.7847 + 32.5361i 0.605644 + 1.04901i
\(963\) 0 0
\(964\) −40.1945 + 69.6190i −1.29458 + 2.24228i
\(965\) 3.77743 6.54271i 0.121600 0.210617i
\(966\) 0 0
\(967\) 3.11625 + 5.39750i 0.100212 + 0.173572i 0.911772 0.410697i \(-0.134715\pi\)
−0.811560 + 0.584269i \(0.801381\pi\)
\(968\) 38.8570 1.24891
\(969\) 0 0
\(970\) 35.1717 1.12929
\(971\) −14.8809 + 25.7744i −0.477550 + 0.827141i −0.999669 0.0257316i \(-0.991808\pi\)
0.522119 + 0.852873i \(0.325142\pi\)
\(972\) 0 0
\(973\) −26.4134 12.3207i −0.846773 0.394982i
\(974\) 7.16455 12.4094i 0.229567 0.397621i
\(975\) 0 0
\(976\) 45.8443 79.4047i 1.46744 2.54168i
\(977\) −18.6758 + 32.3475i −0.597492 + 1.03489i 0.395697 + 0.918381i \(0.370503\pi\)
−0.993190 + 0.116506i \(0.962830\pi\)
\(978\) 0 0
\(979\) −20.2468 + 35.0685i −0.647091 + 1.12079i
\(980\) −23.7384 28.3043i −0.758295 0.904148i
\(981\) 0 0
\(982\) 27.3009 47.2866i 0.871208 1.50898i
\(983\) 17.8494 0.569307 0.284653 0.958631i \(-0.408122\pi\)
0.284653 + 0.958631i \(0.408122\pi\)
\(984\) 0 0
\(985\) 21.1556 0.674074
\(986\) 4.64679 + 8.04848i 0.147984 + 0.256316i
\(987\) 0 0
\(988\) −0.844281 + 1.46234i −0.0268602 + 0.0465231i
\(989\) 9.57028 16.5762i 0.304317 0.527093i
\(990\) 0 0
\(991\) −13.4638 23.3199i −0.427691 0.740782i 0.568977 0.822354i \(-0.307339\pi\)
−0.996667 + 0.0815716i \(0.974006\pi\)
\(992\) 73.0102 + 126.457i 2.31808 + 4.01502i
\(993\) 0 0
\(994\) −43.8702 20.4635i −1.39148 0.649064i
\(995\) 0.0783738 + 0.135747i 0.00248462 + 0.00430348i
\(996\) 0 0
\(997\) −38.7198 −1.22627 −0.613135 0.789978i \(-0.710092\pi\)
−0.613135 + 0.789978i \(0.710092\pi\)
\(998\) 3.27760 + 5.67697i 0.103751 + 0.179701i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 945.2.k.c.856.1 36
3.2 odd 2 315.2.k.c.16.18 36
7.4 even 3 945.2.l.c.46.18 36
9.4 even 3 945.2.l.c.226.18 36
9.5 odd 6 315.2.l.c.121.1 yes 36
21.11 odd 6 315.2.l.c.151.1 yes 36
63.4 even 3 inner 945.2.k.c.361.1 36
63.32 odd 6 315.2.k.c.256.18 yes 36
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
315.2.k.c.16.18 36 3.2 odd 2
315.2.k.c.256.18 yes 36 63.32 odd 6
315.2.l.c.121.1 yes 36 9.5 odd 6
315.2.l.c.151.1 yes 36 21.11 odd 6
945.2.k.c.361.1 36 63.4 even 3 inner
945.2.k.c.856.1 36 1.1 even 1 trivial
945.2.l.c.46.18 36 7.4 even 3
945.2.l.c.226.18 36 9.4 even 3