Properties

Label 9409.2.a.q.1.88
Level $9409$
Weight $2$
Character 9409.1
Self dual yes
Analytic conductor $75.131$
Analytic rank $0$
Dimension $168$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [9409,2,Mod(1,9409)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(9409, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("9409.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 9409 = 97^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 9409.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [168,0,0,168,42] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(75.1312432618\)
Analytic rank: \(0\)
Dimension: \(168\)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.88
Character \(\chi\) \(=\) 9409.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.182861 q^{2} +0.212177 q^{3} -1.96656 q^{4} +1.31754 q^{5} +0.0387989 q^{6} -0.932372 q^{7} -0.725328 q^{8} -2.95498 q^{9} +0.240927 q^{10} -0.156648 q^{11} -0.417260 q^{12} -5.64631 q^{13} -0.170494 q^{14} +0.279553 q^{15} +3.80049 q^{16} +4.23788 q^{17} -0.540350 q^{18} -6.19567 q^{19} -2.59103 q^{20} -0.197828 q^{21} -0.0286448 q^{22} +8.05860 q^{23} -0.153898 q^{24} -3.26408 q^{25} -1.03249 q^{26} -1.26351 q^{27} +1.83357 q^{28} -4.32772 q^{29} +0.0511193 q^{30} +1.97001 q^{31} +2.14562 q^{32} -0.0332372 q^{33} +0.774941 q^{34} -1.22844 q^{35} +5.81115 q^{36} -3.36489 q^{37} -1.13295 q^{38} -1.19802 q^{39} -0.955651 q^{40} +4.91958 q^{41} -0.0361750 q^{42} -7.62311 q^{43} +0.308058 q^{44} -3.89331 q^{45} +1.47360 q^{46} +5.05439 q^{47} +0.806378 q^{48} -6.13068 q^{49} -0.596872 q^{50} +0.899182 q^{51} +11.1038 q^{52} -1.53542 q^{53} -0.231047 q^{54} -0.206390 q^{55} +0.676276 q^{56} -1.31458 q^{57} -0.791371 q^{58} -3.79302 q^{59} -0.549758 q^{60} -0.386484 q^{61} +0.360237 q^{62} +2.75514 q^{63} -7.20863 q^{64} -7.43926 q^{65} -0.00607778 q^{66} -2.31208 q^{67} -8.33405 q^{68} +1.70985 q^{69} -0.224633 q^{70} -9.43418 q^{71} +2.14333 q^{72} -6.50580 q^{73} -0.615306 q^{74} -0.692565 q^{75} +12.1842 q^{76} +0.146054 q^{77} -0.219071 q^{78} +5.96451 q^{79} +5.00731 q^{80} +8.59685 q^{81} +0.899598 q^{82} -12.1863 q^{83} +0.389042 q^{84} +5.58358 q^{85} -1.39397 q^{86} -0.918245 q^{87} +0.113621 q^{88} +13.8185 q^{89} -0.711934 q^{90} +5.26447 q^{91} -15.8477 q^{92} +0.417991 q^{93} +0.924249 q^{94} -8.16306 q^{95} +0.455252 q^{96} -1.12106 q^{98} +0.462892 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 168 q + 168 q^{4} + 42 q^{5} + 42 q^{7} + 168 q^{9} + 42 q^{10} + 42 q^{13} + 70 q^{14} + 84 q^{15} + 140 q^{16} + 49 q^{17} - 49 q^{18} + 84 q^{19} + 98 q^{20} + 84 q^{21} - 35 q^{22} + 126 q^{23} + 168 q^{25}+ \cdots - 84 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.182861 0.129302 0.0646510 0.997908i \(-0.479407\pi\)
0.0646510 + 0.997908i \(0.479407\pi\)
\(3\) 0.212177 0.122501 0.0612504 0.998122i \(-0.480491\pi\)
0.0612504 + 0.998122i \(0.480491\pi\)
\(4\) −1.96656 −0.983281
\(5\) 1.31754 0.589223 0.294612 0.955617i \(-0.404810\pi\)
0.294612 + 0.955617i \(0.404810\pi\)
\(6\) 0.0387989 0.0158396
\(7\) −0.932372 −0.352404 −0.176202 0.984354i \(-0.556381\pi\)
−0.176202 + 0.984354i \(0.556381\pi\)
\(8\) −0.725328 −0.256442
\(9\) −2.95498 −0.984994
\(10\) 0.240927 0.0761878
\(11\) −0.156648 −0.0472312 −0.0236156 0.999721i \(-0.507518\pi\)
−0.0236156 + 0.999721i \(0.507518\pi\)
\(12\) −0.417260 −0.120453
\(13\) −5.64631 −1.56601 −0.783003 0.622018i \(-0.786313\pi\)
−0.783003 + 0.622018i \(0.786313\pi\)
\(14\) −0.170494 −0.0455665
\(15\) 0.279553 0.0721803
\(16\) 3.80049 0.950122
\(17\) 4.23788 1.02784 0.513918 0.857839i \(-0.328194\pi\)
0.513918 + 0.857839i \(0.328194\pi\)
\(18\) −0.540350 −0.127362
\(19\) −6.19567 −1.42139 −0.710693 0.703503i \(-0.751618\pi\)
−0.710693 + 0.703503i \(0.751618\pi\)
\(20\) −2.59103 −0.579372
\(21\) −0.197828 −0.0431697
\(22\) −0.0286448 −0.00610709
\(23\) 8.05860 1.68033 0.840167 0.542327i \(-0.182457\pi\)
0.840167 + 0.542327i \(0.182457\pi\)
\(24\) −0.153898 −0.0314144
\(25\) −3.26408 −0.652816
\(26\) −1.03249 −0.202488
\(27\) −1.26351 −0.243163
\(28\) 1.83357 0.346512
\(29\) −4.32772 −0.803638 −0.401819 0.915719i \(-0.631622\pi\)
−0.401819 + 0.915719i \(0.631622\pi\)
\(30\) 0.0511193 0.00933306
\(31\) 1.97001 0.353824 0.176912 0.984227i \(-0.443389\pi\)
0.176912 + 0.984227i \(0.443389\pi\)
\(32\) 2.14562 0.379295
\(33\) −0.0332372 −0.00578585
\(34\) 0.774941 0.132901
\(35\) −1.22844 −0.207644
\(36\) 5.81115 0.968525
\(37\) −3.36489 −0.553184 −0.276592 0.960987i \(-0.589205\pi\)
−0.276592 + 0.960987i \(0.589205\pi\)
\(38\) −1.13295 −0.183788
\(39\) −1.19802 −0.191837
\(40\) −0.955651 −0.151102
\(41\) 4.91958 0.768309 0.384155 0.923269i \(-0.374493\pi\)
0.384155 + 0.923269i \(0.374493\pi\)
\(42\) −0.0361750 −0.00558193
\(43\) −7.62311 −1.16251 −0.581257 0.813720i \(-0.697439\pi\)
−0.581257 + 0.813720i \(0.697439\pi\)
\(44\) 0.308058 0.0464415
\(45\) −3.89331 −0.580381
\(46\) 1.47360 0.217271
\(47\) 5.05439 0.737258 0.368629 0.929577i \(-0.379827\pi\)
0.368629 + 0.929577i \(0.379827\pi\)
\(48\) 0.806378 0.116391
\(49\) −6.13068 −0.875812
\(50\) −0.596872 −0.0844105
\(51\) 0.899182 0.125911
\(52\) 11.1038 1.53982
\(53\) −1.53542 −0.210907 −0.105453 0.994424i \(-0.533629\pi\)
−0.105453 + 0.994424i \(0.533629\pi\)
\(54\) −0.231047 −0.0314415
\(55\) −0.206390 −0.0278297
\(56\) 0.676276 0.0903712
\(57\) −1.31458 −0.174121
\(58\) −0.791371 −0.103912
\(59\) −3.79302 −0.493809 −0.246904 0.969040i \(-0.579413\pi\)
−0.246904 + 0.969040i \(0.579413\pi\)
\(60\) −0.549758 −0.0709735
\(61\) −0.386484 −0.0494843 −0.0247421 0.999694i \(-0.507876\pi\)
−0.0247421 + 0.999694i \(0.507876\pi\)
\(62\) 0.360237 0.0457501
\(63\) 2.75514 0.347115
\(64\) −7.20863 −0.901079
\(65\) −7.43926 −0.922727
\(66\) −0.00607778 −0.000748123 0
\(67\) −2.31208 −0.282465 −0.141233 0.989976i \(-0.545107\pi\)
−0.141233 + 0.989976i \(0.545107\pi\)
\(68\) −8.33405 −1.01065
\(69\) 1.70985 0.205842
\(70\) −0.224633 −0.0268488
\(71\) −9.43418 −1.11963 −0.559816 0.828617i \(-0.689128\pi\)
−0.559816 + 0.828617i \(0.689128\pi\)
\(72\) 2.14333 0.252594
\(73\) −6.50580 −0.761446 −0.380723 0.924689i \(-0.624325\pi\)
−0.380723 + 0.924689i \(0.624325\pi\)
\(74\) −0.615306 −0.0715278
\(75\) −0.692565 −0.0799705
\(76\) 12.1842 1.39762
\(77\) 0.146054 0.0166444
\(78\) −0.219071 −0.0248049
\(79\) 5.96451 0.671060 0.335530 0.942030i \(-0.391085\pi\)
0.335530 + 0.942030i \(0.391085\pi\)
\(80\) 5.00731 0.559834
\(81\) 8.59685 0.955206
\(82\) 0.899598 0.0993439
\(83\) −12.1863 −1.33762 −0.668810 0.743433i \(-0.733196\pi\)
−0.668810 + 0.743433i \(0.733196\pi\)
\(84\) 0.389042 0.0424479
\(85\) 5.58358 0.605625
\(86\) −1.39397 −0.150315
\(87\) −0.918245 −0.0984462
\(88\) 0.113621 0.0121121
\(89\) 13.8185 1.46476 0.732380 0.680896i \(-0.238410\pi\)
0.732380 + 0.680896i \(0.238410\pi\)
\(90\) −0.711934 −0.0750444
\(91\) 5.26447 0.551866
\(92\) −15.8477 −1.65224
\(93\) 0.417991 0.0433437
\(94\) 0.924249 0.0953290
\(95\) −8.16306 −0.837513
\(96\) 0.455252 0.0464639
\(97\) 0 0
\(98\) −1.12106 −0.113244
\(99\) 0.462892 0.0465224
\(100\) 6.41902 0.641902
\(101\) 14.4677 1.43959 0.719795 0.694186i \(-0.244236\pi\)
0.719795 + 0.694186i \(0.244236\pi\)
\(102\) 0.164425 0.0162805
\(103\) −2.03065 −0.200086 −0.100043 0.994983i \(-0.531898\pi\)
−0.100043 + 0.994983i \(0.531898\pi\)
\(104\) 4.09543 0.401590
\(105\) −0.260647 −0.0254366
\(106\) −0.280769 −0.0272707
\(107\) −16.6070 −1.60546 −0.802730 0.596343i \(-0.796620\pi\)
−0.802730 + 0.596343i \(0.796620\pi\)
\(108\) 2.48478 0.239098
\(109\) 14.7502 1.41281 0.706406 0.707806i \(-0.250315\pi\)
0.706406 + 0.707806i \(0.250315\pi\)
\(110\) −0.0377407 −0.00359844
\(111\) −0.713953 −0.0677654
\(112\) −3.54347 −0.334827
\(113\) −14.9769 −1.40891 −0.704453 0.709751i \(-0.748807\pi\)
−0.704453 + 0.709751i \(0.748807\pi\)
\(114\) −0.240386 −0.0225142
\(115\) 10.6176 0.990092
\(116\) 8.51074 0.790202
\(117\) 16.6847 1.54251
\(118\) −0.693594 −0.0638505
\(119\) −3.95128 −0.362213
\(120\) −0.202768 −0.0185101
\(121\) −10.9755 −0.997769
\(122\) −0.0706728 −0.00639842
\(123\) 1.04382 0.0941184
\(124\) −3.87414 −0.347908
\(125\) −10.8883 −0.973877
\(126\) 0.503807 0.0448827
\(127\) 9.80034 0.869639 0.434820 0.900518i \(-0.356812\pi\)
0.434820 + 0.900518i \(0.356812\pi\)
\(128\) −5.60941 −0.495806
\(129\) −1.61745 −0.142409
\(130\) −1.36035 −0.119310
\(131\) 14.3773 1.25615 0.628076 0.778152i \(-0.283843\pi\)
0.628076 + 0.778152i \(0.283843\pi\)
\(132\) 0.0653630 0.00568912
\(133\) 5.77667 0.500901
\(134\) −0.422788 −0.0365233
\(135\) −1.66473 −0.143277
\(136\) −3.07385 −0.263581
\(137\) 3.10358 0.265157 0.132578 0.991173i \(-0.457674\pi\)
0.132578 + 0.991173i \(0.457674\pi\)
\(138\) 0.312665 0.0266158
\(139\) 9.93757 0.842894 0.421447 0.906853i \(-0.361522\pi\)
0.421447 + 0.906853i \(0.361522\pi\)
\(140\) 2.41580 0.204173
\(141\) 1.07243 0.0903147
\(142\) −1.72514 −0.144771
\(143\) 0.884484 0.0739643
\(144\) −11.2304 −0.935865
\(145\) −5.70196 −0.473522
\(146\) −1.18965 −0.0984565
\(147\) −1.30079 −0.107288
\(148\) 6.61726 0.543935
\(149\) 7.01173 0.574423 0.287212 0.957867i \(-0.407272\pi\)
0.287212 + 0.957867i \(0.407272\pi\)
\(150\) −0.126643 −0.0103403
\(151\) 13.7266 1.11705 0.558526 0.829487i \(-0.311367\pi\)
0.558526 + 0.829487i \(0.311367\pi\)
\(152\) 4.49390 0.364503
\(153\) −12.5228 −1.01241
\(154\) 0.0267076 0.00215216
\(155\) 2.59557 0.208481
\(156\) 2.35598 0.188630
\(157\) 9.67217 0.771923 0.385962 0.922515i \(-0.373870\pi\)
0.385962 + 0.922515i \(0.373870\pi\)
\(158\) 1.09067 0.0867694
\(159\) −0.325782 −0.0258362
\(160\) 2.82694 0.223489
\(161\) −7.51362 −0.592156
\(162\) 1.57203 0.123510
\(163\) 17.4563 1.36728 0.683640 0.729819i \(-0.260396\pi\)
0.683640 + 0.729819i \(0.260396\pi\)
\(164\) −9.67466 −0.755464
\(165\) −0.0437914 −0.00340916
\(166\) −2.22840 −0.172957
\(167\) −16.9851 −1.31434 −0.657172 0.753741i \(-0.728247\pi\)
−0.657172 + 0.753741i \(0.728247\pi\)
\(168\) 0.143491 0.0110705
\(169\) 18.8809 1.45237
\(170\) 1.02102 0.0783085
\(171\) 18.3081 1.40006
\(172\) 14.9913 1.14308
\(173\) 12.0005 0.912384 0.456192 0.889881i \(-0.349213\pi\)
0.456192 + 0.889881i \(0.349213\pi\)
\(174\) −0.167911 −0.0127293
\(175\) 3.04334 0.230055
\(176\) −0.595339 −0.0448754
\(177\) −0.804792 −0.0604919
\(178\) 2.52686 0.189396
\(179\) 23.7165 1.77265 0.886326 0.463062i \(-0.153249\pi\)
0.886326 + 0.463062i \(0.153249\pi\)
\(180\) 7.65644 0.570677
\(181\) 10.3002 0.765605 0.382803 0.923830i \(-0.374959\pi\)
0.382803 + 0.923830i \(0.374959\pi\)
\(182\) 0.962664 0.0713574
\(183\) −0.0820033 −0.00606186
\(184\) −5.84513 −0.430909
\(185\) −4.43338 −0.325949
\(186\) 0.0764342 0.00560442
\(187\) −0.663855 −0.0485459
\(188\) −9.93977 −0.724932
\(189\) 1.17806 0.0856916
\(190\) −1.49270 −0.108292
\(191\) −17.0133 −1.23104 −0.615521 0.788121i \(-0.711054\pi\)
−0.615521 + 0.788121i \(0.711054\pi\)
\(192\) −1.52951 −0.110383
\(193\) 19.6564 1.41490 0.707449 0.706764i \(-0.249846\pi\)
0.707449 + 0.706764i \(0.249846\pi\)
\(194\) 0 0
\(195\) −1.57844 −0.113035
\(196\) 12.0564 0.861169
\(197\) −9.39677 −0.669492 −0.334746 0.942308i \(-0.608651\pi\)
−0.334746 + 0.942308i \(0.608651\pi\)
\(198\) 0.0846448 0.00601544
\(199\) 3.82942 0.271460 0.135730 0.990746i \(-0.456662\pi\)
0.135730 + 0.990746i \(0.456662\pi\)
\(200\) 2.36753 0.167410
\(201\) −0.490571 −0.0346022
\(202\) 2.64558 0.186142
\(203\) 4.03505 0.283205
\(204\) −1.76830 −0.123806
\(205\) 6.48175 0.452705
\(206\) −0.371327 −0.0258716
\(207\) −23.8130 −1.65512
\(208\) −21.4588 −1.48790
\(209\) 0.970540 0.0671337
\(210\) −0.0476622 −0.00328900
\(211\) 12.0717 0.831048 0.415524 0.909582i \(-0.363598\pi\)
0.415524 + 0.909582i \(0.363598\pi\)
\(212\) 3.01950 0.207380
\(213\) −2.00172 −0.137156
\(214\) −3.03677 −0.207589
\(215\) −10.0438 −0.684980
\(216\) 0.916462 0.0623573
\(217\) −1.83678 −0.124689
\(218\) 2.69723 0.182680
\(219\) −1.38038 −0.0932777
\(220\) 0.405880 0.0273644
\(221\) −23.9284 −1.60960
\(222\) −0.130554 −0.00876221
\(223\) −17.7555 −1.18899 −0.594497 0.804097i \(-0.702649\pi\)
−0.594497 + 0.804097i \(0.702649\pi\)
\(224\) −2.00051 −0.133665
\(225\) 9.64530 0.643020
\(226\) −2.73868 −0.182174
\(227\) −3.70215 −0.245720 −0.122860 0.992424i \(-0.539207\pi\)
−0.122860 + 0.992424i \(0.539207\pi\)
\(228\) 2.58521 0.171210
\(229\) −21.0058 −1.38810 −0.694052 0.719925i \(-0.744176\pi\)
−0.694052 + 0.719925i \(0.744176\pi\)
\(230\) 1.94153 0.128021
\(231\) 0.0309894 0.00203895
\(232\) 3.13902 0.206087
\(233\) −4.16366 −0.272770 −0.136385 0.990656i \(-0.543548\pi\)
−0.136385 + 0.990656i \(0.543548\pi\)
\(234\) 3.05099 0.199449
\(235\) 6.65937 0.434410
\(236\) 7.45920 0.485553
\(237\) 1.26553 0.0822053
\(238\) −0.722534 −0.0468349
\(239\) −1.24051 −0.0802419 −0.0401209 0.999195i \(-0.512774\pi\)
−0.0401209 + 0.999195i \(0.512774\pi\)
\(240\) 1.06244 0.0685801
\(241\) −13.5826 −0.874932 −0.437466 0.899235i \(-0.644124\pi\)
−0.437466 + 0.899235i \(0.644124\pi\)
\(242\) −2.00698 −0.129014
\(243\) 5.61460 0.360177
\(244\) 0.760045 0.0486569
\(245\) −8.07744 −0.516048
\(246\) 0.190874 0.0121697
\(247\) 34.9827 2.22590
\(248\) −1.42890 −0.0907354
\(249\) −2.58566 −0.163859
\(250\) −1.99104 −0.125924
\(251\) 22.2238 1.40275 0.701376 0.712792i \(-0.252570\pi\)
0.701376 + 0.712792i \(0.252570\pi\)
\(252\) −5.41816 −0.341312
\(253\) −1.26236 −0.0793642
\(254\) 1.79210 0.112446
\(255\) 1.18471 0.0741895
\(256\) 13.3915 0.836970
\(257\) 26.9559 1.68146 0.840731 0.541452i \(-0.182125\pi\)
0.840731 + 0.541452i \(0.182125\pi\)
\(258\) −0.295769 −0.0184138
\(259\) 3.13733 0.194944
\(260\) 14.6298 0.907300
\(261\) 12.7883 0.791578
\(262\) 2.62905 0.162423
\(263\) 7.72216 0.476169 0.238084 0.971244i \(-0.423480\pi\)
0.238084 + 0.971244i \(0.423480\pi\)
\(264\) 0.0241079 0.00148374
\(265\) −2.02299 −0.124271
\(266\) 1.05633 0.0647676
\(267\) 2.93198 0.179434
\(268\) 4.54684 0.277743
\(269\) 6.56976 0.400565 0.200283 0.979738i \(-0.435814\pi\)
0.200283 + 0.979738i \(0.435814\pi\)
\(270\) −0.304414 −0.0185261
\(271\) 10.2463 0.622419 0.311209 0.950341i \(-0.399266\pi\)
0.311209 + 0.950341i \(0.399266\pi\)
\(272\) 16.1060 0.976570
\(273\) 1.11700 0.0676040
\(274\) 0.567523 0.0342853
\(275\) 0.511312 0.0308333
\(276\) −3.36253 −0.202401
\(277\) 7.79839 0.468560 0.234280 0.972169i \(-0.424727\pi\)
0.234280 + 0.972169i \(0.424727\pi\)
\(278\) 1.81719 0.108988
\(279\) −5.82133 −0.348514
\(280\) 0.891023 0.0532488
\(281\) 30.5323 1.82141 0.910703 0.413062i \(-0.135541\pi\)
0.910703 + 0.413062i \(0.135541\pi\)
\(282\) 0.196105 0.0116779
\(283\) 4.04559 0.240486 0.120243 0.992745i \(-0.461633\pi\)
0.120243 + 0.992745i \(0.461633\pi\)
\(284\) 18.5529 1.10091
\(285\) −1.73202 −0.102596
\(286\) 0.161737 0.00956373
\(287\) −4.58688 −0.270755
\(288\) −6.34026 −0.373603
\(289\) 0.959606 0.0564474
\(290\) −1.04266 −0.0612274
\(291\) 0 0
\(292\) 12.7941 0.748715
\(293\) −20.9258 −1.22250 −0.611250 0.791437i \(-0.709333\pi\)
−0.611250 + 0.791437i \(0.709333\pi\)
\(294\) −0.237864 −0.0138725
\(295\) −4.99746 −0.290963
\(296\) 2.44065 0.141860
\(297\) 0.197927 0.0114849
\(298\) 1.28217 0.0742741
\(299\) −45.5014 −2.63141
\(300\) 1.36197 0.0786334
\(301\) 7.10758 0.409674
\(302\) 2.51005 0.144437
\(303\) 3.06972 0.176351
\(304\) −23.5466 −1.35049
\(305\) −0.509210 −0.0291573
\(306\) −2.28994 −0.130907
\(307\) 9.32737 0.532341 0.266171 0.963926i \(-0.414242\pi\)
0.266171 + 0.963926i \(0.414242\pi\)
\(308\) −0.287225 −0.0163662
\(309\) −0.430859 −0.0245107
\(310\) 0.474628 0.0269570
\(311\) −29.4308 −1.66887 −0.834434 0.551108i \(-0.814205\pi\)
−0.834434 + 0.551108i \(0.814205\pi\)
\(312\) 0.868959 0.0491951
\(313\) 9.74302 0.550708 0.275354 0.961343i \(-0.411205\pi\)
0.275354 + 0.961343i \(0.411205\pi\)
\(314\) 1.76866 0.0998112
\(315\) 3.63002 0.204528
\(316\) −11.7296 −0.659840
\(317\) 27.7899 1.56083 0.780417 0.625260i \(-0.215007\pi\)
0.780417 + 0.625260i \(0.215007\pi\)
\(318\) −0.0595728 −0.00334068
\(319\) 0.677929 0.0379568
\(320\) −9.49768 −0.530936
\(321\) −3.52363 −0.196670
\(322\) −1.37395 −0.0765670
\(323\) −26.2565 −1.46095
\(324\) −16.9062 −0.939236
\(325\) 18.4300 1.02231
\(326\) 3.19207 0.176792
\(327\) 3.12966 0.173071
\(328\) −3.56831 −0.197027
\(329\) −4.71257 −0.259812
\(330\) −0.00800773 −0.000440811 0
\(331\) 25.4454 1.39861 0.699304 0.714825i \(-0.253494\pi\)
0.699304 + 0.714825i \(0.253494\pi\)
\(332\) 23.9651 1.31526
\(333\) 9.94317 0.544883
\(334\) −3.10590 −0.169947
\(335\) −3.04626 −0.166435
\(336\) −0.751845 −0.0410165
\(337\) 23.3206 1.27035 0.635177 0.772366i \(-0.280927\pi\)
0.635177 + 0.772366i \(0.280927\pi\)
\(338\) 3.45257 0.187795
\(339\) −3.17775 −0.172592
\(340\) −10.9805 −0.595499
\(341\) −0.308598 −0.0167115
\(342\) 3.34783 0.181030
\(343\) 12.2427 0.661043
\(344\) 5.52926 0.298118
\(345\) 2.25281 0.121287
\(346\) 2.19443 0.117973
\(347\) 22.2963 1.19693 0.598463 0.801150i \(-0.295778\pi\)
0.598463 + 0.801150i \(0.295778\pi\)
\(348\) 1.80579 0.0968003
\(349\) −29.0495 −1.55498 −0.777492 0.628892i \(-0.783509\pi\)
−0.777492 + 0.628892i \(0.783509\pi\)
\(350\) 0.556507 0.0297466
\(351\) 7.13419 0.380795
\(352\) −0.336107 −0.0179146
\(353\) 9.11949 0.485382 0.242691 0.970104i \(-0.421970\pi\)
0.242691 + 0.970104i \(0.421970\pi\)
\(354\) −0.147165 −0.00782173
\(355\) −12.4299 −0.659713
\(356\) −27.1750 −1.44027
\(357\) −0.838372 −0.0443714
\(358\) 4.33681 0.229208
\(359\) −14.7337 −0.777617 −0.388809 0.921319i \(-0.627113\pi\)
−0.388809 + 0.921319i \(0.627113\pi\)
\(360\) 2.82393 0.148834
\(361\) 19.3864 1.02034
\(362\) 1.88350 0.0989943
\(363\) −2.32875 −0.122227
\(364\) −10.3529 −0.542639
\(365\) −8.57167 −0.448662
\(366\) −0.0149952 −0.000783811 0
\(367\) −6.73927 −0.351787 −0.175893 0.984409i \(-0.556281\pi\)
−0.175893 + 0.984409i \(0.556281\pi\)
\(368\) 30.6266 1.59652
\(369\) −14.5373 −0.756779
\(370\) −0.810691 −0.0421458
\(371\) 1.43159 0.0743242
\(372\) −0.822005 −0.0426190
\(373\) 4.99549 0.258657 0.129328 0.991602i \(-0.458718\pi\)
0.129328 + 0.991602i \(0.458718\pi\)
\(374\) −0.121393 −0.00627709
\(375\) −2.31025 −0.119301
\(376\) −3.66609 −0.189064
\(377\) 24.4357 1.25850
\(378\) 0.215422 0.0110801
\(379\) −31.3682 −1.61128 −0.805638 0.592409i \(-0.798177\pi\)
−0.805638 + 0.592409i \(0.798177\pi\)
\(380\) 16.0532 0.823510
\(381\) 2.07941 0.106531
\(382\) −3.11107 −0.159176
\(383\) −21.3109 −1.08894 −0.544468 0.838782i \(-0.683268\pi\)
−0.544468 + 0.838782i \(0.683268\pi\)
\(384\) −1.19019 −0.0607367
\(385\) 0.192433 0.00980728
\(386\) 3.59438 0.182949
\(387\) 22.5262 1.14507
\(388\) 0 0
\(389\) 12.9660 0.657402 0.328701 0.944434i \(-0.393389\pi\)
0.328701 + 0.944434i \(0.393389\pi\)
\(390\) −0.288635 −0.0146156
\(391\) 34.1514 1.72711
\(392\) 4.44676 0.224595
\(393\) 3.05054 0.153879
\(394\) −1.71830 −0.0865667
\(395\) 7.85849 0.395404
\(396\) −0.910306 −0.0457446
\(397\) 31.8619 1.59910 0.799551 0.600598i \(-0.205071\pi\)
0.799551 + 0.600598i \(0.205071\pi\)
\(398\) 0.700251 0.0351004
\(399\) 1.22568 0.0613608
\(400\) −12.4051 −0.620255
\(401\) 26.4108 1.31889 0.659446 0.751752i \(-0.270791\pi\)
0.659446 + 0.751752i \(0.270791\pi\)
\(402\) −0.0897061 −0.00447414
\(403\) −11.1233 −0.554090
\(404\) −28.4516 −1.41552
\(405\) 11.3267 0.562829
\(406\) 0.737852 0.0366190
\(407\) 0.527103 0.0261275
\(408\) −0.652202 −0.0322888
\(409\) 22.0013 1.08789 0.543947 0.839120i \(-0.316929\pi\)
0.543947 + 0.839120i \(0.316929\pi\)
\(410\) 1.18526 0.0585357
\(411\) 0.658510 0.0324819
\(412\) 3.99341 0.196741
\(413\) 3.53650 0.174020
\(414\) −4.35447 −0.214010
\(415\) −16.0560 −0.788157
\(416\) −12.1148 −0.593978
\(417\) 2.10853 0.103255
\(418\) 0.177474 0.00868052
\(419\) −30.8265 −1.50597 −0.752987 0.658035i \(-0.771388\pi\)
−0.752987 + 0.658035i \(0.771388\pi\)
\(420\) 0.512579 0.0250113
\(421\) −23.9820 −1.16881 −0.584406 0.811461i \(-0.698672\pi\)
−0.584406 + 0.811461i \(0.698672\pi\)
\(422\) 2.20743 0.107456
\(423\) −14.9356 −0.726195
\(424\) 1.11369 0.0540854
\(425\) −13.8328 −0.670988
\(426\) −0.366036 −0.0177345
\(427\) 0.360347 0.0174384
\(428\) 32.6587 1.57862
\(429\) 0.187668 0.00906068
\(430\) −1.83661 −0.0885693
\(431\) −7.62142 −0.367111 −0.183555 0.983009i \(-0.558761\pi\)
−0.183555 + 0.983009i \(0.558761\pi\)
\(432\) −4.80197 −0.231035
\(433\) −26.2279 −1.26043 −0.630216 0.776419i \(-0.717034\pi\)
−0.630216 + 0.776419i \(0.717034\pi\)
\(434\) −0.335875 −0.0161225
\(435\) −1.20983 −0.0580068
\(436\) −29.0072 −1.38919
\(437\) −49.9285 −2.38840
\(438\) −0.252418 −0.0120610
\(439\) −7.14303 −0.340918 −0.170459 0.985365i \(-0.554525\pi\)
−0.170459 + 0.985365i \(0.554525\pi\)
\(440\) 0.149701 0.00713671
\(441\) 18.1160 0.862669
\(442\) −4.37556 −0.208124
\(443\) 1.98411 0.0942681 0.0471341 0.998889i \(-0.484991\pi\)
0.0471341 + 0.998889i \(0.484991\pi\)
\(444\) 1.40403 0.0666325
\(445\) 18.2065 0.863070
\(446\) −3.24678 −0.153740
\(447\) 1.48773 0.0703673
\(448\) 6.72113 0.317543
\(449\) −13.2638 −0.625958 −0.312979 0.949760i \(-0.601327\pi\)
−0.312979 + 0.949760i \(0.601327\pi\)
\(450\) 1.76375 0.0831438
\(451\) −0.770642 −0.0362881
\(452\) 29.4529 1.38535
\(453\) 2.91247 0.136840
\(454\) −0.676978 −0.0317721
\(455\) 6.93616 0.325172
\(456\) 0.953504 0.0446519
\(457\) 29.0979 1.36114 0.680571 0.732683i \(-0.261732\pi\)
0.680571 + 0.732683i \(0.261732\pi\)
\(458\) −3.84114 −0.179485
\(459\) −5.35461 −0.249932
\(460\) −20.8801 −0.973539
\(461\) −27.4520 −1.27857 −0.639283 0.768971i \(-0.720769\pi\)
−0.639283 + 0.768971i \(0.720769\pi\)
\(462\) 0.00566675 0.000263641 0
\(463\) 20.0811 0.933250 0.466625 0.884455i \(-0.345470\pi\)
0.466625 + 0.884455i \(0.345470\pi\)
\(464\) −16.4475 −0.763554
\(465\) 0.550721 0.0255391
\(466\) −0.761370 −0.0352698
\(467\) −0.351390 −0.0162604 −0.00813020 0.999967i \(-0.502588\pi\)
−0.00813020 + 0.999967i \(0.502588\pi\)
\(468\) −32.8116 −1.51672
\(469\) 2.15572 0.0995417
\(470\) 1.21774 0.0561700
\(471\) 2.05222 0.0945611
\(472\) 2.75118 0.126633
\(473\) 1.19415 0.0549069
\(474\) 0.231417 0.0106293
\(475\) 20.2232 0.927903
\(476\) 7.77043 0.356157
\(477\) 4.53715 0.207742
\(478\) −0.226840 −0.0103754
\(479\) −7.94575 −0.363051 −0.181525 0.983386i \(-0.558103\pi\)
−0.181525 + 0.983386i \(0.558103\pi\)
\(480\) 0.599814 0.0273776
\(481\) 18.9992 0.866289
\(482\) −2.48372 −0.113131
\(483\) −1.59422 −0.0725395
\(484\) 21.5839 0.981087
\(485\) 0 0
\(486\) 1.02669 0.0465716
\(487\) −26.3079 −1.19212 −0.596062 0.802938i \(-0.703269\pi\)
−0.596062 + 0.802938i \(0.703269\pi\)
\(488\) 0.280328 0.0126899
\(489\) 3.70383 0.167493
\(490\) −1.47705 −0.0667261
\(491\) −25.3483 −1.14395 −0.571976 0.820270i \(-0.693823\pi\)
−0.571976 + 0.820270i \(0.693823\pi\)
\(492\) −2.05274 −0.0925449
\(493\) −18.3404 −0.826008
\(494\) 6.39697 0.287813
\(495\) 0.609880 0.0274121
\(496\) 7.48699 0.336176
\(497\) 8.79617 0.394562
\(498\) −0.472816 −0.0211874
\(499\) −11.7544 −0.526198 −0.263099 0.964769i \(-0.584745\pi\)
−0.263099 + 0.964769i \(0.584745\pi\)
\(500\) 21.4125 0.957595
\(501\) −3.60385 −0.161008
\(502\) 4.06385 0.181379
\(503\) 40.0929 1.78765 0.893826 0.448414i \(-0.148011\pi\)
0.893826 + 0.448414i \(0.148011\pi\)
\(504\) −1.99838 −0.0890150
\(505\) 19.0618 0.848240
\(506\) −0.230837 −0.0102620
\(507\) 4.00609 0.177917
\(508\) −19.2730 −0.855100
\(509\) 9.10217 0.403447 0.201723 0.979443i \(-0.435346\pi\)
0.201723 + 0.979443i \(0.435346\pi\)
\(510\) 0.216637 0.00959285
\(511\) 6.06582 0.268336
\(512\) 13.6676 0.604028
\(513\) 7.82831 0.345628
\(514\) 4.92918 0.217417
\(515\) −2.67547 −0.117895
\(516\) 3.18082 0.140028
\(517\) −0.791760 −0.0348216
\(518\) 0.573694 0.0252067
\(519\) 2.54624 0.111768
\(520\) 5.39591 0.236626
\(521\) 27.6045 1.20937 0.604687 0.796463i \(-0.293298\pi\)
0.604687 + 0.796463i \(0.293298\pi\)
\(522\) 2.33848 0.102353
\(523\) 13.6360 0.596260 0.298130 0.954525i \(-0.403637\pi\)
0.298130 + 0.954525i \(0.403637\pi\)
\(524\) −28.2739 −1.23515
\(525\) 0.645728 0.0281819
\(526\) 1.41208 0.0615696
\(527\) 8.34865 0.363673
\(528\) −0.126318 −0.00549727
\(529\) 41.9411 1.82353
\(530\) −0.369925 −0.0160685
\(531\) 11.2083 0.486398
\(532\) −11.3602 −0.492527
\(533\) −27.7775 −1.20318
\(534\) 0.536144 0.0232012
\(535\) −21.8804 −0.945974
\(536\) 1.67702 0.0724360
\(537\) 5.03210 0.217151
\(538\) 1.20135 0.0517939
\(539\) 0.960359 0.0413656
\(540\) 3.27380 0.140882
\(541\) −42.4095 −1.82333 −0.911664 0.410936i \(-0.865202\pi\)
−0.911664 + 0.410936i \(0.865202\pi\)
\(542\) 1.87365 0.0804801
\(543\) 2.18546 0.0937872
\(544\) 9.09286 0.389853
\(545\) 19.4340 0.832462
\(546\) 0.204256 0.00874134
\(547\) 1.42544 0.0609474 0.0304737 0.999536i \(-0.490298\pi\)
0.0304737 + 0.999536i \(0.490298\pi\)
\(548\) −6.10339 −0.260724
\(549\) 1.14205 0.0487417
\(550\) 0.0934989 0.00398681
\(551\) 26.8132 1.14228
\(552\) −1.24021 −0.0527867
\(553\) −5.56114 −0.236484
\(554\) 1.42602 0.0605858
\(555\) −0.940664 −0.0399290
\(556\) −19.5428 −0.828801
\(557\) 5.34346 0.226410 0.113205 0.993572i \(-0.463888\pi\)
0.113205 + 0.993572i \(0.463888\pi\)
\(558\) −1.06449 −0.0450636
\(559\) 43.0425 1.82050
\(560\) −4.66867 −0.197287
\(561\) −0.140855 −0.00594691
\(562\) 5.58316 0.235512
\(563\) 3.93120 0.165680 0.0828401 0.996563i \(-0.473601\pi\)
0.0828401 + 0.996563i \(0.473601\pi\)
\(564\) −2.10899 −0.0888047
\(565\) −19.7327 −0.830159
\(566\) 0.739780 0.0310953
\(567\) −8.01547 −0.336618
\(568\) 6.84288 0.287121
\(569\) −2.93293 −0.122955 −0.0614773 0.998108i \(-0.519581\pi\)
−0.0614773 + 0.998108i \(0.519581\pi\)
\(570\) −0.316718 −0.0132659
\(571\) −3.69849 −0.154777 −0.0773886 0.997001i \(-0.524658\pi\)
−0.0773886 + 0.997001i \(0.524658\pi\)
\(572\) −1.73939 −0.0727277
\(573\) −3.60985 −0.150804
\(574\) −0.838760 −0.0350092
\(575\) −26.3039 −1.09695
\(576\) 21.3014 0.887557
\(577\) −45.3394 −1.88750 −0.943752 0.330654i \(-0.892731\pi\)
−0.943752 + 0.330654i \(0.892731\pi\)
\(578\) 0.175474 0.00729877
\(579\) 4.17064 0.173326
\(580\) 11.2133 0.465605
\(581\) 11.3622 0.471382
\(582\) 0 0
\(583\) 0.240521 0.00996136
\(584\) 4.71884 0.195267
\(585\) 21.9829 0.908880
\(586\) −3.82651 −0.158072
\(587\) 44.4538 1.83480 0.917402 0.397963i \(-0.130283\pi\)
0.917402 + 0.397963i \(0.130283\pi\)
\(588\) 2.55809 0.105494
\(589\) −12.2055 −0.502920
\(590\) −0.913839 −0.0376222
\(591\) −1.99378 −0.0820133
\(592\) −12.7882 −0.525592
\(593\) 22.3143 0.916339 0.458169 0.888865i \(-0.348505\pi\)
0.458169 + 0.888865i \(0.348505\pi\)
\(594\) 0.0361930 0.00148502
\(595\) −5.20598 −0.213424
\(596\) −13.7890 −0.564820
\(597\) 0.812517 0.0332541
\(598\) −8.32042 −0.340247
\(599\) −8.73460 −0.356886 −0.178443 0.983950i \(-0.557106\pi\)
−0.178443 + 0.983950i \(0.557106\pi\)
\(600\) 0.502337 0.0205078
\(601\) 11.3824 0.464299 0.232150 0.972680i \(-0.425424\pi\)
0.232150 + 0.972680i \(0.425424\pi\)
\(602\) 1.29970 0.0529717
\(603\) 6.83214 0.278226
\(604\) −26.9941 −1.09838
\(605\) −14.4606 −0.587909
\(606\) 0.561332 0.0228025
\(607\) 30.7774 1.24922 0.624608 0.780938i \(-0.285259\pi\)
0.624608 + 0.780938i \(0.285259\pi\)
\(608\) −13.2935 −0.539124
\(609\) 0.856146 0.0346928
\(610\) −0.0931145 −0.00377009
\(611\) −28.5387 −1.15455
\(612\) 24.6270 0.995486
\(613\) −12.4603 −0.503268 −0.251634 0.967822i \(-0.580968\pi\)
−0.251634 + 0.967822i \(0.580968\pi\)
\(614\) 1.70561 0.0688328
\(615\) 1.37528 0.0554567
\(616\) −0.105937 −0.00426834
\(617\) −35.2061 −1.41734 −0.708672 0.705538i \(-0.750706\pi\)
−0.708672 + 0.705538i \(0.750706\pi\)
\(618\) −0.0787872 −0.00316929
\(619\) 27.4490 1.10327 0.551635 0.834086i \(-0.314004\pi\)
0.551635 + 0.834086i \(0.314004\pi\)
\(620\) −5.10435 −0.204995
\(621\) −10.1821 −0.408596
\(622\) −5.38174 −0.215788
\(623\) −12.8840 −0.516186
\(624\) −4.55307 −0.182269
\(625\) 1.97463 0.0789853
\(626\) 1.78162 0.0712077
\(627\) 0.205927 0.00822392
\(628\) −19.0209 −0.759017
\(629\) −14.2600 −0.568582
\(630\) 0.663788 0.0264459
\(631\) 10.0579 0.400400 0.200200 0.979755i \(-0.435841\pi\)
0.200200 + 0.979755i \(0.435841\pi\)
\(632\) −4.32623 −0.172088
\(633\) 2.56134 0.101804
\(634\) 5.08167 0.201819
\(635\) 12.9124 0.512411
\(636\) 0.640671 0.0254043
\(637\) 34.6158 1.37153
\(638\) 0.123967 0.00490789
\(639\) 27.8778 1.10283
\(640\) −7.39064 −0.292141
\(641\) 5.82995 0.230269 0.115135 0.993350i \(-0.463270\pi\)
0.115135 + 0.993350i \(0.463270\pi\)
\(642\) −0.644334 −0.0254298
\(643\) 16.6517 0.656678 0.328339 0.944560i \(-0.393511\pi\)
0.328339 + 0.944560i \(0.393511\pi\)
\(644\) 14.7760 0.582256
\(645\) −2.13106 −0.0839105
\(646\) −4.80128 −0.188904
\(647\) 34.3676 1.35113 0.675564 0.737301i \(-0.263900\pi\)
0.675564 + 0.737301i \(0.263900\pi\)
\(648\) −6.23554 −0.244955
\(649\) 0.594168 0.0233232
\(650\) 3.37013 0.132187
\(651\) −0.389723 −0.0152745
\(652\) −34.3288 −1.34442
\(653\) 2.96803 0.116148 0.0580740 0.998312i \(-0.481504\pi\)
0.0580740 + 0.998312i \(0.481504\pi\)
\(654\) 0.572292 0.0223784
\(655\) 18.9427 0.740153
\(656\) 18.6968 0.729988
\(657\) 19.2245 0.750019
\(658\) −0.861744 −0.0335943
\(659\) 28.8214 1.12272 0.561362 0.827570i \(-0.310278\pi\)
0.561362 + 0.827570i \(0.310278\pi\)
\(660\) 0.0861185 0.00335216
\(661\) 22.6402 0.880600 0.440300 0.897851i \(-0.354872\pi\)
0.440300 + 0.897851i \(0.354872\pi\)
\(662\) 4.65297 0.180843
\(663\) −5.07707 −0.197177
\(664\) 8.83907 0.343022
\(665\) 7.61101 0.295142
\(666\) 1.81822 0.0704544
\(667\) −34.8754 −1.35038
\(668\) 33.4022 1.29237
\(669\) −3.76731 −0.145653
\(670\) −0.557042 −0.0215204
\(671\) 0.0605420 0.00233720
\(672\) −0.424464 −0.0163741
\(673\) −33.5848 −1.29460 −0.647299 0.762236i \(-0.724102\pi\)
−0.647299 + 0.762236i \(0.724102\pi\)
\(674\) 4.26442 0.164259
\(675\) 4.12421 0.158741
\(676\) −37.1304 −1.42809
\(677\) −24.8589 −0.955403 −0.477702 0.878522i \(-0.658530\pi\)
−0.477702 + 0.878522i \(0.658530\pi\)
\(678\) −0.581086 −0.0223165
\(679\) 0 0
\(680\) −4.04993 −0.155308
\(681\) −0.785513 −0.0301009
\(682\) −0.0564304 −0.00216083
\(683\) 9.31225 0.356323 0.178162 0.984001i \(-0.442985\pi\)
0.178162 + 0.984001i \(0.442985\pi\)
\(684\) −36.0040 −1.37665
\(685\) 4.08910 0.156237
\(686\) 2.23871 0.0854742
\(687\) −4.45696 −0.170044
\(688\) −28.9716 −1.10453
\(689\) 8.66948 0.330281
\(690\) 0.411950 0.0156827
\(691\) −28.2328 −1.07403 −0.537014 0.843574i \(-0.680448\pi\)
−0.537014 + 0.843574i \(0.680448\pi\)
\(692\) −23.5998 −0.897129
\(693\) −0.431588 −0.0163947
\(694\) 4.07711 0.154765
\(695\) 13.0932 0.496652
\(696\) 0.666030 0.0252458
\(697\) 20.8486 0.789696
\(698\) −5.31202 −0.201063
\(699\) −0.883435 −0.0334146
\(700\) −5.98491 −0.226208
\(701\) −42.4683 −1.60400 −0.802002 0.597321i \(-0.796232\pi\)
−0.802002 + 0.597321i \(0.796232\pi\)
\(702\) 1.30456 0.0492376
\(703\) 20.8477 0.786287
\(704\) 1.12922 0.0425590
\(705\) 1.41297 0.0532155
\(706\) 1.66760 0.0627608
\(707\) −13.4893 −0.507317
\(708\) 1.58267 0.0594805
\(709\) −23.7389 −0.891533 −0.445767 0.895149i \(-0.647069\pi\)
−0.445767 + 0.895149i \(0.647069\pi\)
\(710\) −2.27295 −0.0853022
\(711\) −17.6250 −0.660989
\(712\) −10.0230 −0.375626
\(713\) 15.8755 0.594542
\(714\) −0.153305 −0.00573731
\(715\) 1.16535 0.0435815
\(716\) −46.6399 −1.74301
\(717\) −0.263208 −0.00982969
\(718\) −2.69422 −0.100547
\(719\) −0.996105 −0.0371485 −0.0185742 0.999827i \(-0.505913\pi\)
−0.0185742 + 0.999827i \(0.505913\pi\)
\(720\) −14.7965 −0.551433
\(721\) 1.89332 0.0705111
\(722\) 3.54501 0.131931
\(723\) −2.88192 −0.107180
\(724\) −20.2559 −0.752805
\(725\) 14.1260 0.524628
\(726\) −0.425836 −0.0158043
\(727\) 41.3342 1.53300 0.766500 0.642244i \(-0.221996\pi\)
0.766500 + 0.642244i \(0.221996\pi\)
\(728\) −3.81847 −0.141522
\(729\) −24.5993 −0.911084
\(730\) −1.56742 −0.0580129
\(731\) −32.3058 −1.19487
\(732\) 0.161265 0.00596051
\(733\) 15.4984 0.572446 0.286223 0.958163i \(-0.407600\pi\)
0.286223 + 0.958163i \(0.407600\pi\)
\(734\) −1.23235 −0.0454868
\(735\) −1.71385 −0.0632163
\(736\) 17.2907 0.637343
\(737\) 0.362182 0.0133412
\(738\) −2.65829 −0.0978532
\(739\) 23.5971 0.868034 0.434017 0.900905i \(-0.357096\pi\)
0.434017 + 0.900905i \(0.357096\pi\)
\(740\) 8.71852 0.320499
\(741\) 7.42255 0.272674
\(742\) 0.261781 0.00961028
\(743\) −41.8985 −1.53711 −0.768553 0.639786i \(-0.779023\pi\)
−0.768553 + 0.639786i \(0.779023\pi\)
\(744\) −0.303181 −0.0111151
\(745\) 9.23826 0.338463
\(746\) 0.913479 0.0334448
\(747\) 36.0103 1.31755
\(748\) 1.30551 0.0477343
\(749\) 15.4839 0.565770
\(750\) −0.422454 −0.0154258
\(751\) 45.9340 1.67616 0.838078 0.545550i \(-0.183679\pi\)
0.838078 + 0.545550i \(0.183679\pi\)
\(752\) 19.2091 0.700486
\(753\) 4.71538 0.171838
\(754\) 4.46833 0.162727
\(755\) 18.0853 0.658193
\(756\) −2.31674 −0.0842589
\(757\) 7.24377 0.263279 0.131640 0.991298i \(-0.457976\pi\)
0.131640 + 0.991298i \(0.457976\pi\)
\(758\) −5.73601 −0.208341
\(759\) −0.267845 −0.00972217
\(760\) 5.92090 0.214774
\(761\) 26.6515 0.966116 0.483058 0.875588i \(-0.339526\pi\)
0.483058 + 0.875588i \(0.339526\pi\)
\(762\) 0.380243 0.0137747
\(763\) −13.7527 −0.497880
\(764\) 33.4578 1.21046
\(765\) −16.4994 −0.596537
\(766\) −3.89692 −0.140802
\(767\) 21.4166 0.773307
\(768\) 2.84138 0.102529
\(769\) 35.5378 1.28153 0.640763 0.767739i \(-0.278618\pi\)
0.640763 + 0.767739i \(0.278618\pi\)
\(770\) 0.0351884 0.00126810
\(771\) 5.71943 0.205980
\(772\) −38.6555 −1.39124
\(773\) 5.82505 0.209513 0.104756 0.994498i \(-0.466594\pi\)
0.104756 + 0.994498i \(0.466594\pi\)
\(774\) 4.11915 0.148060
\(775\) −6.43026 −0.230982
\(776\) 0 0
\(777\) 0.665670 0.0238808
\(778\) 2.37097 0.0850035
\(779\) −30.4801 −1.09206
\(780\) 3.10411 0.111145
\(781\) 1.47785 0.0528815
\(782\) 6.24495 0.223319
\(783\) 5.46813 0.195415
\(784\) −23.2996 −0.832128
\(785\) 12.7435 0.454835
\(786\) 0.557824 0.0198969
\(787\) −17.8872 −0.637611 −0.318806 0.947820i \(-0.603282\pi\)
−0.318806 + 0.947820i \(0.603282\pi\)
\(788\) 18.4793 0.658299
\(789\) 1.63847 0.0583310
\(790\) 1.43701 0.0511265
\(791\) 13.9640 0.496503
\(792\) −0.335749 −0.0119303
\(793\) 2.18221 0.0774926
\(794\) 5.82629 0.206767
\(795\) −0.429232 −0.0152233
\(796\) −7.53079 −0.266922
\(797\) −5.46970 −0.193747 −0.0968734 0.995297i \(-0.530884\pi\)
−0.0968734 + 0.995297i \(0.530884\pi\)
\(798\) 0.224129 0.00793407
\(799\) 21.4199 0.757781
\(800\) −7.00347 −0.247610
\(801\) −40.8334 −1.44278
\(802\) 4.82950 0.170536
\(803\) 1.01912 0.0359640
\(804\) 0.964738 0.0340237
\(805\) −9.89951 −0.348912
\(806\) −2.03401 −0.0716450
\(807\) 1.39395 0.0490695
\(808\) −10.4938 −0.369172
\(809\) 10.6533 0.374552 0.187276 0.982307i \(-0.440034\pi\)
0.187276 + 0.982307i \(0.440034\pi\)
\(810\) 2.07121 0.0727750
\(811\) 24.2231 0.850586 0.425293 0.905056i \(-0.360171\pi\)
0.425293 + 0.905056i \(0.360171\pi\)
\(812\) −7.93517 −0.278470
\(813\) 2.17404 0.0762468
\(814\) 0.0963864 0.00337834
\(815\) 22.9994 0.805633
\(816\) 3.41733 0.119631
\(817\) 47.2303 1.65238
\(818\) 4.02317 0.140667
\(819\) −15.5564 −0.543584
\(820\) −12.7468 −0.445137
\(821\) 26.5303 0.925915 0.462957 0.886381i \(-0.346788\pi\)
0.462957 + 0.886381i \(0.346788\pi\)
\(822\) 0.120416 0.00419998
\(823\) 4.33414 0.151079 0.0755394 0.997143i \(-0.475932\pi\)
0.0755394 + 0.997143i \(0.475932\pi\)
\(824\) 1.47289 0.0513106
\(825\) 0.108489 0.00377710
\(826\) 0.646687 0.0225011
\(827\) −20.2227 −0.703211 −0.351606 0.936148i \(-0.614364\pi\)
−0.351606 + 0.936148i \(0.614364\pi\)
\(828\) 46.8298 1.62745
\(829\) −10.2305 −0.355319 −0.177660 0.984092i \(-0.556853\pi\)
−0.177660 + 0.984092i \(0.556853\pi\)
\(830\) −2.93601 −0.101910
\(831\) 1.65464 0.0573989
\(832\) 40.7022 1.41109
\(833\) −25.9811 −0.900191
\(834\) 0.385567 0.0133511
\(835\) −22.3786 −0.774442
\(836\) −1.90863 −0.0660113
\(837\) −2.48913 −0.0860369
\(838\) −5.63696 −0.194726
\(839\) 44.0117 1.51945 0.759727 0.650242i \(-0.225333\pi\)
0.759727 + 0.650242i \(0.225333\pi\)
\(840\) 0.189055 0.00652301
\(841\) −10.2708 −0.354166
\(842\) −4.38537 −0.151130
\(843\) 6.47827 0.223124
\(844\) −23.7397 −0.817153
\(845\) 24.8763 0.855772
\(846\) −2.73114 −0.0938985
\(847\) 10.2332 0.351617
\(848\) −5.83536 −0.200387
\(849\) 0.858384 0.0294597
\(850\) −2.52947 −0.0867602
\(851\) −27.1163 −0.929534
\(852\) 3.93651 0.134863
\(853\) −52.1267 −1.78478 −0.892392 0.451261i \(-0.850974\pi\)
−0.892392 + 0.451261i \(0.850974\pi\)
\(854\) 0.0658934 0.00225482
\(855\) 24.1217 0.824945
\(856\) 12.0455 0.411708
\(857\) −5.12483 −0.175061 −0.0875304 0.996162i \(-0.527897\pi\)
−0.0875304 + 0.996162i \(0.527897\pi\)
\(858\) 0.0343170 0.00117156
\(859\) −28.4960 −0.972272 −0.486136 0.873883i \(-0.661594\pi\)
−0.486136 + 0.873883i \(0.661594\pi\)
\(860\) 19.7517 0.673528
\(861\) −0.973232 −0.0331677
\(862\) −1.39366 −0.0474682
\(863\) 14.5738 0.496099 0.248050 0.968747i \(-0.420210\pi\)
0.248050 + 0.968747i \(0.420210\pi\)
\(864\) −2.71102 −0.0922306
\(865\) 15.8112 0.537597
\(866\) −4.79606 −0.162977
\(867\) 0.203607 0.00691485
\(868\) 3.61214 0.122604
\(869\) −0.934329 −0.0316949
\(870\) −0.221230 −0.00750040
\(871\) 13.0547 0.442342
\(872\) −10.6987 −0.362305
\(873\) 0 0
\(874\) −9.12996 −0.308825
\(875\) 10.1519 0.343198
\(876\) 2.71461 0.0917182
\(877\) 14.5979 0.492937 0.246469 0.969151i \(-0.420730\pi\)
0.246469 + 0.969151i \(0.420730\pi\)
\(878\) −1.30618 −0.0440814
\(879\) −4.43999 −0.149757
\(880\) −0.784385 −0.0264416
\(881\) 35.7782 1.20540 0.602699 0.797968i \(-0.294092\pi\)
0.602699 + 0.797968i \(0.294092\pi\)
\(882\) 3.31271 0.111545
\(883\) −31.8575 −1.07209 −0.536045 0.844189i \(-0.680082\pi\)
−0.536045 + 0.844189i \(0.680082\pi\)
\(884\) 47.0567 1.58269
\(885\) −1.06035 −0.0356432
\(886\) 0.362817 0.0121891
\(887\) −21.9678 −0.737607 −0.368804 0.929507i \(-0.620232\pi\)
−0.368804 + 0.929507i \(0.620232\pi\)
\(888\) 0.517851 0.0173779
\(889\) −9.13756 −0.306464
\(890\) 3.32925 0.111597
\(891\) −1.34668 −0.0451155
\(892\) 34.9173 1.16912
\(893\) −31.3153 −1.04793
\(894\) 0.272048 0.00909864
\(895\) 31.2475 1.04449
\(896\) 5.23006 0.174724
\(897\) −9.65437 −0.322350
\(898\) −2.42543 −0.0809377
\(899\) −8.52564 −0.284346
\(900\) −18.9681 −0.632269
\(901\) −6.50694 −0.216777
\(902\) −0.140920 −0.00469213
\(903\) 1.50807 0.0501854
\(904\) 10.8631 0.361303
\(905\) 13.5709 0.451112
\(906\) 0.532576 0.0176937
\(907\) 23.4800 0.779641 0.389821 0.920891i \(-0.372537\pi\)
0.389821 + 0.920891i \(0.372537\pi\)
\(908\) 7.28050 0.241612
\(909\) −42.7518 −1.41799
\(910\) 1.26835 0.0420454
\(911\) −16.3674 −0.542276 −0.271138 0.962541i \(-0.587400\pi\)
−0.271138 + 0.962541i \(0.587400\pi\)
\(912\) −4.99606 −0.165436
\(913\) 1.90896 0.0631774
\(914\) 5.32086 0.175998
\(915\) −0.108043 −0.00357179
\(916\) 41.3093 1.36490
\(917\) −13.4050 −0.442672
\(918\) −0.979149 −0.0323167
\(919\) 33.0446 1.09004 0.545021 0.838423i \(-0.316522\pi\)
0.545021 + 0.838423i \(0.316522\pi\)
\(920\) −7.70121 −0.253902
\(921\) 1.97906 0.0652122
\(922\) −5.01989 −0.165321
\(923\) 53.2684 1.75335
\(924\) −0.0609426 −0.00200487
\(925\) 10.9833 0.361127
\(926\) 3.67205 0.120671
\(927\) 6.00054 0.197084
\(928\) −9.28564 −0.304816
\(929\) −12.2805 −0.402911 −0.201456 0.979498i \(-0.564567\pi\)
−0.201456 + 0.979498i \(0.564567\pi\)
\(930\) 0.100705 0.00330226
\(931\) 37.9837 1.24487
\(932\) 8.18809 0.268210
\(933\) −6.24455 −0.204438
\(934\) −0.0642555 −0.00210250
\(935\) −0.874658 −0.0286044
\(936\) −12.1019 −0.395564
\(937\) 15.5314 0.507389 0.253695 0.967284i \(-0.418354\pi\)
0.253695 + 0.967284i \(0.418354\pi\)
\(938\) 0.394196 0.0128710
\(939\) 2.06725 0.0674622
\(940\) −13.0961 −0.427147
\(941\) −27.7528 −0.904717 −0.452358 0.891836i \(-0.649417\pi\)
−0.452358 + 0.891836i \(0.649417\pi\)
\(942\) 0.375270 0.0122270
\(943\) 39.6449 1.29102
\(944\) −14.4153 −0.469179
\(945\) 1.55215 0.0504914
\(946\) 0.218362 0.00709957
\(947\) −22.6268 −0.735273 −0.367636 0.929970i \(-0.619833\pi\)
−0.367636 + 0.929970i \(0.619833\pi\)
\(948\) −2.48875 −0.0808309
\(949\) 36.7338 1.19243
\(950\) 3.69803 0.119980
\(951\) 5.89638 0.191203
\(952\) 2.86598 0.0928868
\(953\) 20.0799 0.650452 0.325226 0.945636i \(-0.394560\pi\)
0.325226 + 0.945636i \(0.394560\pi\)
\(954\) 0.829666 0.0268614
\(955\) −22.4158 −0.725358
\(956\) 2.43954 0.0789003
\(957\) 0.143841 0.00464973
\(958\) −1.45297 −0.0469432
\(959\) −2.89369 −0.0934423
\(960\) −2.01519 −0.0650401
\(961\) −27.1191 −0.874809
\(962\) 3.47421 0.112013
\(963\) 49.0734 1.58137
\(964\) 26.7110 0.860304
\(965\) 25.8981 0.833691
\(966\) −0.291520 −0.00937951
\(967\) 36.9832 1.18930 0.594650 0.803984i \(-0.297291\pi\)
0.594650 + 0.803984i \(0.297291\pi\)
\(968\) 7.96081 0.255870
\(969\) −5.57104 −0.178968
\(970\) 0 0
\(971\) 31.8536 1.02223 0.511115 0.859512i \(-0.329233\pi\)
0.511115 + 0.859512i \(0.329233\pi\)
\(972\) −11.0415 −0.354155
\(973\) −9.26551 −0.297039
\(974\) −4.81068 −0.154144
\(975\) 3.91044 0.125234
\(976\) −1.46883 −0.0470161
\(977\) 18.4394 0.589928 0.294964 0.955508i \(-0.404692\pi\)
0.294964 + 0.955508i \(0.404692\pi\)
\(978\) 0.677285 0.0216572
\(979\) −2.16464 −0.0691823
\(980\) 15.8848 0.507421
\(981\) −43.5866 −1.39161
\(982\) −4.63521 −0.147915
\(983\) −21.5151 −0.686225 −0.343112 0.939294i \(-0.611481\pi\)
−0.343112 + 0.939294i \(0.611481\pi\)
\(984\) −0.757115 −0.0241359
\(985\) −12.3806 −0.394480
\(986\) −3.35373 −0.106805
\(987\) −0.999901 −0.0318272
\(988\) −68.7957 −2.18868
\(989\) −61.4316 −1.95341
\(990\) 0.111523 0.00354444
\(991\) −36.7480 −1.16734 −0.583670 0.811991i \(-0.698384\pi\)
−0.583670 + 0.811991i \(0.698384\pi\)
\(992\) 4.22688 0.134204
\(993\) 5.39895 0.171330
\(994\) 1.60847 0.0510177
\(995\) 5.04543 0.159951
\(996\) 5.08486 0.161120
\(997\) −33.6178 −1.06469 −0.532344 0.846528i \(-0.678689\pi\)
−0.532344 + 0.846528i \(0.678689\pi\)
\(998\) −2.14942 −0.0680385
\(999\) 4.25158 0.134514
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 9409.2.a.q.1.88 yes 168
97.96 even 2 9409.2.a.p.1.88 168
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
9409.2.a.p.1.88 168 97.96 even 2
9409.2.a.q.1.88 yes 168 1.1 even 1 trivial