Properties

Label 9409.2.a.q.1.4
Level $9409$
Weight $2$
Character 9409.1
Self dual yes
Analytic conductor $75.131$
Analytic rank $0$
Dimension $168$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [9409,2,Mod(1,9409)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(9409, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("9409.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 9409 = 97^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 9409.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [168,0,0,168,42] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(75.1312432618\)
Analytic rank: \(0\)
Dimension: \(168\)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Character \(\chi\) \(=\) 9409.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.69259 q^{2} -2.04647 q^{3} +5.25006 q^{4} -1.47101 q^{5} +5.51032 q^{6} -4.98771 q^{7} -8.75110 q^{8} +1.18805 q^{9} +3.96083 q^{10} +1.63431 q^{11} -10.7441 q^{12} +0.394431 q^{13} +13.4299 q^{14} +3.01038 q^{15} +13.0630 q^{16} -1.95633 q^{17} -3.19893 q^{18} +2.39756 q^{19} -7.72289 q^{20} +10.2072 q^{21} -4.40053 q^{22} +6.20684 q^{23} +17.9089 q^{24} -2.83613 q^{25} -1.06204 q^{26} +3.70811 q^{27} -26.1858 q^{28} +0.717805 q^{29} -8.10573 q^{30} -3.12057 q^{31} -17.6713 q^{32} -3.34457 q^{33} +5.26760 q^{34} +7.33697 q^{35} +6.23732 q^{36} +5.68856 q^{37} -6.45566 q^{38} -0.807191 q^{39} +12.8730 q^{40} +5.97273 q^{41} -27.4839 q^{42} -0.777988 q^{43} +8.58022 q^{44} -1.74763 q^{45} -16.7125 q^{46} +4.88471 q^{47} -26.7332 q^{48} +17.8773 q^{49} +7.63655 q^{50} +4.00357 q^{51} +2.07079 q^{52} -6.68787 q^{53} -9.98444 q^{54} -2.40408 q^{55} +43.6480 q^{56} -4.90654 q^{57} -1.93276 q^{58} -0.201460 q^{59} +15.8047 q^{60} +9.97347 q^{61} +8.40243 q^{62} -5.92563 q^{63} +21.4555 q^{64} -0.580211 q^{65} +9.00556 q^{66} +0.930700 q^{67} -10.2709 q^{68} -12.7021 q^{69} -19.7555 q^{70} +13.1728 q^{71} -10.3967 q^{72} +11.4791 q^{73} -15.3170 q^{74} +5.80407 q^{75} +12.5873 q^{76} -8.15146 q^{77} +2.17344 q^{78} +9.92001 q^{79} -19.2159 q^{80} -11.1527 q^{81} -16.0821 q^{82} -15.0787 q^{83} +53.5885 q^{84} +2.87778 q^{85} +2.09481 q^{86} -1.46897 q^{87} -14.3020 q^{88} -6.38242 q^{89} +4.70565 q^{90} -1.96731 q^{91} +32.5863 q^{92} +6.38616 q^{93} -13.1525 q^{94} -3.52683 q^{95} +36.1638 q^{96} -48.1362 q^{98} +1.94164 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 168 q + 168 q^{4} + 42 q^{5} + 42 q^{7} + 168 q^{9} + 42 q^{10} + 42 q^{13} + 70 q^{14} + 84 q^{15} + 140 q^{16} + 49 q^{17} - 49 q^{18} + 84 q^{19} + 98 q^{20} + 84 q^{21} - 35 q^{22} + 126 q^{23} + 168 q^{25}+ \cdots - 84 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.69259 −1.90395 −0.951976 0.306173i \(-0.900951\pi\)
−0.951976 + 0.306173i \(0.900951\pi\)
\(3\) −2.04647 −1.18153 −0.590766 0.806843i \(-0.701174\pi\)
−0.590766 + 0.806843i \(0.701174\pi\)
\(4\) 5.25006 2.62503
\(5\) −1.47101 −0.657855 −0.328928 0.944355i \(-0.606687\pi\)
−0.328928 + 0.944355i \(0.606687\pi\)
\(6\) 5.51032 2.24958
\(7\) −4.98771 −1.88518 −0.942589 0.333956i \(-0.891616\pi\)
−0.942589 + 0.333956i \(0.891616\pi\)
\(8\) −8.75110 −3.09398
\(9\) 1.18805 0.396016
\(10\) 3.96083 1.25252
\(11\) 1.63431 0.492763 0.246381 0.969173i \(-0.420758\pi\)
0.246381 + 0.969173i \(0.420758\pi\)
\(12\) −10.7441 −3.10156
\(13\) 0.394431 0.109395 0.0546977 0.998503i \(-0.482580\pi\)
0.0546977 + 0.998503i \(0.482580\pi\)
\(14\) 13.4299 3.58929
\(15\) 3.01038 0.777276
\(16\) 13.0630 3.26576
\(17\) −1.95633 −0.474479 −0.237240 0.971451i \(-0.576243\pi\)
−0.237240 + 0.971451i \(0.576243\pi\)
\(18\) −3.19893 −0.753995
\(19\) 2.39756 0.550038 0.275019 0.961439i \(-0.411316\pi\)
0.275019 + 0.961439i \(0.411316\pi\)
\(20\) −7.72289 −1.72689
\(21\) 10.2072 2.22740
\(22\) −4.40053 −0.938196
\(23\) 6.20684 1.29422 0.647108 0.762399i \(-0.275978\pi\)
0.647108 + 0.762399i \(0.275978\pi\)
\(24\) 17.9089 3.65564
\(25\) −2.83613 −0.567226
\(26\) −1.06204 −0.208284
\(27\) 3.70811 0.713626
\(28\) −26.1858 −4.94865
\(29\) 0.717805 0.133293 0.0666466 0.997777i \(-0.478770\pi\)
0.0666466 + 0.997777i \(0.478770\pi\)
\(30\) −8.10573 −1.47990
\(31\) −3.12057 −0.560471 −0.280235 0.959931i \(-0.590413\pi\)
−0.280235 + 0.959931i \(0.590413\pi\)
\(32\) −17.6713 −3.12387
\(33\) −3.34457 −0.582214
\(34\) 5.26760 0.903386
\(35\) 7.33697 1.24017
\(36\) 6.23732 1.03955
\(37\) 5.68856 0.935193 0.467597 0.883942i \(-0.345120\pi\)
0.467597 + 0.883942i \(0.345120\pi\)
\(38\) −6.45566 −1.04725
\(39\) −0.807191 −0.129254
\(40\) 12.8730 2.03539
\(41\) 5.97273 0.932784 0.466392 0.884578i \(-0.345554\pi\)
0.466392 + 0.884578i \(0.345554\pi\)
\(42\) −27.4839 −4.24085
\(43\) −0.777988 −0.118642 −0.0593210 0.998239i \(-0.518894\pi\)
−0.0593210 + 0.998239i \(0.518894\pi\)
\(44\) 8.58022 1.29352
\(45\) −1.74763 −0.260521
\(46\) −16.7125 −2.46412
\(47\) 4.88471 0.712507 0.356254 0.934389i \(-0.384054\pi\)
0.356254 + 0.934389i \(0.384054\pi\)
\(48\) −26.7332 −3.85860
\(49\) 17.8773 2.55389
\(50\) 7.63655 1.07997
\(51\) 4.00357 0.560612
\(52\) 2.07079 0.287166
\(53\) −6.68787 −0.918650 −0.459325 0.888268i \(-0.651909\pi\)
−0.459325 + 0.888268i \(0.651909\pi\)
\(54\) −9.98444 −1.35871
\(55\) −2.40408 −0.324166
\(56\) 43.6480 5.83271
\(57\) −4.90654 −0.649887
\(58\) −1.93276 −0.253784
\(59\) −0.201460 −0.0262279 −0.0131139 0.999914i \(-0.504174\pi\)
−0.0131139 + 0.999914i \(0.504174\pi\)
\(60\) 15.8047 2.04038
\(61\) 9.97347 1.27697 0.638486 0.769633i \(-0.279561\pi\)
0.638486 + 0.769633i \(0.279561\pi\)
\(62\) 8.40243 1.06711
\(63\) −5.92563 −0.746560
\(64\) 21.4555 2.68193
\(65\) −0.580211 −0.0719663
\(66\) 9.00556 1.10851
\(67\) 0.930700 0.113703 0.0568516 0.998383i \(-0.481894\pi\)
0.0568516 + 0.998383i \(0.481894\pi\)
\(68\) −10.2709 −1.24552
\(69\) −12.7021 −1.52916
\(70\) −19.7555 −2.36123
\(71\) 13.1728 1.56332 0.781660 0.623704i \(-0.214373\pi\)
0.781660 + 0.623704i \(0.214373\pi\)
\(72\) −10.3967 −1.22527
\(73\) 11.4791 1.34353 0.671764 0.740766i \(-0.265537\pi\)
0.671764 + 0.740766i \(0.265537\pi\)
\(74\) −15.3170 −1.78056
\(75\) 5.80407 0.670196
\(76\) 12.5873 1.44387
\(77\) −8.15146 −0.928945
\(78\) 2.17344 0.246093
\(79\) 9.92001 1.11609 0.558044 0.829811i \(-0.311552\pi\)
0.558044 + 0.829811i \(0.311552\pi\)
\(80\) −19.2159 −2.14840
\(81\) −11.1527 −1.23919
\(82\) −16.0821 −1.77598
\(83\) −15.0787 −1.65510 −0.827551 0.561390i \(-0.810267\pi\)
−0.827551 + 0.561390i \(0.810267\pi\)
\(84\) 53.5885 5.84698
\(85\) 2.87778 0.312139
\(86\) 2.09481 0.225889
\(87\) −1.46897 −0.157490
\(88\) −14.3020 −1.52460
\(89\) −6.38242 −0.676535 −0.338268 0.941050i \(-0.609841\pi\)
−0.338268 + 0.941050i \(0.609841\pi\)
\(90\) 4.70565 0.496019
\(91\) −1.96731 −0.206230
\(92\) 32.5863 3.39736
\(93\) 6.38616 0.662214
\(94\) −13.1525 −1.35658
\(95\) −3.52683 −0.361845
\(96\) 36.1638 3.69095
\(97\) 0 0
\(98\) −48.1362 −4.86249
\(99\) 1.94164 0.195142
\(100\) −14.8899 −1.48899
\(101\) 0.906821 0.0902321 0.0451160 0.998982i \(-0.485634\pi\)
0.0451160 + 0.998982i \(0.485634\pi\)
\(102\) −10.7800 −1.06738
\(103\) −7.54245 −0.743180 −0.371590 0.928397i \(-0.621187\pi\)
−0.371590 + 0.928397i \(0.621187\pi\)
\(104\) −3.45170 −0.338467
\(105\) −15.0149 −1.46530
\(106\) 18.0077 1.74907
\(107\) 0.880623 0.0851330 0.0425665 0.999094i \(-0.486447\pi\)
0.0425665 + 0.999094i \(0.486447\pi\)
\(108\) 19.4678 1.87329
\(109\) 7.52228 0.720504 0.360252 0.932855i \(-0.382691\pi\)
0.360252 + 0.932855i \(0.382691\pi\)
\(110\) 6.47322 0.617197
\(111\) −11.6415 −1.10496
\(112\) −65.1547 −6.15654
\(113\) −3.42317 −0.322025 −0.161012 0.986952i \(-0.551476\pi\)
−0.161012 + 0.986952i \(0.551476\pi\)
\(114\) 13.2113 1.23735
\(115\) −9.13032 −0.851407
\(116\) 3.76852 0.349899
\(117\) 0.468602 0.0433223
\(118\) 0.542451 0.0499366
\(119\) 9.75760 0.894478
\(120\) −26.3441 −2.40488
\(121\) −8.32904 −0.757185
\(122\) −26.8545 −2.43129
\(123\) −12.2230 −1.10211
\(124\) −16.3832 −1.47125
\(125\) 11.5270 1.03101
\(126\) 15.9553 1.42141
\(127\) −13.5398 −1.20147 −0.600734 0.799449i \(-0.705125\pi\)
−0.600734 + 0.799449i \(0.705125\pi\)
\(128\) −22.4283 −1.98240
\(129\) 1.59213 0.140179
\(130\) 1.56227 0.137020
\(131\) 13.6673 1.19412 0.597060 0.802197i \(-0.296336\pi\)
0.597060 + 0.802197i \(0.296336\pi\)
\(132\) −17.5592 −1.52833
\(133\) −11.9583 −1.03692
\(134\) −2.50600 −0.216485
\(135\) −5.45466 −0.469463
\(136\) 17.1200 1.46803
\(137\) 20.5879 1.75894 0.879470 0.475955i \(-0.157897\pi\)
0.879470 + 0.475955i \(0.157897\pi\)
\(138\) 34.2017 2.91144
\(139\) −2.99496 −0.254029 −0.127015 0.991901i \(-0.540539\pi\)
−0.127015 + 0.991901i \(0.540539\pi\)
\(140\) 38.5195 3.25550
\(141\) −9.99641 −0.841850
\(142\) −35.4689 −2.97649
\(143\) 0.644621 0.0539060
\(144\) 15.5195 1.29329
\(145\) −1.05590 −0.0876876
\(146\) −30.9086 −2.55801
\(147\) −36.5853 −3.01750
\(148\) 29.8653 2.45491
\(149\) −8.78274 −0.719510 −0.359755 0.933047i \(-0.617140\pi\)
−0.359755 + 0.933047i \(0.617140\pi\)
\(150\) −15.6280 −1.27602
\(151\) −20.5024 −1.66846 −0.834230 0.551417i \(-0.814087\pi\)
−0.834230 + 0.551417i \(0.814087\pi\)
\(152\) −20.9813 −1.70181
\(153\) −2.32421 −0.187901
\(154\) 21.9486 1.76867
\(155\) 4.59039 0.368709
\(156\) −4.23781 −0.339296
\(157\) −11.8274 −0.943927 −0.471963 0.881618i \(-0.656455\pi\)
−0.471963 + 0.881618i \(0.656455\pi\)
\(158\) −26.7106 −2.12498
\(159\) 13.6865 1.08541
\(160\) 25.9946 2.05505
\(161\) −30.9579 −2.43983
\(162\) 30.0297 2.35935
\(163\) −22.7670 −1.78325 −0.891624 0.452776i \(-0.850434\pi\)
−0.891624 + 0.452776i \(0.850434\pi\)
\(164\) 31.3572 2.44859
\(165\) 4.91989 0.383013
\(166\) 40.6008 3.15124
\(167\) 19.0137 1.47132 0.735662 0.677349i \(-0.236871\pi\)
0.735662 + 0.677349i \(0.236871\pi\)
\(168\) −89.3243 −6.89152
\(169\) −12.8444 −0.988033
\(170\) −7.74869 −0.594297
\(171\) 2.84841 0.217824
\(172\) −4.08449 −0.311439
\(173\) 14.9241 1.13466 0.567328 0.823492i \(-0.307977\pi\)
0.567328 + 0.823492i \(0.307977\pi\)
\(174\) 3.95534 0.299853
\(175\) 14.1458 1.06932
\(176\) 21.3490 1.60924
\(177\) 0.412283 0.0309891
\(178\) 17.1853 1.28809
\(179\) 5.30962 0.396860 0.198430 0.980115i \(-0.436416\pi\)
0.198430 + 0.980115i \(0.436416\pi\)
\(180\) −9.17516 −0.683876
\(181\) 3.71460 0.276104 0.138052 0.990425i \(-0.455916\pi\)
0.138052 + 0.990425i \(0.455916\pi\)
\(182\) 5.29716 0.392651
\(183\) −20.4104 −1.50878
\(184\) −54.3167 −4.00428
\(185\) −8.36792 −0.615222
\(186\) −17.1953 −1.26082
\(187\) −3.19724 −0.233806
\(188\) 25.6450 1.87035
\(189\) −18.4950 −1.34531
\(190\) 9.49633 0.688936
\(191\) 13.8693 1.00354 0.501772 0.865000i \(-0.332682\pi\)
0.501772 + 0.865000i \(0.332682\pi\)
\(192\) −43.9080 −3.16879
\(193\) 7.81575 0.562590 0.281295 0.959621i \(-0.409236\pi\)
0.281295 + 0.959621i \(0.409236\pi\)
\(194\) 0 0
\(195\) 1.18739 0.0850305
\(196\) 93.8567 6.70405
\(197\) −6.70183 −0.477486 −0.238743 0.971083i \(-0.576735\pi\)
−0.238743 + 0.971083i \(0.576735\pi\)
\(198\) −5.22804 −0.371540
\(199\) 5.52805 0.391873 0.195937 0.980617i \(-0.437225\pi\)
0.195937 + 0.980617i \(0.437225\pi\)
\(200\) 24.8193 1.75499
\(201\) −1.90465 −0.134344
\(202\) −2.44170 −0.171797
\(203\) −3.58021 −0.251281
\(204\) 21.0190 1.47162
\(205\) −8.78594 −0.613637
\(206\) 20.3088 1.41498
\(207\) 7.37402 0.512530
\(208\) 5.15247 0.357259
\(209\) 3.91835 0.271038
\(210\) 40.4290 2.78987
\(211\) 26.2987 1.81048 0.905238 0.424905i \(-0.139693\pi\)
0.905238 + 0.424905i \(0.139693\pi\)
\(212\) −35.1118 −2.41149
\(213\) −26.9577 −1.84711
\(214\) −2.37116 −0.162089
\(215\) 1.14443 0.0780493
\(216\) −32.4501 −2.20795
\(217\) 15.5645 1.05659
\(218\) −20.2544 −1.37180
\(219\) −23.4917 −1.58742
\(220\) −12.6216 −0.850947
\(221\) −0.771636 −0.0519059
\(222\) 31.3458 2.10379
\(223\) −19.0046 −1.27265 −0.636323 0.771423i \(-0.719545\pi\)
−0.636323 + 0.771423i \(0.719545\pi\)
\(224\) 88.1392 5.88905
\(225\) −3.36946 −0.224631
\(226\) 9.21721 0.613120
\(227\) −10.9138 −0.724376 −0.362188 0.932105i \(-0.617970\pi\)
−0.362188 + 0.932105i \(0.617970\pi\)
\(228\) −25.7596 −1.70597
\(229\) 2.76447 0.182682 0.0913408 0.995820i \(-0.470885\pi\)
0.0913408 + 0.995820i \(0.470885\pi\)
\(230\) 24.5842 1.62104
\(231\) 16.6817 1.09758
\(232\) −6.28159 −0.412407
\(233\) −1.65967 −0.108729 −0.0543643 0.998521i \(-0.517313\pi\)
−0.0543643 + 0.998521i \(0.517313\pi\)
\(234\) −1.26176 −0.0824835
\(235\) −7.18545 −0.468727
\(236\) −1.05768 −0.0688491
\(237\) −20.3010 −1.31869
\(238\) −26.2733 −1.70304
\(239\) 7.36870 0.476642 0.238321 0.971186i \(-0.423403\pi\)
0.238321 + 0.971186i \(0.423403\pi\)
\(240\) 39.3247 2.53840
\(241\) −3.87983 −0.249922 −0.124961 0.992162i \(-0.539881\pi\)
−0.124961 + 0.992162i \(0.539881\pi\)
\(242\) 22.4267 1.44164
\(243\) 11.6993 0.750512
\(244\) 52.3614 3.35209
\(245\) −26.2976 −1.68009
\(246\) 32.9116 2.09837
\(247\) 0.945671 0.0601716
\(248\) 27.3084 1.73409
\(249\) 30.8581 1.95556
\(250\) −31.0376 −1.96299
\(251\) 24.9984 1.57789 0.788943 0.614466i \(-0.210628\pi\)
0.788943 + 0.614466i \(0.210628\pi\)
\(252\) −31.1100 −1.95974
\(253\) 10.1439 0.637741
\(254\) 36.4573 2.28754
\(255\) −5.88929 −0.368802
\(256\) 17.4795 1.09247
\(257\) −5.48633 −0.342228 −0.171114 0.985251i \(-0.554737\pi\)
−0.171114 + 0.985251i \(0.554737\pi\)
\(258\) −4.28696 −0.266895
\(259\) −28.3729 −1.76300
\(260\) −3.04615 −0.188914
\(261\) 0.852787 0.0527862
\(262\) −36.8005 −2.27355
\(263\) 0.157856 0.00973382 0.00486691 0.999988i \(-0.498451\pi\)
0.00486691 + 0.999988i \(0.498451\pi\)
\(264\) 29.2686 1.80136
\(265\) 9.83792 0.604339
\(266\) 32.1989 1.97424
\(267\) 13.0614 0.799347
\(268\) 4.88623 0.298474
\(269\) −24.3675 −1.48571 −0.742857 0.669450i \(-0.766530\pi\)
−0.742857 + 0.669450i \(0.766530\pi\)
\(270\) 14.6872 0.893834
\(271\) −13.9802 −0.849238 −0.424619 0.905372i \(-0.639592\pi\)
−0.424619 + 0.905372i \(0.639592\pi\)
\(272\) −25.5556 −1.54954
\(273\) 4.02604 0.243667
\(274\) −55.4348 −3.34894
\(275\) −4.63512 −0.279508
\(276\) −66.6870 −4.01408
\(277\) 10.1741 0.611304 0.305652 0.952143i \(-0.401126\pi\)
0.305652 + 0.952143i \(0.401126\pi\)
\(278\) 8.06421 0.483659
\(279\) −3.70738 −0.221955
\(280\) −64.2066 −3.83708
\(281\) 1.44370 0.0861239 0.0430620 0.999072i \(-0.486289\pi\)
0.0430620 + 0.999072i \(0.486289\pi\)
\(282\) 26.9163 1.60284
\(283\) 26.3777 1.56799 0.783996 0.620765i \(-0.213178\pi\)
0.783996 + 0.620765i \(0.213178\pi\)
\(284\) 69.1579 4.10377
\(285\) 7.21756 0.427532
\(286\) −1.73570 −0.102634
\(287\) −29.7903 −1.75846
\(288\) −20.9943 −1.23710
\(289\) −13.1728 −0.774869
\(290\) 2.84311 0.166953
\(291\) 0 0
\(292\) 60.2660 3.52680
\(293\) −4.49227 −0.262441 −0.131221 0.991353i \(-0.541890\pi\)
−0.131221 + 0.991353i \(0.541890\pi\)
\(294\) 98.5094 5.74518
\(295\) 0.296350 0.0172542
\(296\) −49.7812 −2.89347
\(297\) 6.06020 0.351648
\(298\) 23.6484 1.36991
\(299\) 2.44817 0.141581
\(300\) 30.4717 1.75929
\(301\) 3.88038 0.223661
\(302\) 55.2046 3.17667
\(303\) −1.85578 −0.106612
\(304\) 31.3194 1.79629
\(305\) −14.6711 −0.840063
\(306\) 6.25816 0.357755
\(307\) 5.99831 0.342341 0.171171 0.985241i \(-0.445245\pi\)
0.171171 + 0.985241i \(0.445245\pi\)
\(308\) −42.7957 −2.43851
\(309\) 15.4354 0.878090
\(310\) −12.3600 −0.702004
\(311\) 9.88911 0.560760 0.280380 0.959889i \(-0.409540\pi\)
0.280380 + 0.959889i \(0.409540\pi\)
\(312\) 7.06381 0.399910
\(313\) 8.03444 0.454133 0.227067 0.973879i \(-0.427086\pi\)
0.227067 + 0.973879i \(0.427086\pi\)
\(314\) 31.8463 1.79719
\(315\) 8.71666 0.491128
\(316\) 52.0807 2.92977
\(317\) 12.9753 0.728764 0.364382 0.931250i \(-0.381280\pi\)
0.364382 + 0.931250i \(0.381280\pi\)
\(318\) −36.8523 −2.06657
\(319\) 1.17312 0.0656819
\(320\) −31.5612 −1.76432
\(321\) −1.80217 −0.100587
\(322\) 83.3571 4.64531
\(323\) −4.69042 −0.260982
\(324\) −58.5523 −3.25291
\(325\) −1.11866 −0.0620520
\(326\) 61.3023 3.39522
\(327\) −15.3941 −0.851298
\(328\) −52.2680 −2.88602
\(329\) −24.3635 −1.34320
\(330\) −13.2473 −0.729238
\(331\) −24.8848 −1.36779 −0.683895 0.729580i \(-0.739716\pi\)
−0.683895 + 0.729580i \(0.739716\pi\)
\(332\) −79.1642 −4.34470
\(333\) 6.75827 0.370351
\(334\) −51.1962 −2.80133
\(335\) −1.36907 −0.0748002
\(336\) 133.337 7.27414
\(337\) 0.136525 0.00743700 0.00371850 0.999993i \(-0.498816\pi\)
0.00371850 + 0.999993i \(0.498816\pi\)
\(338\) 34.5848 1.88117
\(339\) 7.00542 0.380482
\(340\) 15.1085 0.819374
\(341\) −5.09997 −0.276179
\(342\) −7.66962 −0.414726
\(343\) −54.2526 −2.92936
\(344\) 6.80825 0.367076
\(345\) 18.6849 1.00596
\(346\) −40.1845 −2.16033
\(347\) 17.4869 0.938748 0.469374 0.883000i \(-0.344480\pi\)
0.469374 + 0.883000i \(0.344480\pi\)
\(348\) −7.71218 −0.413416
\(349\) −30.3412 −1.62413 −0.812063 0.583570i \(-0.801655\pi\)
−0.812063 + 0.583570i \(0.801655\pi\)
\(350\) −38.0889 −2.03594
\(351\) 1.46259 0.0780674
\(352\) −28.8803 −1.53933
\(353\) 5.01161 0.266741 0.133371 0.991066i \(-0.457420\pi\)
0.133371 + 0.991066i \(0.457420\pi\)
\(354\) −1.11011 −0.0590017
\(355\) −19.3773 −1.02844
\(356\) −33.5081 −1.77593
\(357\) −19.9687 −1.05685
\(358\) −14.2967 −0.755602
\(359\) 7.13450 0.376544 0.188272 0.982117i \(-0.439711\pi\)
0.188272 + 0.982117i \(0.439711\pi\)
\(360\) 15.2937 0.806047
\(361\) −13.2517 −0.697458
\(362\) −10.0019 −0.525688
\(363\) 17.0451 0.894638
\(364\) −10.3285 −0.541360
\(365\) −16.8859 −0.883846
\(366\) 54.9570 2.87265
\(367\) −32.0433 −1.67264 −0.836322 0.548238i \(-0.815299\pi\)
−0.836322 + 0.548238i \(0.815299\pi\)
\(368\) 81.0802 4.22660
\(369\) 7.09589 0.369397
\(370\) 22.5314 1.17135
\(371\) 33.3572 1.73182
\(372\) 33.5277 1.73833
\(373\) −4.09375 −0.211967 −0.105983 0.994368i \(-0.533799\pi\)
−0.105983 + 0.994368i \(0.533799\pi\)
\(374\) 8.60888 0.445155
\(375\) −23.5897 −1.21817
\(376\) −42.7466 −2.20449
\(377\) 0.283124 0.0145817
\(378\) 49.7995 2.56141
\(379\) −14.6298 −0.751483 −0.375741 0.926725i \(-0.622612\pi\)
−0.375741 + 0.926725i \(0.622612\pi\)
\(380\) −18.5161 −0.949856
\(381\) 27.7089 1.41957
\(382\) −37.3443 −1.91070
\(383\) 24.7668 1.26552 0.632761 0.774347i \(-0.281922\pi\)
0.632761 + 0.774347i \(0.281922\pi\)
\(384\) 45.8990 2.34227
\(385\) 11.9909 0.611111
\(386\) −21.0446 −1.07114
\(387\) −0.924286 −0.0469841
\(388\) 0 0
\(389\) 26.5138 1.34430 0.672151 0.740414i \(-0.265371\pi\)
0.672151 + 0.740414i \(0.265371\pi\)
\(390\) −3.19715 −0.161894
\(391\) −12.1426 −0.614079
\(392\) −156.446 −7.90170
\(393\) −27.9698 −1.41089
\(394\) 18.0453 0.909110
\(395\) −14.5924 −0.734224
\(396\) 10.1937 0.512253
\(397\) −31.2216 −1.56697 −0.783485 0.621411i \(-0.786560\pi\)
−0.783485 + 0.621411i \(0.786560\pi\)
\(398\) −14.8848 −0.746108
\(399\) 24.4724 1.22515
\(400\) −37.0485 −1.85243
\(401\) −26.2883 −1.31278 −0.656388 0.754424i \(-0.727916\pi\)
−0.656388 + 0.754424i \(0.727916\pi\)
\(402\) 5.12845 0.255784
\(403\) −1.23085 −0.0613129
\(404\) 4.76087 0.236862
\(405\) 16.4057 0.815206
\(406\) 9.64004 0.478427
\(407\) 9.29686 0.460828
\(408\) −35.0357 −1.73452
\(409\) 13.9549 0.690026 0.345013 0.938598i \(-0.387875\pi\)
0.345013 + 0.938598i \(0.387875\pi\)
\(410\) 23.6570 1.16833
\(411\) −42.1325 −2.07824
\(412\) −39.5983 −1.95087
\(413\) 1.00483 0.0494442
\(414\) −19.8552 −0.975832
\(415\) 22.1809 1.08882
\(416\) −6.97009 −0.341737
\(417\) 6.12910 0.300143
\(418\) −10.5505 −0.516044
\(419\) −20.1940 −0.986543 −0.493271 0.869875i \(-0.664199\pi\)
−0.493271 + 0.869875i \(0.664199\pi\)
\(420\) −78.8292 −3.84647
\(421\) 5.36867 0.261653 0.130826 0.991405i \(-0.458237\pi\)
0.130826 + 0.991405i \(0.458237\pi\)
\(422\) −70.8117 −3.44706
\(423\) 5.80326 0.282164
\(424\) 58.5263 2.84229
\(425\) 5.54841 0.269137
\(426\) 72.5862 3.51681
\(427\) −49.7448 −2.40732
\(428\) 4.62333 0.223477
\(429\) −1.31920 −0.0636916
\(430\) −3.08148 −0.148602
\(431\) −35.1983 −1.69544 −0.847721 0.530442i \(-0.822026\pi\)
−0.847721 + 0.530442i \(0.822026\pi\)
\(432\) 48.4392 2.33053
\(433\) −7.62295 −0.366336 −0.183168 0.983082i \(-0.558635\pi\)
−0.183168 + 0.983082i \(0.558635\pi\)
\(434\) −41.9089 −2.01169
\(435\) 2.16087 0.103606
\(436\) 39.4925 1.89135
\(437\) 14.8813 0.711868
\(438\) 63.2535 3.02237
\(439\) −15.2362 −0.727183 −0.363592 0.931558i \(-0.618450\pi\)
−0.363592 + 0.931558i \(0.618450\pi\)
\(440\) 21.0384 1.00297
\(441\) 21.2390 1.01138
\(442\) 2.07770 0.0988263
\(443\) 13.0668 0.620824 0.310412 0.950602i \(-0.399533\pi\)
0.310412 + 0.950602i \(0.399533\pi\)
\(444\) −61.1185 −2.90055
\(445\) 9.38860 0.445062
\(446\) 51.1718 2.42306
\(447\) 17.9736 0.850124
\(448\) −107.014 −5.05592
\(449\) 22.5393 1.06369 0.531847 0.846841i \(-0.321498\pi\)
0.531847 + 0.846841i \(0.321498\pi\)
\(450\) 9.07259 0.427686
\(451\) 9.76129 0.459641
\(452\) −17.9719 −0.845325
\(453\) 41.9575 1.97134
\(454\) 29.3865 1.37918
\(455\) 2.89392 0.135669
\(456\) 42.9376 2.01074
\(457\) 7.21425 0.337469 0.168734 0.985662i \(-0.446032\pi\)
0.168734 + 0.985662i \(0.446032\pi\)
\(458\) −7.44361 −0.347817
\(459\) −7.25428 −0.338601
\(460\) −47.9348 −2.23497
\(461\) 5.69103 0.265058 0.132529 0.991179i \(-0.457690\pi\)
0.132529 + 0.991179i \(0.457690\pi\)
\(462\) −44.9171 −2.08973
\(463\) −18.5383 −0.861550 −0.430775 0.902459i \(-0.641760\pi\)
−0.430775 + 0.902459i \(0.641760\pi\)
\(464\) 9.37672 0.435303
\(465\) −9.39410 −0.435641
\(466\) 4.46882 0.207014
\(467\) −11.8179 −0.546869 −0.273435 0.961891i \(-0.588160\pi\)
−0.273435 + 0.961891i \(0.588160\pi\)
\(468\) 2.46019 0.113722
\(469\) −4.64206 −0.214351
\(470\) 19.3475 0.892433
\(471\) 24.2044 1.11528
\(472\) 1.76300 0.0811486
\(473\) −1.27147 −0.0584624
\(474\) 54.6624 2.51073
\(475\) −6.79980 −0.311996
\(476\) 51.2280 2.34803
\(477\) −7.94551 −0.363800
\(478\) −19.8409 −0.907503
\(479\) 14.4516 0.660310 0.330155 0.943927i \(-0.392899\pi\)
0.330155 + 0.943927i \(0.392899\pi\)
\(480\) −53.1972 −2.42811
\(481\) 2.24374 0.102306
\(482\) 10.4468 0.475839
\(483\) 63.3545 2.88273
\(484\) −43.7280 −1.98763
\(485\) 0 0
\(486\) −31.5015 −1.42894
\(487\) 7.53160 0.341289 0.170645 0.985333i \(-0.445415\pi\)
0.170645 + 0.985333i \(0.445415\pi\)
\(488\) −87.2789 −3.95093
\(489\) 46.5920 2.10696
\(490\) 70.8088 3.19881
\(491\) 9.67614 0.436678 0.218339 0.975873i \(-0.429936\pi\)
0.218339 + 0.975873i \(0.429936\pi\)
\(492\) −64.1717 −2.89308
\(493\) −1.40426 −0.0632448
\(494\) −2.54631 −0.114564
\(495\) −2.85616 −0.128375
\(496\) −40.7641 −1.83036
\(497\) −65.7020 −2.94714
\(498\) −83.0885 −3.72328
\(499\) 30.6551 1.37231 0.686156 0.727455i \(-0.259297\pi\)
0.686156 + 0.727455i \(0.259297\pi\)
\(500\) 60.5176 2.70643
\(501\) −38.9110 −1.73841
\(502\) −67.3106 −3.00422
\(503\) 24.9778 1.11370 0.556852 0.830612i \(-0.312009\pi\)
0.556852 + 0.830612i \(0.312009\pi\)
\(504\) 51.8558 2.30984
\(505\) −1.33394 −0.0593596
\(506\) −27.3134 −1.21423
\(507\) 26.2858 1.16739
\(508\) −71.0851 −3.15389
\(509\) −17.0991 −0.757904 −0.378952 0.925416i \(-0.623715\pi\)
−0.378952 + 0.925416i \(0.623715\pi\)
\(510\) 15.8575 0.702181
\(511\) −57.2544 −2.53279
\(512\) −2.20848 −0.0976021
\(513\) 8.89042 0.392522
\(514\) 14.7725 0.651585
\(515\) 11.0950 0.488905
\(516\) 8.35879 0.367975
\(517\) 7.98312 0.351097
\(518\) 76.3966 3.35668
\(519\) −30.5417 −1.34063
\(520\) 5.07749 0.222663
\(521\) −29.6657 −1.29968 −0.649838 0.760073i \(-0.725163\pi\)
−0.649838 + 0.760073i \(0.725163\pi\)
\(522\) −2.29621 −0.100502
\(523\) 26.1781 1.14469 0.572344 0.820014i \(-0.306034\pi\)
0.572344 + 0.820014i \(0.306034\pi\)
\(524\) 71.7543 3.13460
\(525\) −28.9490 −1.26344
\(526\) −0.425042 −0.0185327
\(527\) 6.10486 0.265932
\(528\) −43.6902 −1.90137
\(529\) 15.5249 0.674994
\(530\) −26.4895 −1.15063
\(531\) −0.239344 −0.0103867
\(532\) −62.7820 −2.72195
\(533\) 2.35583 0.102042
\(534\) −35.1692 −1.52192
\(535\) −1.29540 −0.0560052
\(536\) −8.14465 −0.351795
\(537\) −10.8660 −0.468902
\(538\) 65.6119 2.82873
\(539\) 29.2170 1.25846
\(540\) −28.6373 −1.23235
\(541\) −11.1292 −0.478484 −0.239242 0.970960i \(-0.576899\pi\)
−0.239242 + 0.970960i \(0.576899\pi\)
\(542\) 37.6431 1.61691
\(543\) −7.60181 −0.326225
\(544\) 34.5708 1.48221
\(545\) −11.0653 −0.473987
\(546\) −10.8405 −0.463930
\(547\) 34.2377 1.46390 0.731950 0.681359i \(-0.238611\pi\)
0.731950 + 0.681359i \(0.238611\pi\)
\(548\) 108.088 4.61727
\(549\) 11.8490 0.505701
\(550\) 12.4805 0.532170
\(551\) 1.72098 0.0733163
\(552\) 111.158 4.73118
\(553\) −49.4781 −2.10402
\(554\) −27.3948 −1.16389
\(555\) 17.1247 0.726903
\(556\) −15.7237 −0.666835
\(557\) −28.3086 −1.19947 −0.599737 0.800197i \(-0.704728\pi\)
−0.599737 + 0.800197i \(0.704728\pi\)
\(558\) 9.98248 0.422592
\(559\) −0.306862 −0.0129789
\(560\) 95.8431 4.05011
\(561\) 6.54307 0.276249
\(562\) −3.88730 −0.163976
\(563\) −20.0249 −0.843948 −0.421974 0.906608i \(-0.638663\pi\)
−0.421974 + 0.906608i \(0.638663\pi\)
\(564\) −52.4818 −2.20988
\(565\) 5.03551 0.211846
\(566\) −71.0245 −2.98538
\(567\) 55.6264 2.33609
\(568\) −115.276 −4.83689
\(569\) −3.66114 −0.153483 −0.0767415 0.997051i \(-0.524452\pi\)
−0.0767415 + 0.997051i \(0.524452\pi\)
\(570\) −19.4340 −0.813999
\(571\) −9.24230 −0.386778 −0.193389 0.981122i \(-0.561948\pi\)
−0.193389 + 0.981122i \(0.561948\pi\)
\(572\) 3.38430 0.141505
\(573\) −28.3830 −1.18572
\(574\) 80.2131 3.34803
\(575\) −17.6034 −0.734113
\(576\) 25.4901 1.06209
\(577\) −7.23763 −0.301307 −0.150653 0.988587i \(-0.548138\pi\)
−0.150653 + 0.988587i \(0.548138\pi\)
\(578\) 35.4689 1.47531
\(579\) −15.9947 −0.664717
\(580\) −5.54353 −0.230183
\(581\) 75.2082 3.12016
\(582\) 0 0
\(583\) −10.9300 −0.452676
\(584\) −100.455 −4.15685
\(585\) −0.689318 −0.0284998
\(586\) 12.0959 0.499676
\(587\) −8.71013 −0.359506 −0.179753 0.983712i \(-0.557530\pi\)
−0.179753 + 0.983712i \(0.557530\pi\)
\(588\) −192.075 −7.92105
\(589\) −7.48175 −0.308280
\(590\) −0.797950 −0.0328511
\(591\) 13.7151 0.564165
\(592\) 74.3099 3.05412
\(593\) 13.8689 0.569529 0.284765 0.958597i \(-0.408085\pi\)
0.284765 + 0.958597i \(0.408085\pi\)
\(594\) −16.3177 −0.669521
\(595\) −14.3535 −0.588437
\(596\) −46.1100 −1.88874
\(597\) −11.3130 −0.463010
\(598\) −6.59192 −0.269564
\(599\) 29.4768 1.20439 0.602196 0.798349i \(-0.294293\pi\)
0.602196 + 0.798349i \(0.294293\pi\)
\(600\) −50.7920 −2.07357
\(601\) −32.3744 −1.32058 −0.660290 0.751010i \(-0.729567\pi\)
−0.660290 + 0.751010i \(0.729567\pi\)
\(602\) −10.4483 −0.425840
\(603\) 1.10572 0.0450282
\(604\) −107.639 −4.37976
\(605\) 12.2521 0.498118
\(606\) 4.99687 0.202984
\(607\) 16.1725 0.656420 0.328210 0.944605i \(-0.393555\pi\)
0.328210 + 0.944605i \(0.393555\pi\)
\(608\) −42.3679 −1.71825
\(609\) 7.32679 0.296896
\(610\) 39.5032 1.59944
\(611\) 1.92668 0.0779450
\(612\) −12.2023 −0.493247
\(613\) −37.1735 −1.50143 −0.750713 0.660629i \(-0.770290\pi\)
−0.750713 + 0.660629i \(0.770290\pi\)
\(614\) −16.1510 −0.651802
\(615\) 17.9802 0.725031
\(616\) 71.3343 2.87414
\(617\) −36.7190 −1.47825 −0.739125 0.673568i \(-0.764761\pi\)
−0.739125 + 0.673568i \(0.764761\pi\)
\(618\) −41.5613 −1.67184
\(619\) 0.911585 0.0366397 0.0183199 0.999832i \(-0.494168\pi\)
0.0183199 + 0.999832i \(0.494168\pi\)
\(620\) 24.0998 0.967872
\(621\) 23.0156 0.923586
\(622\) −26.6274 −1.06766
\(623\) 31.8337 1.27539
\(624\) −10.5444 −0.422113
\(625\) −2.77569 −0.111028
\(626\) −21.6335 −0.864648
\(627\) −8.01880 −0.320240
\(628\) −62.0944 −2.47784
\(629\) −11.1287 −0.443730
\(630\) −23.4704 −0.935085
\(631\) −32.3199 −1.28664 −0.643318 0.765599i \(-0.722443\pi\)
−0.643318 + 0.765599i \(0.722443\pi\)
\(632\) −86.8110 −3.45316
\(633\) −53.8195 −2.13913
\(634\) −34.9371 −1.38753
\(635\) 19.9172 0.790392
\(636\) 71.8552 2.84925
\(637\) 7.05134 0.279384
\(638\) −3.15872 −0.125055
\(639\) 15.6499 0.619099
\(640\) 32.9923 1.30414
\(641\) 11.0204 0.435280 0.217640 0.976029i \(-0.430164\pi\)
0.217640 + 0.976029i \(0.430164\pi\)
\(642\) 4.85251 0.191513
\(643\) 23.7598 0.936995 0.468497 0.883465i \(-0.344796\pi\)
0.468497 + 0.883465i \(0.344796\pi\)
\(644\) −162.531 −6.40462
\(645\) −2.34204 −0.0922177
\(646\) 12.6294 0.496897
\(647\) −36.1055 −1.41945 −0.709727 0.704477i \(-0.751182\pi\)
−0.709727 + 0.704477i \(0.751182\pi\)
\(648\) 97.5983 3.83402
\(649\) −0.329248 −0.0129241
\(650\) 3.01209 0.118144
\(651\) −31.8523 −1.24839
\(652\) −119.528 −4.68108
\(653\) 24.7500 0.968543 0.484272 0.874918i \(-0.339085\pi\)
0.484272 + 0.874918i \(0.339085\pi\)
\(654\) 41.4502 1.62083
\(655\) −20.1047 −0.785558
\(656\) 78.0221 3.04625
\(657\) 13.6377 0.532058
\(658\) 65.6010 2.55739
\(659\) 25.4931 0.993071 0.496536 0.868016i \(-0.334605\pi\)
0.496536 + 0.868016i \(0.334605\pi\)
\(660\) 25.8297 1.00542
\(661\) −27.2336 −1.05926 −0.529632 0.848227i \(-0.677670\pi\)
−0.529632 + 0.848227i \(0.677670\pi\)
\(662\) 67.0046 2.60421
\(663\) 1.57913 0.0613284
\(664\) 131.955 5.12086
\(665\) 17.5908 0.682143
\(666\) −18.1973 −0.705131
\(667\) 4.45530 0.172510
\(668\) 99.8231 3.86227
\(669\) 38.8925 1.50367
\(670\) 3.68634 0.142416
\(671\) 16.2997 0.629244
\(672\) −180.374 −6.95809
\(673\) −26.7436 −1.03089 −0.515445 0.856923i \(-0.672373\pi\)
−0.515445 + 0.856923i \(0.672373\pi\)
\(674\) −0.367607 −0.0141597
\(675\) −10.5167 −0.404788
\(676\) −67.4341 −2.59362
\(677\) 31.1081 1.19558 0.597791 0.801652i \(-0.296045\pi\)
0.597791 + 0.801652i \(0.296045\pi\)
\(678\) −18.8628 −0.724420
\(679\) 0 0
\(680\) −25.1837 −0.965752
\(681\) 22.3348 0.855872
\(682\) 13.7322 0.525832
\(683\) 46.6151 1.78368 0.891839 0.452352i \(-0.149415\pi\)
0.891839 + 0.452352i \(0.149415\pi\)
\(684\) 14.9544 0.571794
\(685\) −30.2849 −1.15713
\(686\) 146.080 5.57737
\(687\) −5.65742 −0.215844
\(688\) −10.1629 −0.387457
\(689\) −2.63790 −0.100496
\(690\) −50.3110 −1.91531
\(691\) 49.9428 1.89991 0.949957 0.312381i \(-0.101127\pi\)
0.949957 + 0.312381i \(0.101127\pi\)
\(692\) 78.3523 2.97851
\(693\) −9.68432 −0.367877
\(694\) −47.0852 −1.78733
\(695\) 4.40561 0.167114
\(696\) 12.8551 0.487271
\(697\) −11.6846 −0.442587
\(698\) 81.6964 3.09226
\(699\) 3.39647 0.128466
\(700\) 74.2664 2.80701
\(701\) 46.8949 1.77119 0.885597 0.464454i \(-0.153749\pi\)
0.885597 + 0.464454i \(0.153749\pi\)
\(702\) −3.93817 −0.148637
\(703\) 13.6387 0.514392
\(704\) 35.0649 1.32156
\(705\) 14.7048 0.553815
\(706\) −13.4942 −0.507862
\(707\) −4.52296 −0.170103
\(708\) 2.16451 0.0813473
\(709\) 18.4018 0.691093 0.345547 0.938402i \(-0.387693\pi\)
0.345547 + 0.938402i \(0.387693\pi\)
\(710\) 52.1751 1.95810
\(711\) 11.7854 0.441988
\(712\) 55.8532 2.09319
\(713\) −19.3689 −0.725370
\(714\) 53.7675 2.01220
\(715\) −0.948244 −0.0354623
\(716\) 27.8759 1.04177
\(717\) −15.0798 −0.563167
\(718\) −19.2103 −0.716922
\(719\) 17.7015 0.660154 0.330077 0.943954i \(-0.392925\pi\)
0.330077 + 0.943954i \(0.392925\pi\)
\(720\) −22.8293 −0.850799
\(721\) 37.6196 1.40103
\(722\) 35.6815 1.32793
\(723\) 7.93997 0.295291
\(724\) 19.5019 0.724781
\(725\) −2.03579 −0.0756074
\(726\) −45.8956 −1.70335
\(727\) −7.33162 −0.271915 −0.135957 0.990715i \(-0.543411\pi\)
−0.135957 + 0.990715i \(0.543411\pi\)
\(728\) 17.2161 0.638071
\(729\) 9.51572 0.352434
\(730\) 45.4668 1.68280
\(731\) 1.52200 0.0562932
\(732\) −107.156 −3.96060
\(733\) −15.6386 −0.577624 −0.288812 0.957386i \(-0.593260\pi\)
−0.288812 + 0.957386i \(0.593260\pi\)
\(734\) 86.2795 3.18463
\(735\) 53.8173 1.98508
\(736\) −109.683 −4.04296
\(737\) 1.52105 0.0560286
\(738\) −19.1063 −0.703314
\(739\) 36.6096 1.34670 0.673352 0.739322i \(-0.264854\pi\)
0.673352 + 0.739322i \(0.264854\pi\)
\(740\) −43.9321 −1.61498
\(741\) −1.93529 −0.0710946
\(742\) −89.8173 −3.29730
\(743\) 15.6458 0.573989 0.286994 0.957932i \(-0.407344\pi\)
0.286994 + 0.957932i \(0.407344\pi\)
\(744\) −55.8859 −2.04888
\(745\) 12.9195 0.473334
\(746\) 11.0228 0.403574
\(747\) −17.9142 −0.655447
\(748\) −16.7857 −0.613747
\(749\) −4.39229 −0.160491
\(750\) 63.5176 2.31933
\(751\) −53.6546 −1.95788 −0.978942 0.204136i \(-0.934561\pi\)
−0.978942 + 0.204136i \(0.934561\pi\)
\(752\) 63.8091 2.32688
\(753\) −51.1586 −1.86432
\(754\) −0.762339 −0.0277628
\(755\) 30.1592 1.09760
\(756\) −97.0998 −3.53149
\(757\) 35.4909 1.28994 0.644970 0.764208i \(-0.276870\pi\)
0.644970 + 0.764208i \(0.276870\pi\)
\(758\) 39.3921 1.43079
\(759\) −20.7592 −0.753511
\(760\) 30.8637 1.11954
\(761\) 4.14974 0.150428 0.0752139 0.997167i \(-0.476036\pi\)
0.0752139 + 0.997167i \(0.476036\pi\)
\(762\) −74.6089 −2.70279
\(763\) −37.5190 −1.35828
\(764\) 72.8145 2.63434
\(765\) 3.41893 0.123612
\(766\) −66.6868 −2.40949
\(767\) −0.0794621 −0.00286921
\(768\) −35.7713 −1.29079
\(769\) 41.1185 1.48277 0.741386 0.671079i \(-0.234169\pi\)
0.741386 + 0.671079i \(0.234169\pi\)
\(770\) −32.2865 −1.16353
\(771\) 11.2276 0.404353
\(772\) 41.0332 1.47682
\(773\) 16.6185 0.597724 0.298862 0.954296i \(-0.403393\pi\)
0.298862 + 0.954296i \(0.403393\pi\)
\(774\) 2.48873 0.0894555
\(775\) 8.85035 0.317914
\(776\) 0 0
\(777\) 58.0643 2.08304
\(778\) −71.3908 −2.55949
\(779\) 14.3200 0.513067
\(780\) 6.23385 0.223208
\(781\) 21.5284 0.770346
\(782\) 32.6951 1.16918
\(783\) 2.66170 0.0951215
\(784\) 233.531 8.34041
\(785\) 17.3982 0.620967
\(786\) 75.3113 2.68626
\(787\) −2.21215 −0.0788548 −0.0394274 0.999222i \(-0.512553\pi\)
−0.0394274 + 0.999222i \(0.512553\pi\)
\(788\) −35.1851 −1.25342
\(789\) −0.323048 −0.0115008
\(790\) 39.2915 1.39793
\(791\) 17.0738 0.607074
\(792\) −16.9915 −0.603765
\(793\) 3.93384 0.139695
\(794\) 84.0672 2.98343
\(795\) −20.1330 −0.714045
\(796\) 29.0226 1.02868
\(797\) −45.9770 −1.62859 −0.814294 0.580453i \(-0.802876\pi\)
−0.814294 + 0.580453i \(0.802876\pi\)
\(798\) −65.8942 −2.33263
\(799\) −9.55609 −0.338070
\(800\) 50.1181 1.77194
\(801\) −7.58261 −0.267918
\(802\) 70.7838 2.49946
\(803\) 18.7604 0.662040
\(804\) −9.99954 −0.352657
\(805\) 45.5394 1.60505
\(806\) 3.31418 0.116737
\(807\) 49.8675 1.75542
\(808\) −7.93569 −0.279176
\(809\) −43.9409 −1.54488 −0.772440 0.635087i \(-0.780964\pi\)
−0.772440 + 0.635087i \(0.780964\pi\)
\(810\) −44.1739 −1.55211
\(811\) −23.0354 −0.808884 −0.404442 0.914564i \(-0.632534\pi\)
−0.404442 + 0.914564i \(0.632534\pi\)
\(812\) −18.7963 −0.659621
\(813\) 28.6101 1.00340
\(814\) −25.0327 −0.877394
\(815\) 33.4904 1.17312
\(816\) 52.2988 1.83083
\(817\) −1.86527 −0.0652576
\(818\) −37.5749 −1.31378
\(819\) −2.33725 −0.0816702
\(820\) −46.1268 −1.61082
\(821\) −32.7239 −1.14207 −0.571037 0.820924i \(-0.693459\pi\)
−0.571037 + 0.820924i \(0.693459\pi\)
\(822\) 113.446 3.95687
\(823\) −10.8486 −0.378159 −0.189079 0.981962i \(-0.560550\pi\)
−0.189079 + 0.981962i \(0.560550\pi\)
\(824\) 66.0048 2.29939
\(825\) 9.48563 0.330247
\(826\) −2.70559 −0.0941394
\(827\) −8.33487 −0.289832 −0.144916 0.989444i \(-0.546291\pi\)
−0.144916 + 0.989444i \(0.546291\pi\)
\(828\) 38.7141 1.34541
\(829\) 20.7219 0.719702 0.359851 0.933010i \(-0.382828\pi\)
0.359851 + 0.933010i \(0.382828\pi\)
\(830\) −59.7242 −2.07306
\(831\) −20.8210 −0.722274
\(832\) 8.46270 0.293391
\(833\) −34.9738 −1.21177
\(834\) −16.5032 −0.571458
\(835\) −27.9693 −0.967918
\(836\) 20.5716 0.711484
\(837\) −11.5714 −0.399967
\(838\) 54.3743 1.87833
\(839\) 25.0473 0.864728 0.432364 0.901699i \(-0.357680\pi\)
0.432364 + 0.901699i \(0.357680\pi\)
\(840\) 131.397 4.53362
\(841\) −28.4848 −0.982233
\(842\) −14.4556 −0.498175
\(843\) −2.95449 −0.101758
\(844\) 138.070 4.75256
\(845\) 18.8943 0.649982
\(846\) −15.6258 −0.537227
\(847\) 41.5428 1.42743
\(848\) −87.3640 −3.00009
\(849\) −53.9813 −1.85263
\(850\) −14.9396 −0.512424
\(851\) 35.3080 1.21034
\(852\) −141.530 −4.84873
\(853\) 15.6218 0.534881 0.267441 0.963574i \(-0.413822\pi\)
0.267441 + 0.963574i \(0.413822\pi\)
\(854\) 133.943 4.58342
\(855\) −4.19004 −0.143296
\(856\) −7.70642 −0.263400
\(857\) 41.3279 1.41173 0.705867 0.708344i \(-0.250557\pi\)
0.705867 + 0.708344i \(0.250557\pi\)
\(858\) 3.55207 0.121266
\(859\) 41.3999 1.41255 0.706274 0.707939i \(-0.250375\pi\)
0.706274 + 0.707939i \(0.250375\pi\)
\(860\) 6.00832 0.204882
\(861\) 60.9649 2.07768
\(862\) 94.7747 3.22804
\(863\) −14.7679 −0.502704 −0.251352 0.967896i \(-0.580875\pi\)
−0.251352 + 0.967896i \(0.580875\pi\)
\(864\) −65.5270 −2.22927
\(865\) −21.9534 −0.746440
\(866\) 20.5255 0.697485
\(867\) 26.9577 0.915532
\(868\) 81.7146 2.77357
\(869\) 16.2124 0.549966
\(870\) −5.81833 −0.197260
\(871\) 0.367097 0.0124386
\(872\) −65.8283 −2.22923
\(873\) 0 0
\(874\) −40.0692 −1.35536
\(875\) −57.4934 −1.94363
\(876\) −123.333 −4.16703
\(877\) −7.75035 −0.261711 −0.130855 0.991401i \(-0.541772\pi\)
−0.130855 + 0.991401i \(0.541772\pi\)
\(878\) 41.0248 1.38452
\(879\) 9.19331 0.310083
\(880\) −31.4046 −1.05865
\(881\) 12.8664 0.433481 0.216740 0.976229i \(-0.430457\pi\)
0.216740 + 0.976229i \(0.430457\pi\)
\(882\) −57.1881 −1.92562
\(883\) −25.0240 −0.842126 −0.421063 0.907031i \(-0.638343\pi\)
−0.421063 + 0.907031i \(0.638343\pi\)
\(884\) −4.05114 −0.136255
\(885\) −0.606472 −0.0203863
\(886\) −35.1837 −1.18202
\(887\) 45.2802 1.52036 0.760180 0.649713i \(-0.225111\pi\)
0.760180 + 0.649713i \(0.225111\pi\)
\(888\) 101.876 3.41873
\(889\) 67.5328 2.26498
\(890\) −25.2797 −0.847377
\(891\) −18.2269 −0.610625
\(892\) −99.7756 −3.34073
\(893\) 11.7114 0.391906
\(894\) −48.3957 −1.61859
\(895\) −7.81050 −0.261076
\(896\) 111.866 3.73718
\(897\) −5.01011 −0.167283
\(898\) −60.6891 −2.02522
\(899\) −2.23996 −0.0747069
\(900\) −17.6899 −0.589663
\(901\) 13.0837 0.435880
\(902\) −26.2832 −0.875134
\(903\) −7.94109 −0.264263
\(904\) 29.9565 0.996339
\(905\) −5.46420 −0.181636
\(906\) −112.975 −3.75333
\(907\) 32.9162 1.09296 0.546482 0.837471i \(-0.315967\pi\)
0.546482 + 0.837471i \(0.315967\pi\)
\(908\) −57.2983 −1.90151
\(909\) 1.07735 0.0357333
\(910\) −7.79217 −0.258308
\(911\) −38.8873 −1.28839 −0.644197 0.764860i \(-0.722808\pi\)
−0.644197 + 0.764860i \(0.722808\pi\)
\(912\) −64.0943 −2.12238
\(913\) −24.6433 −0.815573
\(914\) −19.4251 −0.642524
\(915\) 30.0239 0.992561
\(916\) 14.5137 0.479545
\(917\) −68.1686 −2.25113
\(918\) 19.5328 0.644680
\(919\) 42.8726 1.41424 0.707118 0.707096i \(-0.249995\pi\)
0.707118 + 0.707096i \(0.249995\pi\)
\(920\) 79.9004 2.63424
\(921\) −12.2754 −0.404487
\(922\) −15.3236 −0.504657
\(923\) 5.19575 0.171020
\(924\) 87.5801 2.88118
\(925\) −16.1335 −0.530466
\(926\) 49.9162 1.64035
\(927\) −8.96079 −0.294311
\(928\) −12.6845 −0.416390
\(929\) 1.08277 0.0355246 0.0177623 0.999842i \(-0.494346\pi\)
0.0177623 + 0.999842i \(0.494346\pi\)
\(930\) 25.2945 0.829439
\(931\) 42.8618 1.40474
\(932\) −8.71337 −0.285416
\(933\) −20.2378 −0.662555
\(934\) 31.8209 1.04121
\(935\) 4.70318 0.153810
\(936\) −4.10079 −0.134038
\(937\) 0.565168 0.0184632 0.00923162 0.999957i \(-0.497061\pi\)
0.00923162 + 0.999957i \(0.497061\pi\)
\(938\) 12.4992 0.408113
\(939\) −16.4422 −0.536572
\(940\) −37.7240 −1.23042
\(941\) −2.55466 −0.0832794 −0.0416397 0.999133i \(-0.513258\pi\)
−0.0416397 + 0.999133i \(0.513258\pi\)
\(942\) −65.1726 −2.12344
\(943\) 37.0718 1.20722
\(944\) −2.63168 −0.0856540
\(945\) 27.2063 0.885021
\(946\) 3.42356 0.111310
\(947\) 1.29198 0.0419838 0.0209919 0.999780i \(-0.493318\pi\)
0.0209919 + 0.999780i \(0.493318\pi\)
\(948\) −106.582 −3.46161
\(949\) 4.52771 0.146976
\(950\) 18.3091 0.594026
\(951\) −26.5535 −0.861057
\(952\) −85.3898 −2.76750
\(953\) −10.5851 −0.342884 −0.171442 0.985194i \(-0.554843\pi\)
−0.171442 + 0.985194i \(0.554843\pi\)
\(954\) 21.3940 0.692657
\(955\) −20.4018 −0.660187
\(956\) 38.6861 1.25120
\(957\) −2.40075 −0.0776052
\(958\) −38.9123 −1.25720
\(959\) −102.686 −3.31591
\(960\) 64.5891 2.08460
\(961\) −21.2620 −0.685872
\(962\) −6.04149 −0.194785
\(963\) 1.04622 0.0337140
\(964\) −20.3694 −0.656053
\(965\) −11.4970 −0.370103
\(966\) −170.588 −5.48858
\(967\) 3.76453 0.121059 0.0605295 0.998166i \(-0.480721\pi\)
0.0605295 + 0.998166i \(0.480721\pi\)
\(968\) 72.8883 2.34272
\(969\) 9.59880 0.308358
\(970\) 0 0
\(971\) −31.9964 −1.02681 −0.513407 0.858145i \(-0.671617\pi\)
−0.513407 + 0.858145i \(0.671617\pi\)
\(972\) 61.4222 1.97012
\(973\) 14.9380 0.478890
\(974\) −20.2795 −0.649799
\(975\) 2.28930 0.0733163
\(976\) 130.284 4.17029
\(977\) 7.01307 0.224368 0.112184 0.993687i \(-0.464215\pi\)
0.112184 + 0.993687i \(0.464215\pi\)
\(978\) −125.453 −4.01156
\(979\) −10.4308 −0.333371
\(980\) −138.064 −4.41030
\(981\) 8.93682 0.285331
\(982\) −26.0539 −0.831414
\(983\) 6.30841 0.201207 0.100603 0.994927i \(-0.467923\pi\)
0.100603 + 0.994927i \(0.467923\pi\)
\(984\) 106.965 3.40992
\(985\) 9.85846 0.314117
\(986\) 3.78111 0.120415
\(987\) 49.8592 1.58704
\(988\) 4.96483 0.157952
\(989\) −4.82885 −0.153548
\(990\) 7.69049 0.244420
\(991\) 21.3503 0.678216 0.339108 0.940747i \(-0.389875\pi\)
0.339108 + 0.940747i \(0.389875\pi\)
\(992\) 55.1444 1.75084
\(993\) 50.9260 1.61609
\(994\) 176.909 5.61121
\(995\) −8.13181 −0.257796
\(996\) 162.007 5.13340
\(997\) −15.2836 −0.484038 −0.242019 0.970272i \(-0.577810\pi\)
−0.242019 + 0.970272i \(0.577810\pi\)
\(998\) −82.5418 −2.61282
\(999\) 21.0938 0.667378
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 9409.2.a.q.1.4 yes 168
97.96 even 2 9409.2.a.p.1.4 168
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
9409.2.a.p.1.4 168 97.96 even 2
9409.2.a.q.1.4 yes 168 1.1 even 1 trivial