Newspace parameters
| Level: | \( N \) | \(=\) | \( 945 = 3^{3} \cdot 5 \cdot 7 \) |
| Weight: | \( k \) | \(=\) | \( 2 \) |
| Character orbit: | \([\chi]\) | \(=\) | 945.cl (of order \(18\), degree \(6\), minimal) |
Newform invariants
| Self dual: | no |
| Analytic conductor: | \(7.54586299101\) |
| Analytic rank: | \(0\) |
| Dimension: | \(840\) |
| Relative dimension: | \(140\) over \(\Q(\zeta_{18})\) |
| Twist minimal: | yes |
| Sato-Tate group: | $\mathrm{SU}(2)[C_{18}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
| Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 164.1 | −2.64397 | + | 0.962325i | −0.618652 | − | 1.61780i | 4.53239 | − | 3.80313i | −2.14428 | − | 0.634076i | 3.19254 | + | 3.68206i | −1.28661 | + | 2.31185i | −5.51000 | + | 9.54359i | −2.23454 | + | 2.00171i | 6.27960 | − | 0.387021i |
| 164.2 | −2.57075 | + | 0.935675i | 1.62751 | + | 0.592644i | 4.20116 | − | 3.52519i | 1.31963 | − | 1.80515i | −4.73843 | 0.000721851i | −2.63281 | − | 0.261393i | −4.76595 | + | 8.25487i | 2.29755 | + | 1.92906i | −1.70341 | + | 5.87533i | |
| 164.3 | −2.54060 | + | 0.924703i | 0.0346710 | + | 1.73170i | 4.06748 | − | 3.41302i | −1.28479 | − | 1.83011i | −1.68940 | − | 4.36751i | 2.45826 | + | 0.978251i | −4.47416 | + | 7.74947i | −2.99760 | + | 0.120080i | 4.95646 | + | 3.46152i |
| 164.4 | −2.52720 | + | 0.919827i | 0.283972 | + | 1.70861i | 4.00859 | − | 3.36361i | −0.783203 | + | 2.09442i | −2.28928 | − | 4.05681i | −0.948469 | − | 2.46990i | −4.34720 | + | 7.52958i | −2.83872 | + | 0.970395i | 0.0528103 | − | 6.01344i |
| 164.5 | −2.48051 | + | 0.902830i | 1.22402 | − | 1.22547i | 3.80572 | − | 3.19338i | 2.23036 | + | 0.159650i | −1.92979 | + | 4.14487i | 0.0269241 | + | 2.64561i | −3.91733 | + | 6.78501i | −0.00355513 | − | 3.00000i | −5.67656 | + | 1.61762i |
| 164.6 | −2.42629 | + | 0.883098i | 1.68421 | − | 0.404265i | 3.57494 | − | 2.99973i | −2.04190 | − | 0.911408i | −3.72938 | + | 2.46819i | −0.247245 | − | 2.63417i | −3.44278 | + | 5.96307i | 2.67314 | − | 1.36173i | 5.75909 | + | 0.408148i |
| 164.7 | −2.40949 | + | 0.876981i | 1.57723 | + | 0.715785i | 3.50444 | − | 2.94057i | 0.723633 | + | 2.11574i | −4.42804 | − | 0.341474i | 2.51534 | + | 0.820410i | −3.30094 | + | 5.71740i | 1.97530 | + | 2.25791i | −3.59905 | − | 4.46323i |
| 164.8 | −2.40712 | + | 0.876119i | 0.431623 | − | 1.67741i | 3.49454 | − | 2.93227i | −0.246975 | + | 2.22239i | 0.430644 | + | 4.41587i | −1.45064 | − | 2.21261i | −3.28115 | + | 5.68312i | −2.62740 | − | 1.44802i | −1.35258 | − | 5.56593i |
| 164.9 | −2.40313 | + | 0.874669i | −1.08875 | − | 1.34708i | 3.47792 | − | 2.91832i | 1.36945 | + | 1.76766i | 3.79467 | + | 2.28490i | 2.61877 | − | 0.376886i | −3.24797 | + | 5.62565i | −0.629228 | + | 2.93327i | −4.83708 | − | 3.05011i |
| 164.10 | −2.38791 | + | 0.869127i | −1.72713 | + | 0.130428i | 3.41463 | − | 2.86521i | −2.00703 | + | 0.985823i | 4.01087 | − | 1.81255i | 2.12013 | − | 1.58273i | −3.12242 | + | 5.40819i | 2.96598 | − | 0.450532i | 3.93578 | − | 4.09841i |
| 164.11 | −2.36799 | + | 0.861880i | 0.751798 | − | 1.56038i | 3.33247 | − | 2.79628i | 1.04214 | − | 1.97837i | −0.435390 | + | 4.34294i | 1.88227 | − | 1.85932i | −2.96126 | + | 5.12905i | −1.86960 | − | 2.34619i | −0.762669 | + | 5.58297i |
| 164.12 | −2.31452 | + | 0.842416i | −1.73066 | − | 0.0692943i | 3.11524 | − | 2.61400i | 1.44500 | − | 1.70645i | 4.06403 | − | 1.29756i | 1.47459 | + | 2.19672i | −2.54515 | + | 4.40834i | 2.99040 | + | 0.239850i | −1.90695 | + | 5.16690i |
| 164.13 | −2.31295 | + | 0.841846i | −1.30870 | + | 1.13459i | 3.10896 | − | 2.60873i | −0.669303 | − | 2.13355i | 2.07182 | − | 3.72598i | −2.63719 | + | 0.212653i | −2.53334 | + | 4.38787i | 0.425411 | − | 2.96968i | 3.34419 | + | 4.37135i |
| 164.14 | −2.27238 | + | 0.827080i | −1.05409 | + | 1.37437i | 2.94758 | − | 2.47331i | 2.19486 | − | 0.427300i | 1.25859 | − | 3.99491i | 0.611912 | − | 2.57402i | −2.23418 | + | 3.86972i | −0.777776 | − | 2.89742i | −4.63416 | + | 2.78632i |
| 164.15 | −2.11073 | + | 0.768243i | −1.17190 | + | 1.27541i | 2.33289 | − | 1.95753i | −1.57344 | + | 1.58880i | 1.49373 | − | 3.59234i | −0.526661 | + | 2.59280i | −1.17406 | + | 2.03353i | −0.253324 | − | 2.98929i | 2.10051 | − | 4.56231i |
| 164.16 | −2.10941 | + | 0.767763i | −0.701997 | − | 1.58341i | 2.32807 | − | 1.95348i | 2.23149 | + | 0.142944i | 2.69649 | + | 2.80110i | −2.04202 | − | 1.68231i | −1.16626 | + | 2.02001i | −2.01440 | + | 2.22310i | −4.81689 | + | 1.41173i |
| 164.17 | −2.09496 | + | 0.762503i | 1.18088 | + | 1.26710i | 2.27536 | − | 1.90925i | −2.20650 | + | 0.362415i | −3.44005 | − | 1.75410i | −0.629195 | + | 2.56985i | −1.08157 | + | 1.87333i | −0.211066 | + | 2.99257i | 4.34619 | − | 2.44171i |
| 164.18 | −2.08145 | + | 0.757587i | 1.45359 | − | 0.941852i | 2.22642 | − | 1.86819i | −0.223281 | + | 2.22489i | −2.31204 | + | 3.06164i | −2.35203 | + | 1.21159i | −1.00384 | + | 1.73871i | 1.22583 | − | 2.73813i | −1.22080 | − | 4.80017i |
| 164.19 | −2.06504 | + | 0.751615i | 0.229901 | + | 1.71673i | 2.16740 | − | 1.81866i | 1.78971 | + | 1.34050i | −1.76507 | − | 3.37232i | −2.12154 | + | 1.58084i | −0.911261 | + | 1.57835i | −2.89429 | + | 0.789355i | −4.70337 | − | 1.42302i |
| 164.20 | −2.00971 | + | 0.731473i | −1.63110 | − | 0.582691i | 1.97177 | − | 1.65451i | −1.57880 | − | 1.58348i | 3.70424 | − | 0.0220651i | −1.75435 | − | 1.98047i | −0.613768 | + | 1.06308i | 2.32094 | + | 1.90085i | 4.33119 | + | 2.02747i |
| See next 80 embeddings (of 840 total) | |||||||||||||||||||||||||||
Inner twists
| Char | Parity | Ord | Mult | Type |
|---|---|---|---|---|
| 1.a | even | 1 | 1 | trivial |
| 5.b | even | 2 | 1 | inner |
| 189.ba | even | 18 | 1 | inner |
| 945.cl | even | 18 | 1 | inner |
Twists
| By twisting character orbit | |||||||
|---|---|---|---|---|---|---|---|
| Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
| 1.a | even | 1 | 1 | trivial | 945.2.cl.a | ✓ | 840 |
| 5.b | even | 2 | 1 | inner | 945.2.cl.a | ✓ | 840 |
| 7.d | odd | 6 | 1 | 945.2.cq.a | yes | 840 | |
| 27.f | odd | 18 | 1 | 945.2.cq.a | yes | 840 | |
| 35.i | odd | 6 | 1 | 945.2.cq.a | yes | 840 | |
| 135.n | odd | 18 | 1 | 945.2.cq.a | yes | 840 | |
| 189.ba | even | 18 | 1 | inner | 945.2.cl.a | ✓ | 840 |
| 945.cl | even | 18 | 1 | inner | 945.2.cl.a | ✓ | 840 |
| By twisted newform orbit | |||||||
|---|---|---|---|---|---|---|---|
| Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
| 945.2.cl.a | ✓ | 840 | 1.a | even | 1 | 1 | trivial |
| 945.2.cl.a | ✓ | 840 | 5.b | even | 2 | 1 | inner |
| 945.2.cl.a | ✓ | 840 | 189.ba | even | 18 | 1 | inner |
| 945.2.cl.a | ✓ | 840 | 945.cl | even | 18 | 1 | inner |
| 945.2.cq.a | yes | 840 | 7.d | odd | 6 | 1 | |
| 945.2.cq.a | yes | 840 | 27.f | odd | 18 | 1 | |
| 945.2.cq.a | yes | 840 | 35.i | odd | 6 | 1 | |
| 945.2.cq.a | yes | 840 | 135.n | odd | 18 | 1 | |
Hecke kernels
This newform subspace is the entire newspace \(S_{2}^{\mathrm{new}}(945, [\chi])\).