Properties

Label 945.2.k.b.361.10
Level $945$
Weight $2$
Character 945.361
Analytic conductor $7.546$
Analytic rank $0$
Dimension $24$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [945,2,Mod(361,945)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(945, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([2, 0, 4])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("945.361"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 945 = 3^{3} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 945.k (of order \(3\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [24] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.54586299101\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(12\) over \(\Q(\zeta_{3})\)
Twist minimal: no (minimal twist has level 315)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 361.10
Character \(\chi\) \(=\) 945.361
Dual form 945.2.k.b.856.10

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.08176 - 1.87367i) q^{2} +(-1.34041 - 2.32167i) q^{4} +1.00000 q^{5} +(2.14928 - 1.54292i) q^{7} -1.47299 q^{8} +(1.08176 - 1.87367i) q^{10} -2.52066 q^{11} +(-0.542414 + 0.939489i) q^{13} +(-0.565917 - 5.69610i) q^{14} +(1.08741 - 1.88345i) q^{16} +(2.85163 - 4.93917i) q^{17} +(1.75436 + 3.03863i) q^{19} +(-1.34041 - 2.32167i) q^{20} +(-2.72676 + 4.72288i) q^{22} +0.273308 q^{23} +1.00000 q^{25} +(1.17352 + 2.03260i) q^{26} +(-6.46307 - 2.92175i) q^{28} +(-4.63947 - 8.03580i) q^{29} +(0.884081 + 1.53127i) q^{31} +(-3.82562 - 6.62617i) q^{32} +(-6.16956 - 10.6860i) q^{34} +(2.14928 - 1.54292i) q^{35} +(1.14456 + 1.98243i) q^{37} +7.59118 q^{38} -1.47299 q^{40} +(-2.65518 + 4.59891i) q^{41} +(3.14508 + 5.44743i) q^{43} +(3.37874 + 5.85214i) q^{44} +(0.295654 - 0.512088i) q^{46} +(2.34203 - 4.05652i) q^{47} +(2.23878 - 6.63234i) q^{49} +(1.08176 - 1.87367i) q^{50} +2.90824 q^{52} +(-4.86938 + 8.43401i) q^{53} -2.52066 q^{55} +(-3.16586 + 2.27271i) q^{56} -20.0752 q^{58} +(-1.68373 - 2.91631i) q^{59} +(-2.47366 + 4.28451i) q^{61} +3.82546 q^{62} -12.2040 q^{64} +(-0.542414 + 0.939489i) q^{65} +(6.42542 + 11.1292i) q^{67} -15.2895 q^{68} +(-0.565917 - 5.69610i) q^{70} -10.9734 q^{71} +(-0.107878 + 0.186850i) q^{73} +4.95255 q^{74} +(4.70313 - 8.14606i) q^{76} +(-5.41761 + 3.88919i) q^{77} +(1.95176 - 3.38055i) q^{79} +(1.08741 - 1.88345i) q^{80} +(5.74454 + 9.94984i) q^{82} +(-5.18081 - 8.97342i) q^{83} +(2.85163 - 4.93917i) q^{85} +13.6089 q^{86} +3.71291 q^{88} +(6.78158 + 11.7460i) q^{89} +(0.283761 + 2.85612i) q^{91} +(-0.366346 - 0.634530i) q^{92} +(-5.06704 - 8.77636i) q^{94} +(1.75436 + 3.03863i) q^{95} +(-6.91171 - 11.9714i) q^{97} +(-10.0050 - 11.3693i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q + q^{2} - 7 q^{4} + 24 q^{5} + 7 q^{7} - 12 q^{8} + q^{10} + 2 q^{11} - 4 q^{13} + 13 q^{14} - 5 q^{16} + 7 q^{17} - 2 q^{19} - 7 q^{20} + 19 q^{22} + 2 q^{23} + 24 q^{25} - 11 q^{26} - 28 q^{28}+ \cdots + 15 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/945\mathbb{Z}\right)^\times\).

\(n\) \(136\) \(596\) \(757\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.08176 1.87367i 0.764921 1.32488i −0.175368 0.984503i \(-0.556111\pi\)
0.940289 0.340378i \(-0.110555\pi\)
\(3\) 0 0
\(4\) −1.34041 2.32167i −0.670207 1.16083i
\(5\) 1.00000 0.447214
\(6\) 0 0
\(7\) 2.14928 1.54292i 0.812350 0.583170i
\(8\) −1.47299 −0.520780
\(9\) 0 0
\(10\) 1.08176 1.87367i 0.342083 0.592505i
\(11\) −2.52066 −0.760009 −0.380005 0.924985i \(-0.624078\pi\)
−0.380005 + 0.924985i \(0.624078\pi\)
\(12\) 0 0
\(13\) −0.542414 + 0.939489i −0.150439 + 0.260567i −0.931389 0.364026i \(-0.881402\pi\)
0.780950 + 0.624593i \(0.214735\pi\)
\(14\) −0.565917 5.69610i −0.151248 1.52235i
\(15\) 0 0
\(16\) 1.08741 1.88345i 0.271852 0.470861i
\(17\) 2.85163 4.93917i 0.691622 1.19792i −0.279684 0.960092i \(-0.590230\pi\)
0.971306 0.237832i \(-0.0764368\pi\)
\(18\) 0 0
\(19\) 1.75436 + 3.03863i 0.402477 + 0.697111i 0.994024 0.109160i \(-0.0348160\pi\)
−0.591547 + 0.806270i \(0.701483\pi\)
\(20\) −1.34041 2.32167i −0.299726 0.519140i
\(21\) 0 0
\(22\) −2.72676 + 4.72288i −0.581347 + 1.00692i
\(23\) 0.273308 0.0569887 0.0284943 0.999594i \(-0.490929\pi\)
0.0284943 + 0.999594i \(0.490929\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) 1.17352 + 2.03260i 0.230147 + 0.398627i
\(27\) 0 0
\(28\) −6.46307 2.92175i −1.22141 0.552158i
\(29\) −4.63947 8.03580i −0.861528 1.49221i −0.870454 0.492250i \(-0.836175\pi\)
0.00892568 0.999960i \(-0.497159\pi\)
\(30\) 0 0
\(31\) 0.884081 + 1.53127i 0.158786 + 0.275025i 0.934431 0.356144i \(-0.115909\pi\)
−0.775645 + 0.631169i \(0.782575\pi\)
\(32\) −3.82562 6.62617i −0.676280 1.17135i
\(33\) 0 0
\(34\) −6.16956 10.6860i −1.05807 1.83263i
\(35\) 2.14928 1.54292i 0.363294 0.260802i
\(36\) 0 0
\(37\) 1.14456 + 1.98243i 0.188164 + 0.325909i 0.944638 0.328114i \(-0.106413\pi\)
−0.756474 + 0.654024i \(0.773080\pi\)
\(38\) 7.59118 1.23145
\(39\) 0 0
\(40\) −1.47299 −0.232900
\(41\) −2.65518 + 4.59891i −0.414670 + 0.718229i −0.995394 0.0958717i \(-0.969436\pi\)
0.580724 + 0.814100i \(0.302769\pi\)
\(42\) 0 0
\(43\) 3.14508 + 5.44743i 0.479620 + 0.830726i 0.999727 0.0233755i \(-0.00744132\pi\)
−0.520107 + 0.854101i \(0.674108\pi\)
\(44\) 3.37874 + 5.85214i 0.509364 + 0.882243i
\(45\) 0 0
\(46\) 0.295654 0.512088i 0.0435918 0.0755032i
\(47\) 2.34203 4.05652i 0.341620 0.591704i −0.643113 0.765771i \(-0.722358\pi\)
0.984734 + 0.174067i \(0.0556910\pi\)
\(48\) 0 0
\(49\) 2.23878 6.63234i 0.319826 0.947476i
\(50\) 1.08176 1.87367i 0.152984 0.264976i
\(51\) 0 0
\(52\) 2.90824 0.403300
\(53\) −4.86938 + 8.43401i −0.668861 + 1.15850i 0.309362 + 0.950944i \(0.399884\pi\)
−0.978223 + 0.207557i \(0.933449\pi\)
\(54\) 0 0
\(55\) −2.52066 −0.339886
\(56\) −3.16586 + 2.27271i −0.423056 + 0.303703i
\(57\) 0 0
\(58\) −20.0752 −2.63600
\(59\) −1.68373 2.91631i −0.219203 0.379671i 0.735361 0.677675i \(-0.237012\pi\)
−0.954565 + 0.298004i \(0.903679\pi\)
\(60\) 0 0
\(61\) −2.47366 + 4.28451i −0.316720 + 0.548575i −0.979802 0.199972i \(-0.935915\pi\)
0.663081 + 0.748547i \(0.269248\pi\)
\(62\) 3.82546 0.485834
\(63\) 0 0
\(64\) −12.2040 −1.52550
\(65\) −0.542414 + 0.939489i −0.0672782 + 0.116529i
\(66\) 0 0
\(67\) 6.42542 + 11.1292i 0.784990 + 1.35964i 0.929005 + 0.370068i \(0.120665\pi\)
−0.144015 + 0.989576i \(0.546001\pi\)
\(68\) −15.2895 −1.85412
\(69\) 0 0
\(70\) −0.565917 5.69610i −0.0676400 0.680814i
\(71\) −10.9734 −1.30230 −0.651149 0.758950i \(-0.725713\pi\)
−0.651149 + 0.758950i \(0.725713\pi\)
\(72\) 0 0
\(73\) −0.107878 + 0.186850i −0.0126262 + 0.0218692i −0.872269 0.489026i \(-0.837352\pi\)
0.859643 + 0.510895i \(0.170686\pi\)
\(74\) 4.95255 0.575722
\(75\) 0 0
\(76\) 4.70313 8.14606i 0.539486 0.934417i
\(77\) −5.41761 + 3.88919i −0.617393 + 0.443214i
\(78\) 0 0
\(79\) 1.95176 3.38055i 0.219590 0.380342i −0.735092 0.677967i \(-0.762861\pi\)
0.954683 + 0.297625i \(0.0961946\pi\)
\(80\) 1.08741 1.88345i 0.121576 0.210576i
\(81\) 0 0
\(82\) 5.74454 + 9.94984i 0.634379 + 1.09878i
\(83\) −5.18081 8.97342i −0.568667 0.984961i −0.996698 0.0811964i \(-0.974126\pi\)
0.428031 0.903764i \(-0.359207\pi\)
\(84\) 0 0
\(85\) 2.85163 4.93917i 0.309303 0.535728i
\(86\) 13.6089 1.46748
\(87\) 0 0
\(88\) 3.71291 0.395797
\(89\) 6.78158 + 11.7460i 0.718846 + 1.24508i 0.961457 + 0.274954i \(0.0886625\pi\)
−0.242612 + 0.970123i \(0.578004\pi\)
\(90\) 0 0
\(91\) 0.283761 + 2.85612i 0.0297462 + 0.299403i
\(92\) −0.366346 0.634530i −0.0381942 0.0661543i
\(93\) 0 0
\(94\) −5.06704 8.77636i −0.522625 0.905213i
\(95\) 1.75436 + 3.03863i 0.179993 + 0.311757i
\(96\) 0 0
\(97\) −6.91171 11.9714i −0.701778 1.21552i −0.967842 0.251560i \(-0.919056\pi\)
0.266064 0.963955i \(-0.414277\pi\)
\(98\) −10.0050 11.3693i −1.01065 1.14848i
\(99\) 0 0
\(100\) −1.34041 2.32167i −0.134041 0.232167i
\(101\) 10.2886 1.02376 0.511878 0.859058i \(-0.328950\pi\)
0.511878 + 0.859058i \(0.328950\pi\)
\(102\) 0 0
\(103\) 18.3697 1.81002 0.905008 0.425395i \(-0.139865\pi\)
0.905008 + 0.425395i \(0.139865\pi\)
\(104\) 0.798969 1.38386i 0.0783454 0.135698i
\(105\) 0 0
\(106\) 10.5350 + 18.2472i 1.02325 + 1.77232i
\(107\) 7.21802 + 12.5020i 0.697793 + 1.20861i 0.969230 + 0.246156i \(0.0791677\pi\)
−0.271437 + 0.962456i \(0.587499\pi\)
\(108\) 0 0
\(109\) −10.0219 + 17.3584i −0.959924 + 1.66264i −0.237249 + 0.971449i \(0.576246\pi\)
−0.722675 + 0.691188i \(0.757088\pi\)
\(110\) −2.72676 + 4.72288i −0.259986 + 0.450309i
\(111\) 0 0
\(112\) −0.568871 5.72583i −0.0537533 0.541040i
\(113\) −9.36733 + 16.2247i −0.881204 + 1.52629i −0.0312006 + 0.999513i \(0.509933\pi\)
−0.850003 + 0.526777i \(0.823400\pi\)
\(114\) 0 0
\(115\) 0.273308 0.0254861
\(116\) −12.4376 + 21.5426i −1.15480 + 2.00018i
\(117\) 0 0
\(118\) −7.28559 −0.670693
\(119\) −1.49181 15.0155i −0.136754 1.37647i
\(120\) 0 0
\(121\) −4.64625 −0.422386
\(122\) 5.35183 + 9.26963i 0.484532 + 0.839233i
\(123\) 0 0
\(124\) 2.37007 4.10508i 0.212839 0.368647i
\(125\) 1.00000 0.0894427
\(126\) 0 0
\(127\) −10.6444 −0.944539 −0.472269 0.881454i \(-0.656565\pi\)
−0.472269 + 0.881454i \(0.656565\pi\)
\(128\) −5.55057 + 9.61386i −0.490605 + 0.849753i
\(129\) 0 0
\(130\) 1.17352 + 2.03260i 0.102925 + 0.178271i
\(131\) 19.8935 1.73810 0.869052 0.494722i \(-0.164730\pi\)
0.869052 + 0.494722i \(0.164730\pi\)
\(132\) 0 0
\(133\) 8.45898 + 3.82403i 0.733486 + 0.331585i
\(134\) 27.8031 2.40182
\(135\) 0 0
\(136\) −4.20042 + 7.27533i −0.360183 + 0.623855i
\(137\) 13.5567 1.15823 0.579113 0.815247i \(-0.303399\pi\)
0.579113 + 0.815247i \(0.303399\pi\)
\(138\) 0 0
\(139\) 5.37133 9.30342i 0.455590 0.789105i −0.543132 0.839648i \(-0.682762\pi\)
0.998722 + 0.0505421i \(0.0160949\pi\)
\(140\) −6.46307 2.92175i −0.546229 0.246933i
\(141\) 0 0
\(142\) −11.8705 + 20.5604i −0.996154 + 1.72539i
\(143\) 1.36724 2.36814i 0.114335 0.198033i
\(144\) 0 0
\(145\) −4.63947 8.03580i −0.385287 0.667337i
\(146\) 0.233397 + 0.404255i 0.0193161 + 0.0334564i
\(147\) 0 0
\(148\) 3.06836 5.31456i 0.252218 0.436854i
\(149\) 11.9813 0.981543 0.490772 0.871288i \(-0.336715\pi\)
0.490772 + 0.871288i \(0.336715\pi\)
\(150\) 0 0
\(151\) 5.76381 0.469052 0.234526 0.972110i \(-0.424646\pi\)
0.234526 + 0.972110i \(0.424646\pi\)
\(152\) −2.58415 4.47587i −0.209602 0.363041i
\(153\) 0 0
\(154\) 1.42649 + 14.3580i 0.114950 + 1.15700i
\(155\) 0.884081 + 1.53127i 0.0710111 + 0.122995i
\(156\) 0 0
\(157\) 5.56990 + 9.64735i 0.444527 + 0.769943i 0.998019 0.0629115i \(-0.0200386\pi\)
−0.553493 + 0.832854i \(0.686705\pi\)
\(158\) −4.22268 7.31390i −0.335939 0.581863i
\(159\) 0 0
\(160\) −3.82562 6.62617i −0.302442 0.523844i
\(161\) 0.587415 0.421693i 0.0462947 0.0332341i
\(162\) 0 0
\(163\) −0.636575 1.10258i −0.0498604 0.0863607i 0.840018 0.542558i \(-0.182544\pi\)
−0.889878 + 0.456198i \(0.849211\pi\)
\(164\) 14.2362 1.11166
\(165\) 0 0
\(166\) −22.4176 −1.73994
\(167\) 0.472660 0.818671i 0.0365755 0.0633506i −0.847158 0.531341i \(-0.821688\pi\)
0.883734 + 0.467990i \(0.155022\pi\)
\(168\) 0 0
\(169\) 5.91157 + 10.2391i 0.454736 + 0.787627i
\(170\) −6.16956 10.6860i −0.473184 0.819579i
\(171\) 0 0
\(172\) 8.43141 14.6036i 0.642889 1.11352i
\(173\) −3.52039 + 6.09749i −0.267650 + 0.463584i −0.968255 0.249966i \(-0.919580\pi\)
0.700604 + 0.713550i \(0.252914\pi\)
\(174\) 0 0
\(175\) 2.14928 1.54292i 0.162470 0.116634i
\(176\) −2.74099 + 4.74753i −0.206610 + 0.357859i
\(177\) 0 0
\(178\) 29.3442 2.19944
\(179\) 3.95249 6.84590i 0.295423 0.511687i −0.679661 0.733527i \(-0.737873\pi\)
0.975083 + 0.221840i \(0.0712062\pi\)
\(180\) 0 0
\(181\) 13.2016 0.981268 0.490634 0.871366i \(-0.336765\pi\)
0.490634 + 0.871366i \(0.336765\pi\)
\(182\) 5.65838 + 2.55797i 0.419427 + 0.189609i
\(183\) 0 0
\(184\) −0.402579 −0.0296785
\(185\) 1.14456 + 1.98243i 0.0841495 + 0.145751i
\(186\) 0 0
\(187\) −7.18800 + 12.4500i −0.525639 + 0.910433i
\(188\) −12.5572 −0.915826
\(189\) 0 0
\(190\) 7.59118 0.550722
\(191\) −3.46679 + 6.00466i −0.250848 + 0.434482i −0.963760 0.266772i \(-0.914043\pi\)
0.712911 + 0.701254i \(0.247376\pi\)
\(192\) 0 0
\(193\) −4.91963 8.52105i −0.354123 0.613359i 0.632845 0.774279i \(-0.281887\pi\)
−0.986967 + 0.160920i \(0.948554\pi\)
\(194\) −29.9073 −2.14722
\(195\) 0 0
\(196\) −18.3990 + 3.69238i −1.31421 + 0.263742i
\(197\) −4.92577 −0.350947 −0.175473 0.984484i \(-0.556146\pi\)
−0.175473 + 0.984484i \(0.556146\pi\)
\(198\) 0 0
\(199\) 2.96416 5.13407i 0.210123 0.363945i −0.741630 0.670810i \(-0.765947\pi\)
0.951753 + 0.306865i \(0.0992801\pi\)
\(200\) −1.47299 −0.104156
\(201\) 0 0
\(202\) 11.1298 19.2774i 0.783092 1.35635i
\(203\) −22.3701 10.1128i −1.57007 0.709780i
\(204\) 0 0
\(205\) −2.65518 + 4.59891i −0.185446 + 0.321202i
\(206\) 19.8716 34.4186i 1.38452 2.39806i
\(207\) 0 0
\(208\) 1.17965 + 2.04321i 0.0817940 + 0.141671i
\(209\) −4.42214 7.65938i −0.305886 0.529810i
\(210\) 0 0
\(211\) 1.57045 2.72010i 0.108114 0.187260i −0.806892 0.590699i \(-0.798852\pi\)
0.915006 + 0.403439i \(0.132185\pi\)
\(212\) 26.1079 1.79310
\(213\) 0 0
\(214\) 31.2327 2.13502
\(215\) 3.14508 + 5.44743i 0.214492 + 0.371512i
\(216\) 0 0
\(217\) 4.26277 + 1.92706i 0.289376 + 0.130817i
\(218\) 21.6826 + 37.5554i 1.46853 + 2.54357i
\(219\) 0 0
\(220\) 3.37874 + 5.85214i 0.227794 + 0.394551i
\(221\) 3.09353 + 5.35815i 0.208093 + 0.360428i
\(222\) 0 0
\(223\) −1.24047 2.14855i −0.0830679 0.143878i 0.821498 0.570211i \(-0.193138\pi\)
−0.904566 + 0.426333i \(0.859805\pi\)
\(224\) −18.4460 8.33883i −1.23247 0.557161i
\(225\) 0 0
\(226\) 20.2664 + 35.1025i 1.34810 + 2.33498i
\(227\) −26.5203 −1.76021 −0.880106 0.474778i \(-0.842528\pi\)
−0.880106 + 0.474778i \(0.842528\pi\)
\(228\) 0 0
\(229\) −20.4619 −1.35216 −0.676079 0.736829i \(-0.736322\pi\)
−0.676079 + 0.736829i \(0.736322\pi\)
\(230\) 0.295654 0.512088i 0.0194948 0.0337661i
\(231\) 0 0
\(232\) 6.83388 + 11.8366i 0.448666 + 0.777113i
\(233\) −10.3634 17.9499i −0.678929 1.17594i −0.975304 0.220868i \(-0.929111\pi\)
0.296374 0.955072i \(-0.404222\pi\)
\(234\) 0 0
\(235\) 2.34203 4.05652i 0.152777 0.264618i
\(236\) −4.51380 + 7.81813i −0.293823 + 0.508917i
\(237\) 0 0
\(238\) −29.7478 13.4480i −1.92826 0.871705i
\(239\) 1.88457 3.26418i 0.121903 0.211142i −0.798615 0.601842i \(-0.794434\pi\)
0.920518 + 0.390700i \(0.127767\pi\)
\(240\) 0 0
\(241\) 7.18908 0.463089 0.231545 0.972824i \(-0.425622\pi\)
0.231545 + 0.972824i \(0.425622\pi\)
\(242\) −5.02613 + 8.70551i −0.323092 + 0.559612i
\(243\) 0 0
\(244\) 13.2629 0.849072
\(245\) 2.23878 6.63234i 0.143030 0.423724i
\(246\) 0 0
\(247\) −3.80635 −0.242192
\(248\) −1.30224 2.25555i −0.0826924 0.143227i
\(249\) 0 0
\(250\) 1.08176 1.87367i 0.0684166 0.118501i
\(251\) 12.3897 0.782031 0.391016 0.920384i \(-0.372124\pi\)
0.391016 + 0.920384i \(0.372124\pi\)
\(252\) 0 0
\(253\) −0.688918 −0.0433119
\(254\) −11.5147 + 19.9441i −0.722497 + 1.25140i
\(255\) 0 0
\(256\) −0.195217 0.338126i −0.0122011 0.0211329i
\(257\) −24.4919 −1.52776 −0.763880 0.645358i \(-0.776708\pi\)
−0.763880 + 0.645358i \(0.776708\pi\)
\(258\) 0 0
\(259\) 5.51870 + 2.49483i 0.342916 + 0.155021i
\(260\) 2.90824 0.180361
\(261\) 0 0
\(262\) 21.5200 37.2738i 1.32951 2.30278i
\(263\) −8.08761 −0.498703 −0.249352 0.968413i \(-0.580217\pi\)
−0.249352 + 0.968413i \(0.580217\pi\)
\(264\) 0 0
\(265\) −4.86938 + 8.43401i −0.299124 + 0.518097i
\(266\) 16.3155 11.7126i 1.00037 0.718146i
\(267\) 0 0
\(268\) 17.2255 29.8354i 1.05221 1.82249i
\(269\) 2.38892 4.13774i 0.145655 0.252282i −0.783962 0.620809i \(-0.786804\pi\)
0.929617 + 0.368527i \(0.120138\pi\)
\(270\) 0 0
\(271\) 0.249128 + 0.431503i 0.0151335 + 0.0262119i 0.873493 0.486837i \(-0.161849\pi\)
−0.858359 + 0.513049i \(0.828516\pi\)
\(272\) −6.20177 10.7418i −0.376037 0.651316i
\(273\) 0 0
\(274\) 14.6651 25.4007i 0.885951 1.53451i
\(275\) −2.52066 −0.152002
\(276\) 0 0
\(277\) −27.8993 −1.67630 −0.838152 0.545437i \(-0.816364\pi\)
−0.838152 + 0.545437i \(0.816364\pi\)
\(278\) −11.6210 20.1281i −0.696981 1.20721i
\(279\) 0 0
\(280\) −3.16586 + 2.27271i −0.189196 + 0.135820i
\(281\) 2.67023 + 4.62498i 0.159293 + 0.275903i 0.934614 0.355664i \(-0.115745\pi\)
−0.775321 + 0.631567i \(0.782412\pi\)
\(282\) 0 0
\(283\) 15.8455 + 27.4453i 0.941920 + 1.63145i 0.761804 + 0.647808i \(0.224314\pi\)
0.180116 + 0.983645i \(0.442353\pi\)
\(284\) 14.7088 + 25.4765i 0.872809 + 1.51175i
\(285\) 0 0
\(286\) −2.95806 5.12352i −0.174914 0.302960i
\(287\) 1.38904 + 13.9811i 0.0819926 + 0.825276i
\(288\) 0 0
\(289\) −7.76359 13.4469i −0.456682 0.790996i
\(290\) −20.0752 −1.17886
\(291\) 0 0
\(292\) 0.578406 0.0338486
\(293\) 2.45898 4.25908i 0.143655 0.248818i −0.785215 0.619223i \(-0.787448\pi\)
0.928870 + 0.370405i \(0.120781\pi\)
\(294\) 0 0
\(295\) −1.68373 2.91631i −0.0980307 0.169794i
\(296\) −1.68592 2.92010i −0.0979920 0.169727i
\(297\) 0 0
\(298\) 12.9609 22.4489i 0.750803 1.30043i
\(299\) −0.148246 + 0.256770i −0.00857329 + 0.0148494i
\(300\) 0 0
\(301\) 15.1646 + 6.85543i 0.874073 + 0.395140i
\(302\) 6.23506 10.7994i 0.358788 0.621438i
\(303\) 0 0
\(304\) 7.63080 0.437657
\(305\) −2.47366 + 4.28451i −0.141642 + 0.245330i
\(306\) 0 0
\(307\) −13.9386 −0.795519 −0.397760 0.917490i \(-0.630212\pi\)
−0.397760 + 0.917490i \(0.630212\pi\)
\(308\) 16.2912 + 7.36474i 0.928279 + 0.419645i
\(309\) 0 0
\(310\) 3.82546 0.217272
\(311\) 1.34331 + 2.32668i 0.0761722 + 0.131934i 0.901595 0.432580i \(-0.142397\pi\)
−0.825423 + 0.564514i \(0.809063\pi\)
\(312\) 0 0
\(313\) 0.832722 1.44232i 0.0470682 0.0815245i −0.841531 0.540208i \(-0.818346\pi\)
0.888600 + 0.458684i \(0.151679\pi\)
\(314\) 24.1012 1.36011
\(315\) 0 0
\(316\) −10.4647 −0.588684
\(317\) −14.4913 + 25.0996i −0.813910 + 1.40973i 0.0961980 + 0.995362i \(0.469332\pi\)
−0.910108 + 0.414371i \(0.864002\pi\)
\(318\) 0 0
\(319\) 11.6946 + 20.2556i 0.654769 + 1.13409i
\(320\) −12.2040 −0.682224
\(321\) 0 0
\(322\) −0.154670 1.55679i −0.00861940 0.0867565i
\(323\) 20.0111 1.11345
\(324\) 0 0
\(325\) −0.542414 + 0.939489i −0.0300877 + 0.0521135i
\(326\) −2.75449 −0.152557
\(327\) 0 0
\(328\) 3.91105 6.77414i 0.215952 0.374039i
\(329\) −1.22522 12.3321i −0.0675486 0.679893i
\(330\) 0 0
\(331\) 12.5999 21.8237i 0.692555 1.19954i −0.278443 0.960453i \(-0.589818\pi\)
0.970998 0.239088i \(-0.0768485\pi\)
\(332\) −13.8889 + 24.0562i −0.762250 + 1.32026i
\(333\) 0 0
\(334\) −1.02261 1.77121i −0.0559547 0.0969164i
\(335\) 6.42542 + 11.1292i 0.351058 + 0.608051i
\(336\) 0 0
\(337\) −8.11842 + 14.0615i −0.442238 + 0.765979i −0.997855 0.0654591i \(-0.979149\pi\)
0.555617 + 0.831438i \(0.312482\pi\)
\(338\) 25.5796 1.39135
\(339\) 0 0
\(340\) −15.2895 −0.829188
\(341\) −2.22847 3.85983i −0.120679 0.209021i
\(342\) 0 0
\(343\) −5.42143 17.7090i −0.292730 0.956195i
\(344\) −4.63266 8.02400i −0.249776 0.432625i
\(345\) 0 0
\(346\) 7.61644 + 13.1921i 0.409462 + 0.709209i
\(347\) 5.16058 + 8.93839i 0.277035 + 0.479838i 0.970646 0.240511i \(-0.0773150\pi\)
−0.693612 + 0.720349i \(0.743982\pi\)
\(348\) 0 0
\(349\) 1.88276 + 3.26103i 0.100782 + 0.174559i 0.912007 0.410175i \(-0.134532\pi\)
−0.811225 + 0.584734i \(0.801199\pi\)
\(350\) −0.565917 5.69610i −0.0302495 0.304469i
\(351\) 0 0
\(352\) 9.64310 + 16.7023i 0.513979 + 0.890238i
\(353\) −14.9957 −0.798140 −0.399070 0.916921i \(-0.630667\pi\)
−0.399070 + 0.916921i \(0.630667\pi\)
\(354\) 0 0
\(355\) −10.9734 −0.582405
\(356\) 18.1802 31.4891i 0.963551 1.66892i
\(357\) 0 0
\(358\) −8.55129 14.8113i −0.451950 0.782800i
\(359\) 3.80747 + 6.59474i 0.200951 + 0.348057i 0.948835 0.315772i \(-0.102264\pi\)
−0.747884 + 0.663829i \(0.768930\pi\)
\(360\) 0 0
\(361\) 3.34447 5.79279i 0.176025 0.304883i
\(362\) 14.2810 24.7354i 0.750592 1.30006i
\(363\) 0 0
\(364\) 6.25061 4.48719i 0.327621 0.235192i
\(365\) −0.107878 + 0.186850i −0.00564660 + 0.00978020i
\(366\) 0 0
\(367\) −10.1947 −0.532160 −0.266080 0.963951i \(-0.585728\pi\)
−0.266080 + 0.963951i \(0.585728\pi\)
\(368\) 0.297197 0.514761i 0.0154925 0.0268338i
\(369\) 0 0
\(370\) 4.95255 0.257471
\(371\) 2.54739 + 25.6401i 0.132254 + 1.33117i
\(372\) 0 0
\(373\) −20.1884 −1.04531 −0.522657 0.852543i \(-0.675059\pi\)
−0.522657 + 0.852543i \(0.675059\pi\)
\(374\) 15.5514 + 26.9358i 0.804144 + 1.39282i
\(375\) 0 0
\(376\) −3.44978 + 5.97520i −0.177909 + 0.308147i
\(377\) 10.0661 0.518428
\(378\) 0 0
\(379\) −15.9413 −0.818852 −0.409426 0.912343i \(-0.634271\pi\)
−0.409426 + 0.912343i \(0.634271\pi\)
\(380\) 4.70313 8.14606i 0.241265 0.417884i
\(381\) 0 0
\(382\) 7.50048 + 12.9912i 0.383758 + 0.664688i
\(383\) 29.6997 1.51758 0.758792 0.651333i \(-0.225790\pi\)
0.758792 + 0.651333i \(0.225790\pi\)
\(384\) 0 0
\(385\) −5.41761 + 3.88919i −0.276107 + 0.198212i
\(386\) −21.2875 −1.08350
\(387\) 0 0
\(388\) −18.5291 + 32.0934i −0.940673 + 1.62929i
\(389\) −0.947100 −0.0480199 −0.0240099 0.999712i \(-0.507643\pi\)
−0.0240099 + 0.999712i \(0.507643\pi\)
\(390\) 0 0
\(391\) 0.779373 1.34991i 0.0394146 0.0682681i
\(392\) −3.29769 + 9.76935i −0.166559 + 0.493427i
\(393\) 0 0
\(394\) −5.32851 + 9.22925i −0.268446 + 0.464963i
\(395\) 1.95176 3.38055i 0.0982038 0.170094i
\(396\) 0 0
\(397\) 5.41011 + 9.37059i 0.271526 + 0.470297i 0.969253 0.246067i \(-0.0791384\pi\)
−0.697727 + 0.716364i \(0.745805\pi\)
\(398\) −6.41302 11.1077i −0.321456 0.556777i
\(399\) 0 0
\(400\) 1.08741 1.88345i 0.0543704 0.0941723i
\(401\) 3.26387 0.162990 0.0814950 0.996674i \(-0.474031\pi\)
0.0814950 + 0.996674i \(0.474031\pi\)
\(402\) 0 0
\(403\) −1.91815 −0.0955500
\(404\) −13.7910 23.8867i −0.686128 1.18841i
\(405\) 0 0
\(406\) −43.1471 + 30.9745i −2.14136 + 1.53724i
\(407\) −2.88504 4.99704i −0.143006 0.247694i
\(408\) 0 0
\(409\) −16.4987 28.5765i −0.815807 1.41302i −0.908747 0.417348i \(-0.862960\pi\)
0.0929397 0.995672i \(-0.470374\pi\)
\(410\) 5.74454 + 9.94984i 0.283703 + 0.491388i
\(411\) 0 0
\(412\) −24.6229 42.6482i −1.21309 2.10113i
\(413\) −8.11845 3.67009i −0.399483 0.180593i
\(414\) 0 0
\(415\) −5.18081 8.97342i −0.254316 0.440488i
\(416\) 8.30028 0.406955
\(417\) 0 0
\(418\) −19.1348 −0.935915
\(419\) −17.0245 + 29.4874i −0.831703 + 1.44055i 0.0649832 + 0.997886i \(0.479301\pi\)
−0.896687 + 0.442666i \(0.854033\pi\)
\(420\) 0 0
\(421\) 8.49807 + 14.7191i 0.414171 + 0.717364i 0.995341 0.0964175i \(-0.0307384\pi\)
−0.581170 + 0.813782i \(0.697405\pi\)
\(422\) −3.39771 5.88500i −0.165398 0.286478i
\(423\) 0 0
\(424\) 7.17254 12.4232i 0.348329 0.603324i
\(425\) 2.85163 4.93917i 0.138324 0.239585i
\(426\) 0 0
\(427\) 1.29408 + 13.0253i 0.0626251 + 0.630337i
\(428\) 19.3503 33.5157i 0.935331 1.62004i
\(429\) 0 0
\(430\) 13.6089 0.656279
\(431\) 1.15916 2.00773i 0.0558349 0.0967090i −0.836757 0.547574i \(-0.815551\pi\)
0.892592 + 0.450866i \(0.148885\pi\)
\(432\) 0 0
\(433\) −21.8516 −1.05012 −0.525062 0.851064i \(-0.675958\pi\)
−0.525062 + 0.851064i \(0.675958\pi\)
\(434\) 8.22197 5.90239i 0.394667 0.283324i
\(435\) 0 0
\(436\) 53.7340 2.57339
\(437\) 0.479480 + 0.830483i 0.0229366 + 0.0397274i
\(438\) 0 0
\(439\) −8.39926 + 14.5479i −0.400875 + 0.694335i −0.993832 0.110899i \(-0.964627\pi\)
0.592957 + 0.805234i \(0.297960\pi\)
\(440\) 3.71291 0.177006
\(441\) 0 0
\(442\) 13.3858 0.636699
\(443\) 8.17378 14.1574i 0.388348 0.672639i −0.603879 0.797076i \(-0.706379\pi\)
0.992228 + 0.124437i \(0.0397125\pi\)
\(444\) 0 0
\(445\) 6.78158 + 11.7460i 0.321478 + 0.556815i
\(446\) −5.36756 −0.254161
\(447\) 0 0
\(448\) −26.2298 + 18.8298i −1.23924 + 0.889625i
\(449\) −24.9939 −1.17953 −0.589767 0.807574i \(-0.700780\pi\)
−0.589767 + 0.807574i \(0.700780\pi\)
\(450\) 0 0
\(451\) 6.69282 11.5923i 0.315153 0.545860i
\(452\) 50.2244 2.36236
\(453\) 0 0
\(454\) −28.6886 + 49.6901i −1.34642 + 2.33207i
\(455\) 0.283761 + 2.85612i 0.0133029 + 0.133897i
\(456\) 0 0
\(457\) 2.47421 4.28546i 0.115739 0.200465i −0.802336 0.596873i \(-0.796410\pi\)
0.918075 + 0.396407i \(0.129743\pi\)
\(458\) −22.1349 + 38.3387i −1.03429 + 1.79145i
\(459\) 0 0
\(460\) −0.366346 0.634530i −0.0170810 0.0295851i
\(461\) −6.77101 11.7277i −0.315358 0.546215i 0.664156 0.747594i \(-0.268791\pi\)
−0.979513 + 0.201379i \(0.935458\pi\)
\(462\) 0 0
\(463\) 14.7612 25.5672i 0.686012 1.18821i −0.287106 0.957899i \(-0.592693\pi\)
0.973118 0.230308i \(-0.0739734\pi\)
\(464\) −20.1800 −0.936832
\(465\) 0 0
\(466\) −44.8429 −2.07731
\(467\) −5.21574 9.03393i −0.241356 0.418040i 0.719745 0.694239i \(-0.244259\pi\)
−0.961101 + 0.276198i \(0.910925\pi\)
\(468\) 0 0
\(469\) 30.9814 + 14.0057i 1.43059 + 0.646723i
\(470\) −5.06704 8.77636i −0.233725 0.404824i
\(471\) 0 0
\(472\) 2.48012 + 4.29569i 0.114157 + 0.197725i
\(473\) −7.92768 13.7312i −0.364515 0.631359i
\(474\) 0 0
\(475\) 1.75436 + 3.03863i 0.0804954 + 0.139422i
\(476\) −32.8613 + 23.5905i −1.50619 + 1.08127i
\(477\) 0 0
\(478\) −4.07732 7.06212i −0.186492 0.323014i
\(479\) −30.2584 −1.38254 −0.691270 0.722597i \(-0.742948\pi\)
−0.691270 + 0.722597i \(0.742948\pi\)
\(480\) 0 0
\(481\) −2.48329 −0.113228
\(482\) 7.77687 13.4699i 0.354227 0.613538i
\(483\) 0 0
\(484\) 6.22790 + 10.7870i 0.283086 + 0.490320i
\(485\) −6.91171 11.9714i −0.313845 0.543595i
\(486\) 0 0
\(487\) 6.50566 11.2681i 0.294799 0.510608i −0.680139 0.733083i \(-0.738080\pi\)
0.974938 + 0.222476i \(0.0714138\pi\)
\(488\) 3.64368 6.31103i 0.164941 0.285687i
\(489\) 0 0
\(490\) −10.0050 11.3693i −0.451978 0.513614i
\(491\) −4.60953 + 7.98393i −0.208025 + 0.360310i −0.951092 0.308907i \(-0.900037\pi\)
0.743067 + 0.669217i \(0.233370\pi\)
\(492\) 0 0
\(493\) −52.9202 −2.38341
\(494\) −4.11756 + 7.13183i −0.185258 + 0.320876i
\(495\) 0 0
\(496\) 3.84543 0.172665
\(497\) −23.5848 + 16.9310i −1.05792 + 0.759461i
\(498\) 0 0
\(499\) 22.3488 1.00047 0.500235 0.865890i \(-0.333247\pi\)
0.500235 + 0.865890i \(0.333247\pi\)
\(500\) −1.34041 2.32167i −0.0599452 0.103828i
\(501\) 0 0
\(502\) 13.4027 23.2142i 0.598192 1.03610i
\(503\) 16.6128 0.740728 0.370364 0.928887i \(-0.379233\pi\)
0.370364 + 0.928887i \(0.379233\pi\)
\(504\) 0 0
\(505\) 10.2886 0.457837
\(506\) −0.745245 + 1.29080i −0.0331302 + 0.0573831i
\(507\) 0 0
\(508\) 14.2679 + 24.7128i 0.633037 + 1.09645i
\(509\) 16.2874 0.721928 0.360964 0.932580i \(-0.382448\pi\)
0.360964 + 0.932580i \(0.382448\pi\)
\(510\) 0 0
\(511\) 0.0564358 + 0.568041i 0.00249657 + 0.0251286i
\(512\) −23.0470 −1.01854
\(513\) 0 0
\(514\) −26.4943 + 45.8895i −1.16862 + 2.02410i
\(515\) 18.3697 0.809464
\(516\) 0 0
\(517\) −5.90348 + 10.2251i −0.259635 + 0.449700i
\(518\) 10.6444 7.64140i 0.467688 0.335744i
\(519\) 0 0
\(520\) 0.798969 1.38386i 0.0350371 0.0606861i
\(521\) 8.40287 14.5542i 0.368136 0.637631i −0.621138 0.783701i \(-0.713329\pi\)
0.989274 + 0.146071i \(0.0466627\pi\)
\(522\) 0 0
\(523\) 4.58284 + 7.93771i 0.200394 + 0.347092i 0.948655 0.316312i \(-0.102445\pi\)
−0.748262 + 0.663404i \(0.769111\pi\)
\(524\) −26.6655 46.1861i −1.16489 2.01765i
\(525\) 0 0
\(526\) −8.74886 + 15.1535i −0.381468 + 0.660723i
\(527\) 10.0843 0.439279
\(528\) 0 0
\(529\) −22.9253 −0.996752
\(530\) 10.5350 + 18.2472i 0.457612 + 0.792607i
\(531\) 0 0
\(532\) −2.46041 24.7647i −0.106673 1.07369i
\(533\) −2.88041 4.98902i −0.124765 0.216099i
\(534\) 0 0
\(535\) 7.21802 + 12.5020i 0.312062 + 0.540508i
\(536\) −9.46457 16.3931i −0.408807 0.708075i
\(537\) 0 0
\(538\) −5.16849 8.95209i −0.222829 0.385952i
\(539\) −5.64321 + 16.7179i −0.243070 + 0.720091i
\(540\) 0 0
\(541\) −11.0257 19.0970i −0.474030 0.821044i 0.525528 0.850776i \(-0.323868\pi\)
−0.999558 + 0.0297324i \(0.990534\pi\)
\(542\) 1.07799 0.0463036
\(543\) 0 0
\(544\) −43.6370 −1.87092
\(545\) −10.0219 + 17.3584i −0.429291 + 0.743554i
\(546\) 0 0
\(547\) 1.95281 + 3.38236i 0.0834960 + 0.144619i 0.904749 0.425944i \(-0.140058\pi\)
−0.821253 + 0.570564i \(0.806725\pi\)
\(548\) −18.1716 31.4741i −0.776251 1.34451i
\(549\) 0 0
\(550\) −2.72676 + 4.72288i −0.116269 + 0.201384i
\(551\) 16.2786 28.1953i 0.693490 1.20116i
\(552\) 0 0
\(553\) −1.02105 10.2772i −0.0434196 0.437029i
\(554\) −30.1803 + 52.2739i −1.28224 + 2.22090i
\(555\) 0 0
\(556\) −28.7992 −1.22136
\(557\) −0.621333 + 1.07618i −0.0263267 + 0.0455992i −0.878889 0.477027i \(-0.841714\pi\)
0.852562 + 0.522626i \(0.175048\pi\)
\(558\) 0 0
\(559\) −6.82373 −0.288613
\(560\) −0.568871 5.72583i −0.0240392 0.241960i
\(561\) 0 0
\(562\) 11.5542 0.487385
\(563\) 2.06788 + 3.58167i 0.0871506 + 0.150949i 0.906306 0.422623i \(-0.138891\pi\)
−0.819155 + 0.573572i \(0.805557\pi\)
\(564\) 0 0
\(565\) −9.36733 + 16.2247i −0.394086 + 0.682578i
\(566\) 68.5644 2.88198
\(567\) 0 0
\(568\) 16.1636 0.678210
\(569\) −5.64630 + 9.77967i −0.236705 + 0.409985i −0.959767 0.280798i \(-0.909401\pi\)
0.723062 + 0.690783i \(0.242734\pi\)
\(570\) 0 0
\(571\) −20.6379 35.7459i −0.863670 1.49592i −0.868361 0.495932i \(-0.834827\pi\)
0.00469093 0.999989i \(-0.498507\pi\)
\(572\) −7.33069 −0.306512
\(573\) 0 0
\(574\) 27.6984 + 12.5216i 1.15611 + 0.522640i
\(575\) 0.273308 0.0113977
\(576\) 0 0
\(577\) 4.01893 6.96099i 0.167310 0.289790i −0.770163 0.637847i \(-0.779825\pi\)
0.937473 + 0.348057i \(0.113159\pi\)
\(578\) −33.5934 −1.39730
\(579\) 0 0
\(580\) −12.4376 + 21.5426i −0.516444 + 0.894508i
\(581\) −24.9803 11.2928i −1.03636 0.468503i
\(582\) 0 0
\(583\) 12.2741 21.2593i 0.508340 0.880471i
\(584\) 0.158903 0.275228i 0.00657546 0.0113890i
\(585\) 0 0
\(586\) −5.32006 9.21462i −0.219770 0.380652i
\(587\) 9.64751 + 16.7100i 0.398195 + 0.689695i 0.993503 0.113803i \(-0.0363033\pi\)
−0.595308 + 0.803498i \(0.702970\pi\)
\(588\) 0 0
\(589\) −3.10199 + 5.37280i −0.127815 + 0.221382i
\(590\) −7.28559 −0.299943
\(591\) 0 0
\(592\) 4.97840 0.204611
\(593\) 14.8846 + 25.7809i 0.611237 + 1.05869i 0.991032 + 0.133623i \(0.0426613\pi\)
−0.379795 + 0.925071i \(0.624005\pi\)
\(594\) 0 0
\(595\) −1.49181 15.0155i −0.0611584 0.615575i
\(596\) −16.0599 27.8165i −0.657837 1.13941i
\(597\) 0 0
\(598\) 0.320734 + 0.555527i 0.0131158 + 0.0227172i
\(599\) 5.02705 + 8.70711i 0.205400 + 0.355763i 0.950260 0.311458i \(-0.100817\pi\)
−0.744860 + 0.667220i \(0.767484\pi\)
\(600\) 0 0
\(601\) 4.59732 + 7.96278i 0.187528 + 0.324809i 0.944426 0.328725i \(-0.106619\pi\)
−0.756897 + 0.653534i \(0.773286\pi\)
\(602\) 29.2493 20.9975i 1.19211 0.855793i
\(603\) 0 0
\(604\) −7.72589 13.3816i −0.314362 0.544491i
\(605\) −4.64625 −0.188897
\(606\) 0 0
\(607\) −0.368646 −0.0149629 −0.00748145 0.999972i \(-0.502381\pi\)
−0.00748145 + 0.999972i \(0.502381\pi\)
\(608\) 13.4230 23.2493i 0.544374 0.942884i
\(609\) 0 0
\(610\) 5.35183 + 9.26963i 0.216689 + 0.375317i
\(611\) 2.54070 + 4.40062i 0.102786 + 0.178030i
\(612\) 0 0
\(613\) 7.89766 13.6791i 0.318983 0.552496i −0.661293 0.750128i \(-0.729992\pi\)
0.980276 + 0.197632i \(0.0633252\pi\)
\(614\) −15.0783 + 26.1163i −0.608509 + 1.05397i
\(615\) 0 0
\(616\) 7.98007 5.72873i 0.321526 0.230817i
\(617\) 6.94086 12.0219i 0.279428 0.483984i −0.691814 0.722075i \(-0.743188\pi\)
0.971243 + 0.238091i \(0.0765217\pi\)
\(618\) 0 0
\(619\) 2.56086 0.102930 0.0514648 0.998675i \(-0.483611\pi\)
0.0514648 + 0.998675i \(0.483611\pi\)
\(620\) 2.37007 4.10508i 0.0951843 0.164864i
\(621\) 0 0
\(622\) 5.81257 0.233063
\(623\) 32.6987 + 14.7820i 1.31005 + 0.592229i
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) −1.80161 3.12048i −0.0720069 0.124720i
\(627\) 0 0
\(628\) 14.9320 25.8629i 0.595850 1.03204i
\(629\) 13.0554 0.520553
\(630\) 0 0
\(631\) −42.1192 −1.67674 −0.838370 0.545102i \(-0.816491\pi\)
−0.838370 + 0.545102i \(0.816491\pi\)
\(632\) −2.87492 + 4.97951i −0.114358 + 0.198074i
\(633\) 0 0
\(634\) 31.3522 + 54.3035i 1.24515 + 2.15667i
\(635\) −10.6444 −0.422411
\(636\) 0 0
\(637\) 5.01666 + 5.70078i 0.198767 + 0.225873i
\(638\) 50.6028 2.00339
\(639\) 0 0
\(640\) −5.55057 + 9.61386i −0.219405 + 0.380021i
\(641\) 26.7464 1.05642 0.528209 0.849114i \(-0.322864\pi\)
0.528209 + 0.849114i \(0.322864\pi\)
\(642\) 0 0
\(643\) 21.5988 37.4102i 0.851773 1.47531i −0.0278342 0.999613i \(-0.508861\pi\)
0.879607 0.475701i \(-0.157806\pi\)
\(644\) −1.76641 0.798537i −0.0696063 0.0314667i
\(645\) 0 0
\(646\) 21.6472 37.4941i 0.851699 1.47519i
\(647\) 11.1554 19.3217i 0.438564 0.759616i −0.559015 0.829158i \(-0.688820\pi\)
0.997579 + 0.0695419i \(0.0221538\pi\)
\(648\) 0 0
\(649\) 4.24413 + 7.35104i 0.166597 + 0.288554i
\(650\) 1.17352 + 2.03260i 0.0460294 + 0.0797253i
\(651\) 0 0
\(652\) −1.70655 + 2.95583i −0.0668336 + 0.115759i
\(653\) −22.1446 −0.866584 −0.433292 0.901254i \(-0.642648\pi\)
−0.433292 + 0.901254i \(0.642648\pi\)
\(654\) 0 0
\(655\) 19.8935 0.777303
\(656\) 5.77453 + 10.0018i 0.225457 + 0.390504i
\(657\) 0 0
\(658\) −24.4317 11.0448i −0.952447 0.430571i
\(659\) −19.3173 33.4585i −0.752494 1.30336i −0.946610 0.322380i \(-0.895517\pi\)
0.194116 0.980979i \(-0.437816\pi\)
\(660\) 0 0
\(661\) −23.2242 40.2255i −0.903318 1.56459i −0.823159 0.567810i \(-0.807791\pi\)
−0.0801584 0.996782i \(-0.525543\pi\)
\(662\) −27.2602 47.2161i −1.05950 1.83511i
\(663\) 0 0
\(664\) 7.63126 + 13.2177i 0.296150 + 0.512948i
\(665\) 8.45898 + 3.82403i 0.328025 + 0.148289i
\(666\) 0 0
\(667\) −1.26800 2.19625i −0.0490973 0.0850391i
\(668\) −2.53424 −0.0980527
\(669\) 0 0
\(670\) 27.8031 1.07413
\(671\) 6.23528 10.7998i 0.240710 0.416922i
\(672\) 0 0
\(673\) −13.5441 23.4590i −0.522086 0.904280i −0.999670 0.0256936i \(-0.991821\pi\)
0.477584 0.878586i \(-0.341513\pi\)
\(674\) 17.5644 + 30.4224i 0.676555 + 1.17183i
\(675\) 0 0
\(676\) 15.8479 27.4494i 0.609535 1.05575i
\(677\) 11.8568 20.5365i 0.455693 0.789283i −0.543035 0.839710i \(-0.682725\pi\)
0.998728 + 0.0504268i \(0.0160582\pi\)
\(678\) 0 0
\(679\) −33.3262 15.0657i −1.27894 0.578168i
\(680\) −4.20042 + 7.27533i −0.161079 + 0.278996i
\(681\) 0 0
\(682\) −9.64270 −0.369238
\(683\) −11.9778 + 20.7462i −0.458319 + 0.793831i −0.998872 0.0474784i \(-0.984881\pi\)
0.540554 + 0.841310i \(0.318215\pi\)
\(684\) 0 0
\(685\) 13.5567 0.517974
\(686\) −39.0454 8.99895i −1.49076 0.343582i
\(687\) 0 0
\(688\) 13.6799 0.521542
\(689\) −5.28244 9.14945i −0.201245 0.348566i
\(690\) 0 0
\(691\) 5.46854 9.47179i 0.208033 0.360324i −0.743062 0.669223i \(-0.766627\pi\)
0.951095 + 0.308899i \(0.0999605\pi\)
\(692\) 18.8751 0.717524
\(693\) 0 0
\(694\) 22.3301 0.847638
\(695\) 5.37133 9.30342i 0.203746 0.352899i
\(696\) 0 0
\(697\) 15.1432 + 26.2288i 0.573589 + 0.993485i
\(698\) 8.14678 0.308360
\(699\) 0 0
\(700\) −6.46307 2.92175i −0.244281 0.110432i
\(701\) −39.4789 −1.49110 −0.745550 0.666450i \(-0.767813\pi\)
−0.745550 + 0.666450i \(0.767813\pi\)
\(702\) 0 0
\(703\) −4.01592 + 6.95578i −0.151463 + 0.262342i
\(704\) 30.7622 1.15939
\(705\) 0 0
\(706\) −16.2217 + 28.0969i −0.610513 + 1.05744i
\(707\) 22.1131 15.8745i 0.831648 0.597024i
\(708\) 0 0
\(709\) 3.91439 6.77992i 0.147008 0.254625i −0.783112 0.621880i \(-0.786369\pi\)
0.930120 + 0.367255i \(0.119702\pi\)
\(710\) −11.8705 + 20.5604i −0.445494 + 0.771618i
\(711\) 0 0
\(712\) −9.98918 17.3018i −0.374360 0.648411i
\(713\) 0.241627 + 0.418509i 0.00904899 + 0.0156733i
\(714\) 0 0
\(715\) 1.36724 2.36814i 0.0511320 0.0885633i
\(716\) −21.1919 −0.791977
\(717\) 0 0
\(718\) 16.4751 0.614845
\(719\) −10.3821 17.9824i −0.387188 0.670629i 0.604882 0.796315i \(-0.293220\pi\)
−0.992070 + 0.125686i \(0.959887\pi\)
\(720\) 0 0
\(721\) 39.4815 28.3430i 1.47037 1.05555i
\(722\) −7.23583 12.5328i −0.269290 0.466423i
\(723\) 0 0
\(724\) −17.6956 30.6497i −0.657653 1.13909i
\(725\) −4.63947 8.03580i −0.172306 0.298442i
\(726\) 0 0
\(727\) 16.9614 + 29.3780i 0.629063 + 1.08957i 0.987740 + 0.156108i \(0.0498947\pi\)
−0.358677 + 0.933462i \(0.616772\pi\)
\(728\) −0.417976 4.20704i −0.0154912 0.155923i
\(729\) 0 0
\(730\) 0.233397 + 0.404255i 0.00863840 + 0.0149622i
\(731\) 35.8744 1.32686
\(732\) 0 0
\(733\) 48.3519 1.78592 0.892960 0.450136i \(-0.148625\pi\)
0.892960 + 0.450136i \(0.148625\pi\)
\(734\) −11.0282 + 19.1015i −0.407060 + 0.705048i
\(735\) 0 0
\(736\) −1.04557 1.81098i −0.0385403 0.0667538i
\(737\) −16.1963 28.0529i −0.596600 1.03334i
\(738\) 0 0
\(739\) 20.2749 35.1172i 0.745825 1.29181i −0.203983 0.978974i \(-0.565389\pi\)
0.949808 0.312832i \(-0.101278\pi\)
\(740\) 3.06836 5.31456i 0.112795 0.195367i
\(741\) 0 0
\(742\) 50.7966 + 22.9635i 1.86480 + 0.843017i
\(743\) 10.6501 18.4465i 0.390714 0.676736i −0.601830 0.798624i \(-0.705562\pi\)
0.992544 + 0.121888i \(0.0388948\pi\)
\(744\) 0 0
\(745\) 11.9813 0.438960
\(746\) −21.8390 + 37.8262i −0.799582 + 1.38492i
\(747\) 0 0
\(748\) 38.5396 1.40915
\(749\) 34.8031 + 15.7334i 1.27168 + 0.574885i
\(750\) 0 0
\(751\) 28.8893 1.05418 0.527092 0.849808i \(-0.323282\pi\)
0.527092 + 0.849808i \(0.323282\pi\)
\(752\) −5.09348 8.82217i −0.185740 0.321712i
\(753\) 0 0
\(754\) 10.8891 18.8604i 0.396556 0.686856i
\(755\) 5.76381 0.209766
\(756\) 0 0
\(757\) −42.7548 −1.55395 −0.776975 0.629531i \(-0.783247\pi\)
−0.776975 + 0.629531i \(0.783247\pi\)
\(758\) −17.2447 + 29.8687i −0.626357 + 1.08488i
\(759\) 0 0
\(760\) −2.58415 4.47587i −0.0937368 0.162357i
\(761\) −16.8231 −0.609837 −0.304918 0.952379i \(-0.598629\pi\)
−0.304918 + 0.952379i \(0.598629\pi\)
\(762\) 0 0
\(763\) 5.24290 + 52.7711i 0.189806 + 1.91044i
\(764\) 18.5878 0.672481
\(765\) 0 0
\(766\) 32.1280 55.6473i 1.16083 2.01062i
\(767\) 3.65312 0.131907
\(768\) 0 0
\(769\) 10.7497 18.6190i 0.387643 0.671417i −0.604489 0.796613i \(-0.706623\pi\)
0.992132 + 0.125197i \(0.0399561\pi\)
\(770\) 1.42649 + 14.3580i 0.0514070 + 0.517425i
\(771\) 0 0
\(772\) −13.1887 + 22.8435i −0.474671 + 0.822155i
\(773\) −2.71661 + 4.70531i −0.0977098 + 0.169238i −0.910736 0.412988i \(-0.864485\pi\)
0.813027 + 0.582227i \(0.197818\pi\)
\(774\) 0 0
\(775\) 0.884081 + 1.53127i 0.0317571 + 0.0550050i
\(776\) 10.1809 + 17.6338i 0.365472 + 0.633016i
\(777\) 0 0
\(778\) −1.02454 + 1.77455i −0.0367314 + 0.0636207i
\(779\) −18.6325 −0.667580
\(780\) 0 0
\(781\) 27.6601 0.989758
\(782\) −1.68619 2.92057i −0.0602981 0.104439i
\(783\) 0 0
\(784\) −10.0572 11.4287i −0.359185 0.408167i
\(785\) 5.56990 + 9.64735i 0.198798 + 0.344329i
\(786\) 0 0
\(787\) −13.2465 22.9436i −0.472187 0.817852i 0.527307 0.849675i \(-0.323202\pi\)
−0.999494 + 0.0318233i \(0.989869\pi\)
\(788\) 6.60257 + 11.4360i 0.235207 + 0.407390i
\(789\) 0 0
\(790\) −4.22268 7.31390i −0.150236 0.260217i
\(791\) 4.90046 + 49.3244i 0.174240 + 1.75377i
\(792\) 0 0
\(793\) −2.68350 4.64796i −0.0952939 0.165054i
\(794\) 23.4098 0.830783
\(795\) 0 0
\(796\) −15.8928 −0.563305
\(797\) −18.9194 + 32.7694i −0.670160 + 1.16075i 0.307698 + 0.951484i \(0.400441\pi\)
−0.977858 + 0.209268i \(0.932892\pi\)
\(798\) 0 0
\(799\) −13.3572 23.1354i −0.472544 0.818471i
\(800\) −3.82562 6.62617i −0.135256 0.234270i
\(801\) 0 0
\(802\) 3.53073 6.11540i 0.124674 0.215942i
\(803\) 0.271925 0.470987i 0.00959601 0.0166208i
\(804\) 0 0
\(805\) 0.587415 0.421693i 0.0207036 0.0148627i
\(806\) −2.07498 + 3.59398i −0.0730882 + 0.126592i
\(807\) 0 0
\(808\) −15.1550 −0.533151
\(809\) 17.1655 29.7315i 0.603506 1.04530i −0.388780 0.921331i \(-0.627103\pi\)
0.992286 0.123972i \(-0.0395633\pi\)
\(810\) 0 0
\(811\) 25.0033 0.877983 0.438992 0.898491i \(-0.355336\pi\)
0.438992 + 0.898491i \(0.355336\pi\)
\(812\) 6.50667 + 65.4913i 0.228339 + 2.29829i
\(813\) 0 0
\(814\) −12.4837 −0.437554
\(815\) −0.636575 1.10258i −0.0222982 0.0386217i
\(816\) 0 0
\(817\) −11.0352 + 19.1135i −0.386072 + 0.668696i
\(818\) −71.3905 −2.49611
\(819\) 0 0
\(820\) 14.2362 0.497149
\(821\) 21.8766 37.8914i 0.763499 1.32242i −0.177537 0.984114i \(-0.556813\pi\)
0.941037 0.338305i \(-0.109854\pi\)
\(822\) 0 0
\(823\) 1.09251 + 1.89229i 0.0380826 + 0.0659610i 0.884438 0.466657i \(-0.154542\pi\)
−0.846356 + 0.532618i \(0.821208\pi\)
\(824\) −27.0583 −0.942620
\(825\) 0 0
\(826\) −15.6587 + 11.2411i −0.544837 + 0.391128i
\(827\) −30.4431 −1.05861 −0.529305 0.848432i \(-0.677547\pi\)
−0.529305 + 0.848432i \(0.677547\pi\)
\(828\) 0 0
\(829\) −15.0073 + 25.9934i −0.521225 + 0.902789i 0.478470 + 0.878104i \(0.341192\pi\)
−0.999695 + 0.0246849i \(0.992142\pi\)
\(830\) −22.4176 −0.778125
\(831\) 0 0
\(832\) 6.61962 11.4655i 0.229494 0.397495i
\(833\) −26.3741 29.9707i −0.913807 1.03842i
\(834\) 0 0
\(835\) 0.472660 0.818671i 0.0163571 0.0283313i
\(836\) −11.8550 + 20.5335i −0.410014 + 0.710165i
\(837\) 0 0
\(838\) 36.8330 + 63.7966i 1.27237 + 2.20382i
\(839\) 2.88789 + 5.00197i 0.0997009 + 0.172687i 0.911561 0.411165i \(-0.134878\pi\)
−0.811860 + 0.583852i \(0.801545\pi\)
\(840\) 0 0
\(841\) −28.5494 + 49.4490i −0.984461 + 1.70514i
\(842\) 36.7715 1.26723
\(843\) 0 0
\(844\) −8.42023 −0.289836
\(845\) 5.91157 + 10.2391i 0.203364 + 0.352237i
\(846\) 0 0
\(847\) −9.98607 + 7.16880i −0.343125 + 0.246323i
\(848\) 10.5900 + 18.3424i 0.363662 + 0.629881i
\(849\) 0 0
\(850\) −6.16956 10.6860i −0.211614 0.366527i
\(851\) 0.312816 + 0.541814i 0.0107232 + 0.0185731i
\(852\) 0 0
\(853\) 22.8381 + 39.5568i 0.781962 + 1.35440i 0.930797 + 0.365536i \(0.119114\pi\)
−0.148835 + 0.988862i \(0.547552\pi\)
\(854\) 25.8049 + 11.6656i 0.883025 + 0.399187i
\(855\) 0 0
\(856\) −10.6321 18.4153i −0.363396 0.629421i
\(857\) −33.7447 −1.15270 −0.576348 0.817204i \(-0.695523\pi\)
−0.576348 + 0.817204i \(0.695523\pi\)
\(858\) 0 0
\(859\) 51.2677 1.74923 0.874615 0.484818i \(-0.161114\pi\)
0.874615 + 0.484818i \(0.161114\pi\)
\(860\) 8.43141 14.6036i 0.287509 0.497980i
\(861\) 0 0
\(862\) −2.50788 4.34377i −0.0854186 0.147949i
\(863\) −8.50532 14.7316i −0.289524 0.501471i 0.684172 0.729321i \(-0.260164\pi\)
−0.973696 + 0.227850i \(0.926831\pi\)
\(864\) 0 0
\(865\) −3.52039 + 6.09749i −0.119697 + 0.207321i
\(866\) −23.6383 + 40.9427i −0.803261 + 1.39129i
\(867\) 0 0
\(868\) −1.23989 12.4798i −0.0420846 0.423592i
\(869\) −4.91974 + 8.52124i −0.166891 + 0.289063i
\(870\) 0 0
\(871\) −13.9410 −0.472371
\(872\) 14.7621 25.5688i 0.499909 0.865868i
\(873\) 0 0
\(874\) 2.07473 0.0701788
\(875\) 2.14928 1.54292i 0.0726588 0.0521603i
\(876\) 0 0
\(877\) −35.0553 −1.18373 −0.591867 0.806036i \(-0.701609\pi\)
−0.591867 + 0.806036i \(0.701609\pi\)
\(878\) 18.1720 + 31.4748i 0.613275 + 1.06222i
\(879\) 0 0
\(880\) −2.74099 + 4.74753i −0.0923988 + 0.160039i
\(881\) 25.6988 0.865813 0.432907 0.901439i \(-0.357488\pi\)
0.432907 + 0.901439i \(0.357488\pi\)
\(882\) 0 0
\(883\) 28.5262 0.959985 0.479992 0.877273i \(-0.340639\pi\)
0.479992 + 0.877273i \(0.340639\pi\)
\(884\) 8.29322 14.3643i 0.278931 0.483123i
\(885\) 0 0
\(886\) −17.6842 30.6299i −0.594111 1.02903i
\(887\) −17.8373 −0.598919 −0.299460 0.954109i \(-0.596806\pi\)
−0.299460 + 0.954109i \(0.596806\pi\)
\(888\) 0 0
\(889\) −22.8778 + 16.4235i −0.767296 + 0.550827i
\(890\) 29.3442 0.983619
\(891\) 0 0
\(892\) −3.32548 + 5.75990i −0.111345 + 0.192856i
\(893\) 16.4350 0.549977
\(894\) 0 0
\(895\) 3.95249 6.84590i 0.132117 0.228833i
\(896\) 2.90375 + 29.2269i 0.0970074 + 0.976404i
\(897\) 0 0
\(898\) −27.0374 + 46.8301i −0.902249 + 1.56274i
\(899\) 8.20334 14.2086i 0.273597 0.473883i
\(900\) 0 0
\(901\) 27.7713 + 48.1014i 0.925197 + 1.60249i
\(902\) −14.4801 25.0802i −0.482133 0.835080i
\(903\) 0 0
\(904\) 13.7980 23.8988i 0.458913 0.794861i
\(905\) 13.2016 0.438837
\(906\) 0 0
\(907\) 23.9137 0.794043 0.397021 0.917809i \(-0.370044\pi\)
0.397021 + 0.917809i \(0.370044\pi\)
\(908\) 35.5481 + 61.5712i 1.17971 + 2.04331i
\(909\) 0 0
\(910\) 5.65838 + 2.55797i 0.187574 + 0.0847959i
\(911\) 8.81756 + 15.2725i 0.292139 + 0.505999i 0.974315 0.225188i \(-0.0722997\pi\)
−0.682176 + 0.731188i \(0.738966\pi\)
\(912\) 0 0
\(913\) 13.0591 + 22.6190i 0.432192 + 0.748579i
\(914\) −5.35301 9.27169i −0.177062 0.306680i
\(915\) 0 0
\(916\) 27.4274 + 47.5056i 0.906226 + 1.56963i
\(917\) 42.7566 30.6941i 1.41195 1.01361i
\(918\) 0 0
\(919\) −0.708010 1.22631i −0.0233551 0.0404522i 0.854112 0.520090i \(-0.174101\pi\)
−0.877467 + 0.479638i \(0.840768\pi\)
\(920\) −0.402579 −0.0132727
\(921\) 0 0
\(922\) −29.2985 −0.964894
\(923\) 5.95210 10.3093i 0.195916 0.339336i
\(924\) 0 0
\(925\) 1.14456 + 1.98243i 0.0376328 + 0.0651819i
\(926\) −31.9362 55.3151i −1.04949 1.81777i
\(927\) 0 0
\(928\) −35.4977 + 61.4838i −1.16527 + 2.01830i
\(929\) −9.67639 + 16.7600i −0.317472 + 0.549878i −0.979960 0.199195i \(-0.936167\pi\)
0.662488 + 0.749073i \(0.269501\pi\)
\(930\) 0 0
\(931\) 24.0809 4.83265i 0.789218 0.158384i
\(932\) −27.7825 + 48.1207i −0.910047 + 1.57625i
\(933\) 0 0
\(934\) −22.5687 −0.738472
\(935\) −7.18800 + 12.4500i −0.235073 + 0.407158i
\(936\) 0 0
\(937\) 9.34357 0.305241 0.152621 0.988285i \(-0.451229\pi\)
0.152621 + 0.988285i \(0.451229\pi\)
\(938\) 59.7565 42.8980i 1.95112 1.40067i
\(939\) 0 0
\(940\) −12.5572 −0.409570
\(941\) −16.3696 28.3530i −0.533634 0.924281i −0.999228 0.0392827i \(-0.987493\pi\)
0.465594 0.884998i \(-0.345841\pi\)
\(942\) 0 0
\(943\) −0.725682 + 1.25692i −0.0236315 + 0.0409309i
\(944\) −7.32362 −0.238363
\(945\) 0 0
\(946\) −34.3034 −1.11530
\(947\) 9.85492 17.0692i 0.320242 0.554675i −0.660296 0.751005i \(-0.729569\pi\)
0.980538 + 0.196330i \(0.0629025\pi\)
\(948\) 0 0
\(949\) −0.117029 0.202701i −0.00379893 0.00657994i
\(950\) 7.59118 0.246290
\(951\) 0 0
\(952\) 2.19742 + 22.1176i 0.0712189 + 0.716836i
\(953\) −10.9242 −0.353870 −0.176935 0.984223i \(-0.556618\pi\)
−0.176935 + 0.984223i \(0.556618\pi\)
\(954\) 0 0
\(955\) −3.46679 + 6.00466i −0.112183 + 0.194306i
\(956\) −10.1044 −0.326801
\(957\) 0 0
\(958\) −32.7323 + 56.6940i −1.05753 + 1.83170i
\(959\) 29.1371 20.9169i 0.940885 0.675443i
\(960\) 0 0
\(961\) 13.9368 24.1392i 0.449574 0.778685i
\(962\) −2.68633 + 4.65286i −0.0866108 + 0.150014i
\(963\) 0 0
\(964\) −9.63634 16.6906i −0.310366 0.537569i
\(965\) −4.91963 8.52105i −0.158369 0.274302i
\(966\) 0 0
\(967\) 3.26247 5.65076i 0.104914 0.181716i −0.808789 0.588099i \(-0.799877\pi\)
0.913703 + 0.406383i \(0.133210\pi\)
\(968\) 6.84387 0.219970
\(969\) 0 0
\(970\) −29.9073 −0.960265
\(971\) −12.6674 21.9406i −0.406516 0.704107i 0.587980 0.808875i \(-0.299923\pi\)
−0.994497 + 0.104768i \(0.966590\pi\)
\(972\) 0 0
\(973\) −2.80998 28.2832i −0.0900838 0.906716i
\(974\) −14.0751 24.3788i −0.450996 0.781149i
\(975\) 0 0
\(976\) 5.37976 + 9.31802i 0.172202 + 0.298263i
\(977\) 12.6098 + 21.8408i 0.403423 + 0.698749i 0.994137 0.108132i \(-0.0344870\pi\)
−0.590713 + 0.806881i \(0.701154\pi\)
\(978\) 0 0
\(979\) −17.0941 29.6078i −0.546329 0.946270i
\(980\) −18.3990 + 3.69238i −0.587733 + 0.117949i
\(981\) 0 0
\(982\) 9.97281 + 17.2734i 0.318245 + 0.551217i
\(983\) −22.8298 −0.728159 −0.364079 0.931368i \(-0.618616\pi\)
−0.364079 + 0.931368i \(0.618616\pi\)
\(984\) 0 0
\(985\) −4.92577 −0.156948
\(986\) −57.2470 + 99.1548i −1.82312 + 3.15773i
\(987\) 0 0
\(988\) 5.10209 + 8.83707i 0.162319 + 0.281145i
\(989\) 0.859575 + 1.48883i 0.0273329 + 0.0473419i
\(990\) 0 0
\(991\) −9.84990 + 17.0605i −0.312892 + 0.541946i −0.978987 0.203921i \(-0.934631\pi\)
0.666095 + 0.745867i \(0.267965\pi\)
\(992\) 6.76432 11.7161i 0.214767 0.371988i
\(993\) 0 0
\(994\) 6.21001 + 62.5053i 0.196969 + 1.98255i
\(995\) 2.96416 5.13407i 0.0939701 0.162761i
\(996\) 0 0
\(997\) −6.93585 −0.219660 −0.109830 0.993950i \(-0.535031\pi\)
−0.109830 + 0.993950i \(0.535031\pi\)
\(998\) 24.1760 41.8741i 0.765279 1.32550i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 945.2.k.b.361.10 24
3.2 odd 2 315.2.k.b.256.3 yes 24
7.2 even 3 945.2.l.b.226.3 24
9.2 odd 6 315.2.l.b.151.10 yes 24
9.7 even 3 945.2.l.b.46.3 24
21.2 odd 6 315.2.l.b.121.10 yes 24
63.2 odd 6 315.2.k.b.16.3 24
63.16 even 3 inner 945.2.k.b.856.10 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
315.2.k.b.16.3 24 63.2 odd 6
315.2.k.b.256.3 yes 24 3.2 odd 2
315.2.l.b.121.10 yes 24 21.2 odd 6
315.2.l.b.151.10 yes 24 9.2 odd 6
945.2.k.b.361.10 24 1.1 even 1 trivial
945.2.k.b.856.10 24 63.16 even 3 inner
945.2.l.b.46.3 24 9.7 even 3
945.2.l.b.226.3 24 7.2 even 3