Properties

Label 9409.2.a.o.1.105
Level $9409$
Weight $2$
Character 9409.1
Self dual yes
Analytic conductor $75.131$
Analytic rank $0$
Dimension $128$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [9409,2,Mod(1,9409)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(9409, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("9409.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 9409 = 97^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 9409.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [128,16,16,144,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(75.1312432618\)
Analytic rank: \(0\)
Dimension: \(128\)
Twist minimal: no (minimal twist has level 97)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.105
Character \(\chi\) \(=\) 9409.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.05447 q^{2} -2.21611 q^{3} +2.22085 q^{4} -0.0918616 q^{5} -4.55293 q^{6} -1.32243 q^{7} +0.453730 q^{8} +1.91113 q^{9} -0.188727 q^{10} +2.06984 q^{11} -4.92164 q^{12} -5.93749 q^{13} -2.71689 q^{14} +0.203575 q^{15} -3.50953 q^{16} -3.69766 q^{17} +3.92636 q^{18} -2.93819 q^{19} -0.204011 q^{20} +2.93064 q^{21} +4.25242 q^{22} -6.94438 q^{23} -1.00551 q^{24} -4.99156 q^{25} -12.1984 q^{26} +2.41306 q^{27} -2.93691 q^{28} +1.96584 q^{29} +0.418239 q^{30} +2.48771 q^{31} -8.11768 q^{32} -4.58698 q^{33} -7.59673 q^{34} +0.121480 q^{35} +4.24433 q^{36} -3.87243 q^{37} -6.03642 q^{38} +13.1581 q^{39} -0.0416803 q^{40} +8.20619 q^{41} +6.02091 q^{42} +2.28270 q^{43} +4.59679 q^{44} -0.175559 q^{45} -14.2670 q^{46} -6.56975 q^{47} +7.77748 q^{48} -5.25119 q^{49} -10.2550 q^{50} +8.19440 q^{51} -13.1863 q^{52} +13.6650 q^{53} +4.95755 q^{54} -0.190139 q^{55} -0.600024 q^{56} +6.51133 q^{57} +4.03876 q^{58} +14.1905 q^{59} +0.452110 q^{60} +14.3342 q^{61} +5.11092 q^{62} -2.52733 q^{63} -9.65848 q^{64} +0.545427 q^{65} -9.42381 q^{66} -0.0774098 q^{67} -8.21194 q^{68} +15.3895 q^{69} +0.249578 q^{70} +0.356995 q^{71} +0.867135 q^{72} -6.29602 q^{73} -7.95580 q^{74} +11.0618 q^{75} -6.52527 q^{76} -2.73721 q^{77} +27.0329 q^{78} +0.920565 q^{79} +0.322391 q^{80} -11.0810 q^{81} +16.8594 q^{82} +0.398150 q^{83} +6.50851 q^{84} +0.339673 q^{85} +4.68973 q^{86} -4.35651 q^{87} +0.939146 q^{88} -3.85681 q^{89} -0.360681 q^{90} +7.85189 q^{91} -15.4224 q^{92} -5.51302 q^{93} -13.4974 q^{94} +0.269907 q^{95} +17.9896 q^{96} -10.7884 q^{98} +3.95572 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 128 q + 16 q^{2} + 16 q^{3} + 144 q^{4} + 32 q^{6} + 48 q^{8} + 144 q^{9} + 64 q^{11} + 32 q^{12} + 176 q^{16} + 48 q^{18} + 32 q^{22} + 144 q^{24} + 128 q^{25} + 64 q^{27} + 96 q^{31} + 112 q^{32} + 16 q^{33}+ \cdots + 304 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.05447 1.45273 0.726365 0.687309i \(-0.241208\pi\)
0.726365 + 0.687309i \(0.241208\pi\)
\(3\) −2.21611 −1.27947 −0.639735 0.768596i \(-0.720956\pi\)
−0.639735 + 0.768596i \(0.720956\pi\)
\(4\) 2.22085 1.11042
\(5\) −0.0918616 −0.0410818 −0.0205409 0.999789i \(-0.506539\pi\)
−0.0205409 + 0.999789i \(0.506539\pi\)
\(6\) −4.55293 −1.85872
\(7\) −1.32243 −0.499830 −0.249915 0.968268i \(-0.580403\pi\)
−0.249915 + 0.968268i \(0.580403\pi\)
\(8\) 0.453730 0.160418
\(9\) 1.91113 0.637043
\(10\) −0.188727 −0.0596807
\(11\) 2.06984 0.624079 0.312040 0.950069i \(-0.398988\pi\)
0.312040 + 0.950069i \(0.398988\pi\)
\(12\) −4.92164 −1.42075
\(13\) −5.93749 −1.64676 −0.823381 0.567488i \(-0.807915\pi\)
−0.823381 + 0.567488i \(0.807915\pi\)
\(14\) −2.71689 −0.726118
\(15\) 0.203575 0.0525629
\(16\) −3.50953 −0.877381
\(17\) −3.69766 −0.896814 −0.448407 0.893830i \(-0.648008\pi\)
−0.448407 + 0.893830i \(0.648008\pi\)
\(18\) 3.92636 0.925451
\(19\) −2.93819 −0.674066 −0.337033 0.941493i \(-0.609423\pi\)
−0.337033 + 0.941493i \(0.609423\pi\)
\(20\) −0.204011 −0.0456182
\(21\) 2.93064 0.639518
\(22\) 4.25242 0.906618
\(23\) −6.94438 −1.44800 −0.724001 0.689799i \(-0.757699\pi\)
−0.724001 + 0.689799i \(0.757699\pi\)
\(24\) −1.00551 −0.205249
\(25\) −4.99156 −0.998312
\(26\) −12.1984 −2.39230
\(27\) 2.41306 0.464393
\(28\) −2.93691 −0.555024
\(29\) 1.96584 0.365047 0.182524 0.983201i \(-0.441573\pi\)
0.182524 + 0.983201i \(0.441573\pi\)
\(30\) 0.418239 0.0763597
\(31\) 2.48771 0.446805 0.223403 0.974726i \(-0.428284\pi\)
0.223403 + 0.974726i \(0.428284\pi\)
\(32\) −8.11768 −1.43502
\(33\) −4.58698 −0.798490
\(34\) −7.59673 −1.30283
\(35\) 0.121480 0.0205339
\(36\) 4.24433 0.707388
\(37\) −3.87243 −0.636624 −0.318312 0.947986i \(-0.603116\pi\)
−0.318312 + 0.947986i \(0.603116\pi\)
\(38\) −6.03642 −0.979236
\(39\) 13.1581 2.10698
\(40\) −0.0416803 −0.00659024
\(41\) 8.20619 1.28159 0.640796 0.767711i \(-0.278604\pi\)
0.640796 + 0.767711i \(0.278604\pi\)
\(42\) 6.02091 0.929046
\(43\) 2.28270 0.348108 0.174054 0.984736i \(-0.444313\pi\)
0.174054 + 0.984736i \(0.444313\pi\)
\(44\) 4.59679 0.692993
\(45\) −0.175559 −0.0261708
\(46\) −14.2670 −2.10356
\(47\) −6.56975 −0.958296 −0.479148 0.877734i \(-0.659054\pi\)
−0.479148 + 0.877734i \(0.659054\pi\)
\(48\) 7.77748 1.12258
\(49\) −5.25119 −0.750170
\(50\) −10.2550 −1.45028
\(51\) 8.19440 1.14745
\(52\) −13.1863 −1.82861
\(53\) 13.6650 1.87703 0.938517 0.345234i \(-0.112200\pi\)
0.938517 + 0.345234i \(0.112200\pi\)
\(54\) 4.95755 0.674638
\(55\) −0.190139 −0.0256383
\(56\) −0.600024 −0.0801816
\(57\) 6.51133 0.862447
\(58\) 4.03876 0.530315
\(59\) 14.1905 1.84745 0.923725 0.383057i \(-0.125129\pi\)
0.923725 + 0.383057i \(0.125129\pi\)
\(60\) 0.452110 0.0583671
\(61\) 14.3342 1.83530 0.917651 0.397387i \(-0.130083\pi\)
0.917651 + 0.397387i \(0.130083\pi\)
\(62\) 5.11092 0.649088
\(63\) −2.52733 −0.318413
\(64\) −9.65848 −1.20731
\(65\) 0.545427 0.0676519
\(66\) −9.42381 −1.15999
\(67\) −0.0774098 −0.00945711 −0.00472856 0.999989i \(-0.501505\pi\)
−0.00472856 + 0.999989i \(0.501505\pi\)
\(68\) −8.21194 −0.995844
\(69\) 15.3895 1.85268
\(70\) 0.249578 0.0298302
\(71\) 0.356995 0.0423675 0.0211838 0.999776i \(-0.493256\pi\)
0.0211838 + 0.999776i \(0.493256\pi\)
\(72\) 0.867135 0.102193
\(73\) −6.29602 −0.736893 −0.368447 0.929649i \(-0.620110\pi\)
−0.368447 + 0.929649i \(0.620110\pi\)
\(74\) −7.95580 −0.924843
\(75\) 11.0618 1.27731
\(76\) −6.52527 −0.748500
\(77\) −2.73721 −0.311934
\(78\) 27.0329 3.06088
\(79\) 0.920565 0.103572 0.0517858 0.998658i \(-0.483509\pi\)
0.0517858 + 0.998658i \(0.483509\pi\)
\(80\) 0.322391 0.0360444
\(81\) −11.0810 −1.23122
\(82\) 16.8594 1.86181
\(83\) 0.398150 0.0437027 0.0218513 0.999761i \(-0.493044\pi\)
0.0218513 + 0.999761i \(0.493044\pi\)
\(84\) 6.50851 0.710136
\(85\) 0.339673 0.0368427
\(86\) 4.68973 0.505707
\(87\) −4.35651 −0.467067
\(88\) 0.939146 0.100113
\(89\) −3.85681 −0.408821 −0.204410 0.978885i \(-0.565528\pi\)
−0.204410 + 0.978885i \(0.565528\pi\)
\(90\) −0.360681 −0.0380192
\(91\) 7.85189 0.823102
\(92\) −15.4224 −1.60790
\(93\) −5.51302 −0.571674
\(94\) −13.4974 −1.39215
\(95\) 0.269907 0.0276918
\(96\) 17.9896 1.83606
\(97\) 0 0
\(98\) −10.7884 −1.08979
\(99\) 3.95572 0.397565
\(100\) −11.0855 −1.10855
\(101\) 10.4636 1.04117 0.520583 0.853811i \(-0.325715\pi\)
0.520583 + 0.853811i \(0.325715\pi\)
\(102\) 16.8352 1.66693
\(103\) −7.23695 −0.713078 −0.356539 0.934280i \(-0.616043\pi\)
−0.356539 + 0.934280i \(0.616043\pi\)
\(104\) −2.69401 −0.264170
\(105\) −0.269213 −0.0262725
\(106\) 28.0744 2.72682
\(107\) −13.6099 −1.31572 −0.657860 0.753140i \(-0.728538\pi\)
−0.657860 + 0.753140i \(0.728538\pi\)
\(108\) 5.35904 0.515674
\(109\) 16.1352 1.54547 0.772735 0.634729i \(-0.218888\pi\)
0.772735 + 0.634729i \(0.218888\pi\)
\(110\) −0.390634 −0.0372455
\(111\) 8.58172 0.814541
\(112\) 4.64109 0.438542
\(113\) −9.70471 −0.912942 −0.456471 0.889738i \(-0.650887\pi\)
−0.456471 + 0.889738i \(0.650887\pi\)
\(114\) 13.3773 1.25290
\(115\) 0.637922 0.0594865
\(116\) 4.36583 0.405357
\(117\) −11.3473 −1.04906
\(118\) 29.1540 2.68385
\(119\) 4.88988 0.448254
\(120\) 0.0923681 0.00843201
\(121\) −6.71578 −0.610525
\(122\) 29.4491 2.66620
\(123\) −18.1858 −1.63976
\(124\) 5.52482 0.496144
\(125\) 0.917841 0.0820942
\(126\) −5.19232 −0.462568
\(127\) −0.771841 −0.0684898 −0.0342449 0.999413i \(-0.510903\pi\)
−0.0342449 + 0.999413i \(0.510903\pi\)
\(128\) −3.60771 −0.318879
\(129\) −5.05870 −0.445394
\(130\) 1.12056 0.0982800
\(131\) −20.2278 −1.76731 −0.883655 0.468139i \(-0.844925\pi\)
−0.883655 + 0.468139i \(0.844925\pi\)
\(132\) −10.1870 −0.886663
\(133\) 3.88553 0.336919
\(134\) −0.159036 −0.0137386
\(135\) −0.221667 −0.0190781
\(136\) −1.67774 −0.143865
\(137\) −0.113820 −0.00972428 −0.00486214 0.999988i \(-0.501548\pi\)
−0.00486214 + 0.999988i \(0.501548\pi\)
\(138\) 31.6172 2.69144
\(139\) 10.8614 0.921250 0.460625 0.887595i \(-0.347625\pi\)
0.460625 + 0.887595i \(0.347625\pi\)
\(140\) 0.269789 0.0228014
\(141\) 14.5593 1.22611
\(142\) 0.733436 0.0615486
\(143\) −12.2896 −1.02771
\(144\) −6.70715 −0.558929
\(145\) −0.180585 −0.0149968
\(146\) −12.9350 −1.07051
\(147\) 11.6372 0.959819
\(148\) −8.60009 −0.706923
\(149\) 6.68892 0.547978 0.273989 0.961733i \(-0.411657\pi\)
0.273989 + 0.961733i \(0.411657\pi\)
\(150\) 22.7262 1.85559
\(151\) −15.1372 −1.23185 −0.615924 0.787806i \(-0.711217\pi\)
−0.615924 + 0.787806i \(0.711217\pi\)
\(152\) −1.33314 −0.108132
\(153\) −7.06669 −0.571308
\(154\) −5.62351 −0.453155
\(155\) −0.228525 −0.0183556
\(156\) 29.2222 2.33965
\(157\) −13.7796 −1.09973 −0.549866 0.835253i \(-0.685321\pi\)
−0.549866 + 0.835253i \(0.685321\pi\)
\(158\) 1.89127 0.150462
\(159\) −30.2831 −2.40161
\(160\) 0.745703 0.0589530
\(161\) 9.18343 0.723755
\(162\) −22.7655 −1.78863
\(163\) 13.8374 1.08383 0.541915 0.840434i \(-0.317700\pi\)
0.541915 + 0.840434i \(0.317700\pi\)
\(164\) 18.2247 1.42311
\(165\) 0.421367 0.0328034
\(166\) 0.817988 0.0634882
\(167\) 10.4933 0.812000 0.406000 0.913873i \(-0.366923\pi\)
0.406000 + 0.913873i \(0.366923\pi\)
\(168\) 1.32972 0.102590
\(169\) 22.2538 1.71183
\(170\) 0.697848 0.0535225
\(171\) −5.61525 −0.429409
\(172\) 5.06953 0.386548
\(173\) −19.6933 −1.49725 −0.748625 0.662994i \(-0.769286\pi\)
−0.748625 + 0.662994i \(0.769286\pi\)
\(174\) −8.95032 −0.678522
\(175\) 6.60097 0.498987
\(176\) −7.26414 −0.547555
\(177\) −31.4477 −2.36376
\(178\) −7.92370 −0.593906
\(179\) −11.0637 −0.826939 −0.413469 0.910518i \(-0.635683\pi\)
−0.413469 + 0.910518i \(0.635683\pi\)
\(180\) −0.389891 −0.0290608
\(181\) 16.8315 1.25108 0.625538 0.780194i \(-0.284880\pi\)
0.625538 + 0.780194i \(0.284880\pi\)
\(182\) 16.1315 1.19574
\(183\) −31.7660 −2.34821
\(184\) −3.15087 −0.232285
\(185\) 0.355728 0.0261536
\(186\) −11.3263 −0.830488
\(187\) −7.65354 −0.559683
\(188\) −14.5904 −1.06412
\(189\) −3.19109 −0.232118
\(190\) 0.554515 0.0402288
\(191\) 8.24081 0.596284 0.298142 0.954521i \(-0.403633\pi\)
0.298142 + 0.954521i \(0.403633\pi\)
\(192\) 21.4042 1.54472
\(193\) 13.7309 0.988369 0.494185 0.869357i \(-0.335467\pi\)
0.494185 + 0.869357i \(0.335467\pi\)
\(194\) 0 0
\(195\) −1.20873 −0.0865586
\(196\) −11.6621 −0.833007
\(197\) 3.21894 0.229340 0.114670 0.993404i \(-0.463419\pi\)
0.114670 + 0.993404i \(0.463419\pi\)
\(198\) 8.12691 0.577555
\(199\) 18.7217 1.32714 0.663571 0.748113i \(-0.269040\pi\)
0.663571 + 0.748113i \(0.269040\pi\)
\(200\) −2.26482 −0.160147
\(201\) 0.171548 0.0121001
\(202\) 21.4971 1.51253
\(203\) −2.59968 −0.182462
\(204\) 18.1985 1.27415
\(205\) −0.753834 −0.0526501
\(206\) −14.8681 −1.03591
\(207\) −13.2716 −0.922439
\(208\) 20.8378 1.44484
\(209\) −6.08156 −0.420670
\(210\) −0.553091 −0.0381669
\(211\) 8.22855 0.566477 0.283239 0.959049i \(-0.408591\pi\)
0.283239 + 0.959049i \(0.408591\pi\)
\(212\) 30.3479 2.08430
\(213\) −0.791139 −0.0542080
\(214\) −27.9612 −1.91139
\(215\) −0.209692 −0.0143009
\(216\) 1.09488 0.0744968
\(217\) −3.28981 −0.223327
\(218\) 33.1492 2.24515
\(219\) 13.9526 0.942832
\(220\) −0.422269 −0.0284694
\(221\) 21.9548 1.47684
\(222\) 17.6309 1.18331
\(223\) 10.7548 0.720194 0.360097 0.932915i \(-0.382744\pi\)
0.360097 + 0.932915i \(0.382744\pi\)
\(224\) 10.7350 0.717264
\(225\) −9.53951 −0.635967
\(226\) −19.9380 −1.32626
\(227\) −1.25190 −0.0830913 −0.0415456 0.999137i \(-0.513228\pi\)
−0.0415456 + 0.999137i \(0.513228\pi\)
\(228\) 14.4607 0.957683
\(229\) 5.93649 0.392294 0.196147 0.980574i \(-0.437157\pi\)
0.196147 + 0.980574i \(0.437157\pi\)
\(230\) 1.31059 0.0864178
\(231\) 6.06594 0.399110
\(232\) 0.891959 0.0585600
\(233\) 1.69556 0.111080 0.0555398 0.998456i \(-0.482312\pi\)
0.0555398 + 0.998456i \(0.482312\pi\)
\(234\) −23.3127 −1.52400
\(235\) 0.603508 0.0393685
\(236\) 31.5150 2.05145
\(237\) −2.04007 −0.132517
\(238\) 10.0461 0.651193
\(239\) −12.8816 −0.833243 −0.416621 0.909080i \(-0.636786\pi\)
−0.416621 + 0.909080i \(0.636786\pi\)
\(240\) −0.714452 −0.0461177
\(241\) 1.58717 0.102238 0.0511192 0.998693i \(-0.483721\pi\)
0.0511192 + 0.998693i \(0.483721\pi\)
\(242\) −13.7974 −0.886929
\(243\) 17.3174 1.11091
\(244\) 31.8340 2.03797
\(245\) 0.482383 0.0308183
\(246\) −37.3622 −2.38213
\(247\) 17.4454 1.11003
\(248\) 1.12875 0.0716755
\(249\) −0.882343 −0.0559162
\(250\) 1.88568 0.119261
\(251\) 0.901773 0.0569194 0.0284597 0.999595i \(-0.490940\pi\)
0.0284597 + 0.999595i \(0.490940\pi\)
\(252\) −5.61281 −0.353574
\(253\) −14.3737 −0.903668
\(254\) −1.58573 −0.0994973
\(255\) −0.752751 −0.0471391
\(256\) 11.9050 0.744064
\(257\) −3.28396 −0.204848 −0.102424 0.994741i \(-0.532660\pi\)
−0.102424 + 0.994741i \(0.532660\pi\)
\(258\) −10.3929 −0.647037
\(259\) 5.12101 0.318204
\(260\) 1.21131 0.0751224
\(261\) 3.75697 0.232551
\(262\) −41.5574 −2.56742
\(263\) −19.7553 −1.21817 −0.609083 0.793106i \(-0.708462\pi\)
−0.609083 + 0.793106i \(0.708462\pi\)
\(264\) −2.08125 −0.128092
\(265\) −1.25529 −0.0771119
\(266\) 7.98272 0.489452
\(267\) 8.54709 0.523074
\(268\) −0.171916 −0.0105014
\(269\) 15.0580 0.918101 0.459050 0.888410i \(-0.348190\pi\)
0.459050 + 0.888410i \(0.348190\pi\)
\(270\) −0.455409 −0.0277153
\(271\) −20.3486 −1.23609 −0.618045 0.786143i \(-0.712075\pi\)
−0.618045 + 0.786143i \(0.712075\pi\)
\(272\) 12.9770 0.786848
\(273\) −17.4006 −1.05313
\(274\) −0.233839 −0.0141267
\(275\) −10.3317 −0.623026
\(276\) 34.1777 2.05726
\(277\) −19.5762 −1.17622 −0.588111 0.808780i \(-0.700128\pi\)
−0.588111 + 0.808780i \(0.700128\pi\)
\(278\) 22.3144 1.33833
\(279\) 4.75433 0.284634
\(280\) 0.0551192 0.00329400
\(281\) 22.7095 1.35474 0.677368 0.735645i \(-0.263121\pi\)
0.677368 + 0.735645i \(0.263121\pi\)
\(282\) 29.9116 1.78121
\(283\) 21.4831 1.27704 0.638518 0.769607i \(-0.279548\pi\)
0.638518 + 0.769607i \(0.279548\pi\)
\(284\) 0.792832 0.0470459
\(285\) −0.598142 −0.0354309
\(286\) −25.2487 −1.49299
\(287\) −10.8521 −0.640578
\(288\) −15.5139 −0.914166
\(289\) −3.32733 −0.195725
\(290\) −0.371007 −0.0217863
\(291\) 0 0
\(292\) −13.9825 −0.818264
\(293\) 18.5065 1.08116 0.540581 0.841292i \(-0.318204\pi\)
0.540581 + 0.841292i \(0.318204\pi\)
\(294\) 23.9083 1.39436
\(295\) −1.30357 −0.0758965
\(296\) −1.75704 −0.102126
\(297\) 4.99463 0.289818
\(298\) 13.7422 0.796064
\(299\) 41.2321 2.38452
\(300\) 24.5667 1.41836
\(301\) −3.01870 −0.173995
\(302\) −31.0989 −1.78954
\(303\) −23.1884 −1.33214
\(304\) 10.3116 0.591413
\(305\) −1.31676 −0.0753975
\(306\) −14.5183 −0.829957
\(307\) −7.87868 −0.449660 −0.224830 0.974398i \(-0.572183\pi\)
−0.224830 + 0.974398i \(0.572183\pi\)
\(308\) −6.07892 −0.346379
\(309\) 16.0379 0.912362
\(310\) −0.469498 −0.0266657
\(311\) 4.25480 0.241268 0.120634 0.992697i \(-0.461507\pi\)
0.120634 + 0.992697i \(0.461507\pi\)
\(312\) 5.97022 0.337997
\(313\) 18.0085 1.01790 0.508951 0.860795i \(-0.330033\pi\)
0.508951 + 0.860795i \(0.330033\pi\)
\(314\) −28.3098 −1.59761
\(315\) 0.232164 0.0130810
\(316\) 2.04444 0.115009
\(317\) 9.06236 0.508993 0.254497 0.967074i \(-0.418090\pi\)
0.254497 + 0.967074i \(0.418090\pi\)
\(318\) −62.2158 −3.48889
\(319\) 4.06896 0.227818
\(320\) 0.887244 0.0495984
\(321\) 30.1610 1.68342
\(322\) 18.8671 1.05142
\(323\) 10.8644 0.604512
\(324\) −24.6092 −1.36718
\(325\) 29.6373 1.64398
\(326\) 28.4285 1.57451
\(327\) −35.7573 −1.97738
\(328\) 3.72339 0.205590
\(329\) 8.68801 0.478985
\(330\) 0.865687 0.0476545
\(331\) 29.8066 1.63832 0.819158 0.573567i \(-0.194441\pi\)
0.819158 + 0.573567i \(0.194441\pi\)
\(332\) 0.884232 0.0485285
\(333\) −7.40071 −0.405557
\(334\) 21.5583 1.17962
\(335\) 0.00711099 0.000388515 0
\(336\) −10.2851 −0.561101
\(337\) 9.69690 0.528224 0.264112 0.964492i \(-0.414921\pi\)
0.264112 + 0.964492i \(0.414921\pi\)
\(338\) 45.7197 2.48682
\(339\) 21.5067 1.16808
\(340\) 0.754362 0.0409110
\(341\) 5.14915 0.278842
\(342\) −11.5364 −0.623815
\(343\) 16.2013 0.874788
\(344\) 1.03573 0.0558426
\(345\) −1.41370 −0.0761112
\(346\) −40.4592 −2.17510
\(347\) 19.9111 1.06889 0.534443 0.845205i \(-0.320522\pi\)
0.534443 + 0.845205i \(0.320522\pi\)
\(348\) −9.67515 −0.518643
\(349\) 34.2702 1.83444 0.917220 0.398380i \(-0.130428\pi\)
0.917220 + 0.398380i \(0.130428\pi\)
\(350\) 13.5615 0.724893
\(351\) −14.3275 −0.764745
\(352\) −16.8023 −0.895563
\(353\) −0.0453434 −0.00241339 −0.00120669 0.999999i \(-0.500384\pi\)
−0.00120669 + 0.999999i \(0.500384\pi\)
\(354\) −64.6084 −3.43390
\(355\) −0.0327941 −0.00174053
\(356\) −8.56539 −0.453965
\(357\) −10.8365 −0.573528
\(358\) −22.7300 −1.20132
\(359\) −14.7168 −0.776721 −0.388360 0.921508i \(-0.626958\pi\)
−0.388360 + 0.921508i \(0.626958\pi\)
\(360\) −0.0796565 −0.00419826
\(361\) −10.3671 −0.545635
\(362\) 34.5798 1.81748
\(363\) 14.8829 0.781149
\(364\) 17.4379 0.913993
\(365\) 0.578362 0.0302729
\(366\) −65.2624 −3.41132
\(367\) 3.74113 0.195285 0.0976427 0.995222i \(-0.468870\pi\)
0.0976427 + 0.995222i \(0.468870\pi\)
\(368\) 24.3715 1.27045
\(369\) 15.6831 0.816429
\(370\) 0.730833 0.0379942
\(371\) −18.0710 −0.938198
\(372\) −12.2436 −0.634801
\(373\) −25.2354 −1.30664 −0.653320 0.757082i \(-0.726624\pi\)
−0.653320 + 0.757082i \(0.726624\pi\)
\(374\) −15.7240 −0.813068
\(375\) −2.03403 −0.105037
\(376\) −2.98089 −0.153728
\(377\) −11.6721 −0.601146
\(378\) −6.55600 −0.337204
\(379\) 34.2740 1.76054 0.880269 0.474475i \(-0.157362\pi\)
0.880269 + 0.474475i \(0.157362\pi\)
\(380\) 0.599422 0.0307497
\(381\) 1.71048 0.0876307
\(382\) 16.9305 0.866240
\(383\) 4.63704 0.236942 0.118471 0.992958i \(-0.462201\pi\)
0.118471 + 0.992958i \(0.462201\pi\)
\(384\) 7.99506 0.407996
\(385\) 0.251444 0.0128148
\(386\) 28.2097 1.43583
\(387\) 4.36252 0.221760
\(388\) 0 0
\(389\) −14.5149 −0.735935 −0.367968 0.929839i \(-0.619946\pi\)
−0.367968 + 0.929839i \(0.619946\pi\)
\(390\) −2.48329 −0.125746
\(391\) 25.6779 1.29859
\(392\) −2.38262 −0.120340
\(393\) 44.8269 2.26122
\(394\) 6.61322 0.333169
\(395\) −0.0845646 −0.00425491
\(396\) 8.78506 0.441466
\(397\) −20.4339 −1.02555 −0.512773 0.858524i \(-0.671382\pi\)
−0.512773 + 0.858524i \(0.671382\pi\)
\(398\) 38.4631 1.92798
\(399\) −8.61076 −0.431077
\(400\) 17.5180 0.875901
\(401\) −20.6904 −1.03323 −0.516614 0.856219i \(-0.672808\pi\)
−0.516614 + 0.856219i \(0.672808\pi\)
\(402\) 0.352441 0.0175782
\(403\) −14.7707 −0.735783
\(404\) 23.2381 1.15614
\(405\) 1.01792 0.0505807
\(406\) −5.34096 −0.265067
\(407\) −8.01530 −0.397304
\(408\) 3.71804 0.184071
\(409\) −19.7326 −0.975712 −0.487856 0.872924i \(-0.662221\pi\)
−0.487856 + 0.872924i \(0.662221\pi\)
\(410\) −1.54873 −0.0764863
\(411\) 0.252237 0.0124419
\(412\) −16.0722 −0.791820
\(413\) −18.7659 −0.923411
\(414\) −27.2661 −1.34006
\(415\) −0.0365747 −0.00179538
\(416\) 48.1986 2.36313
\(417\) −24.0700 −1.17871
\(418\) −12.4944 −0.611121
\(419\) 22.4831 1.09837 0.549185 0.835701i \(-0.314938\pi\)
0.549185 + 0.835701i \(0.314938\pi\)
\(420\) −0.597882 −0.0291737
\(421\) −25.0043 −1.21864 −0.609318 0.792926i \(-0.708557\pi\)
−0.609318 + 0.792926i \(0.708557\pi\)
\(422\) 16.9053 0.822938
\(423\) −12.5556 −0.610476
\(424\) 6.20022 0.301109
\(425\) 18.4571 0.895300
\(426\) −1.62537 −0.0787495
\(427\) −18.9559 −0.917340
\(428\) −30.2256 −1.46101
\(429\) 27.2351 1.31492
\(430\) −0.430807 −0.0207753
\(431\) −9.15160 −0.440817 −0.220409 0.975408i \(-0.570739\pi\)
−0.220409 + 0.975408i \(0.570739\pi\)
\(432\) −8.46868 −0.407450
\(433\) −8.30684 −0.399201 −0.199601 0.979877i \(-0.563964\pi\)
−0.199601 + 0.979877i \(0.563964\pi\)
\(434\) −6.75882 −0.324434
\(435\) 0.400196 0.0191879
\(436\) 35.8338 1.71613
\(437\) 20.4039 0.976049
\(438\) 28.6653 1.36968
\(439\) 8.98024 0.428603 0.214302 0.976768i \(-0.431252\pi\)
0.214302 + 0.976768i \(0.431252\pi\)
\(440\) −0.0862715 −0.00411283
\(441\) −10.0357 −0.477890
\(442\) 45.1055 2.14545
\(443\) 19.6719 0.934642 0.467321 0.884088i \(-0.345219\pi\)
0.467321 + 0.884088i \(0.345219\pi\)
\(444\) 19.0587 0.904487
\(445\) 0.354293 0.0167951
\(446\) 22.0954 1.04625
\(447\) −14.8234 −0.701121
\(448\) 12.7726 0.603450
\(449\) −21.6358 −1.02106 −0.510528 0.859861i \(-0.670550\pi\)
−0.510528 + 0.859861i \(0.670550\pi\)
\(450\) −19.5986 −0.923889
\(451\) 16.9855 0.799815
\(452\) −21.5527 −1.01375
\(453\) 33.5456 1.57611
\(454\) −2.57198 −0.120709
\(455\) −0.721288 −0.0338145
\(456\) 2.95438 0.138352
\(457\) −32.0557 −1.49950 −0.749752 0.661719i \(-0.769827\pi\)
−0.749752 + 0.661719i \(0.769827\pi\)
\(458\) 12.1963 0.569898
\(459\) −8.92266 −0.416474
\(460\) 1.41673 0.0660553
\(461\) −39.3572 −1.83305 −0.916524 0.399979i \(-0.869017\pi\)
−0.916524 + 0.399979i \(0.869017\pi\)
\(462\) 12.4623 0.579798
\(463\) 24.9451 1.15930 0.579649 0.814866i \(-0.303190\pi\)
0.579649 + 0.814866i \(0.303190\pi\)
\(464\) −6.89916 −0.320286
\(465\) 0.506435 0.0234854
\(466\) 3.48347 0.161369
\(467\) 16.1696 0.748241 0.374121 0.927380i \(-0.377945\pi\)
0.374121 + 0.927380i \(0.377945\pi\)
\(468\) −25.2006 −1.16490
\(469\) 0.102369 0.00472695
\(470\) 1.23989 0.0571918
\(471\) 30.5370 1.40707
\(472\) 6.43866 0.296363
\(473\) 4.72481 0.217247
\(474\) −4.19126 −0.192511
\(475\) 14.6661 0.672928
\(476\) 10.8597 0.497753
\(477\) 26.1156 1.19575
\(478\) −26.4649 −1.21048
\(479\) 0.245847 0.0112330 0.00561651 0.999984i \(-0.498212\pi\)
0.00561651 + 0.999984i \(0.498212\pi\)
\(480\) −1.65256 −0.0754286
\(481\) 22.9925 1.04837
\(482\) 3.26079 0.148525
\(483\) −20.3514 −0.926023
\(484\) −14.9147 −0.677943
\(485\) 0 0
\(486\) 35.5782 1.61386
\(487\) −31.5961 −1.43175 −0.715877 0.698226i \(-0.753973\pi\)
−0.715877 + 0.698226i \(0.753973\pi\)
\(488\) 6.50384 0.294415
\(489\) −30.6652 −1.38673
\(490\) 0.991041 0.0447707
\(491\) −12.8493 −0.579882 −0.289941 0.957044i \(-0.593636\pi\)
−0.289941 + 0.957044i \(0.593636\pi\)
\(492\) −40.3879 −1.82083
\(493\) −7.26900 −0.327379
\(494\) 35.8412 1.61257
\(495\) −0.363379 −0.0163327
\(496\) −8.73067 −0.392019
\(497\) −0.472100 −0.0211766
\(498\) −1.81275 −0.0812312
\(499\) −22.7533 −1.01858 −0.509288 0.860596i \(-0.670091\pi\)
−0.509288 + 0.860596i \(0.670091\pi\)
\(500\) 2.03839 0.0911595
\(501\) −23.2544 −1.03893
\(502\) 1.85267 0.0826886
\(503\) 31.8687 1.42095 0.710477 0.703720i \(-0.248479\pi\)
0.710477 + 0.703720i \(0.248479\pi\)
\(504\) −1.14672 −0.0510791
\(505\) −0.961203 −0.0427730
\(506\) −29.5304 −1.31279
\(507\) −49.3167 −2.19023
\(508\) −1.71414 −0.0760528
\(509\) −13.0345 −0.577745 −0.288872 0.957368i \(-0.593280\pi\)
−0.288872 + 0.957368i \(0.593280\pi\)
\(510\) −1.54651 −0.0684804
\(511\) 8.32602 0.368321
\(512\) 31.6739 1.39980
\(513\) −7.09001 −0.313032
\(514\) −6.74679 −0.297588
\(515\) 0.664798 0.0292945
\(516\) −11.2346 −0.494576
\(517\) −13.5983 −0.598053
\(518\) 10.5210 0.462264
\(519\) 43.6423 1.91569
\(520\) 0.247477 0.0108526
\(521\) 7.82851 0.342973 0.171487 0.985186i \(-0.445143\pi\)
0.171487 + 0.985186i \(0.445143\pi\)
\(522\) 7.71858 0.337833
\(523\) −29.5671 −1.29288 −0.646439 0.762965i \(-0.723743\pi\)
−0.646439 + 0.762965i \(0.723743\pi\)
\(524\) −44.9229 −1.96247
\(525\) −14.6285 −0.638438
\(526\) −40.5868 −1.76967
\(527\) −9.19869 −0.400701
\(528\) 16.0981 0.700580
\(529\) 25.2243 1.09671
\(530\) −2.57896 −0.112023
\(531\) 27.1199 1.17690
\(532\) 8.62919 0.374123
\(533\) −48.7242 −2.11048
\(534\) 17.5598 0.759885
\(535\) 1.25023 0.0540521
\(536\) −0.0351231 −0.00151709
\(537\) 24.5183 1.05804
\(538\) 30.9362 1.33375
\(539\) −10.8691 −0.468165
\(540\) −0.492290 −0.0211848
\(541\) 29.1374 1.25271 0.626357 0.779537i \(-0.284545\pi\)
0.626357 + 0.779537i \(0.284545\pi\)
\(542\) −41.8056 −1.79570
\(543\) −37.3004 −1.60071
\(544\) 30.0164 1.28694
\(545\) −1.48220 −0.0634906
\(546\) −35.7491 −1.52992
\(547\) 30.3740 1.29870 0.649350 0.760490i \(-0.275041\pi\)
0.649350 + 0.760490i \(0.275041\pi\)
\(548\) −0.252777 −0.0107981
\(549\) 27.3944 1.16917
\(550\) −21.2262 −0.905088
\(551\) −5.77600 −0.246066
\(552\) 6.98266 0.297202
\(553\) −1.21738 −0.0517682
\(554\) −40.2188 −1.70873
\(555\) −0.788331 −0.0334628
\(556\) 24.1215 1.02298
\(557\) −19.5730 −0.829334 −0.414667 0.909973i \(-0.636102\pi\)
−0.414667 + 0.909973i \(0.636102\pi\)
\(558\) 9.76762 0.413497
\(559\) −13.5535 −0.573251
\(560\) −0.426338 −0.0180161
\(561\) 16.9611 0.716097
\(562\) 46.6560 1.96806
\(563\) −29.2259 −1.23172 −0.615862 0.787854i \(-0.711192\pi\)
−0.615862 + 0.787854i \(0.711192\pi\)
\(564\) 32.3339 1.36150
\(565\) 0.891490 0.0375053
\(566\) 44.1363 1.85519
\(567\) 14.6538 0.615401
\(568\) 0.161979 0.00679650
\(569\) 34.0713 1.42834 0.714171 0.699972i \(-0.246804\pi\)
0.714171 + 0.699972i \(0.246804\pi\)
\(570\) −1.22886 −0.0514715
\(571\) −45.8453 −1.91856 −0.959282 0.282449i \(-0.908853\pi\)
−0.959282 + 0.282449i \(0.908853\pi\)
\(572\) −27.2934 −1.14120
\(573\) −18.2625 −0.762928
\(574\) −22.2953 −0.930587
\(575\) 34.6633 1.44556
\(576\) −18.4586 −0.769108
\(577\) 15.2675 0.635595 0.317798 0.948159i \(-0.397057\pi\)
0.317798 + 0.948159i \(0.397057\pi\)
\(578\) −6.83591 −0.284336
\(579\) −30.4291 −1.26459
\(580\) −0.401053 −0.0166528
\(581\) −0.526524 −0.0218439
\(582\) 0 0
\(583\) 28.2843 1.17142
\(584\) −2.85669 −0.118211
\(585\) 1.04238 0.0430972
\(586\) 38.0211 1.57064
\(587\) −24.1337 −0.996106 −0.498053 0.867147i \(-0.665952\pi\)
−0.498053 + 0.867147i \(0.665952\pi\)
\(588\) 25.8445 1.06581
\(589\) −7.30935 −0.301176
\(590\) −2.67814 −0.110257
\(591\) −7.13352 −0.293434
\(592\) 13.5904 0.558562
\(593\) 30.5103 1.25291 0.626454 0.779458i \(-0.284505\pi\)
0.626454 + 0.779458i \(0.284505\pi\)
\(594\) 10.2613 0.421027
\(595\) −0.449192 −0.0184151
\(596\) 14.8551 0.608488
\(597\) −41.4892 −1.69804
\(598\) 84.7102 3.46406
\(599\) −0.124091 −0.00507020 −0.00253510 0.999997i \(-0.500807\pi\)
−0.00253510 + 0.999997i \(0.500807\pi\)
\(600\) 5.01908 0.204903
\(601\) −9.01984 −0.367927 −0.183963 0.982933i \(-0.558893\pi\)
−0.183963 + 0.982933i \(0.558893\pi\)
\(602\) −6.20183 −0.252768
\(603\) −0.147940 −0.00602458
\(604\) −33.6174 −1.36787
\(605\) 0.616922 0.0250815
\(606\) −47.6400 −1.93524
\(607\) −9.63884 −0.391228 −0.195614 0.980681i \(-0.562670\pi\)
−0.195614 + 0.980681i \(0.562670\pi\)
\(608\) 23.8512 0.967296
\(609\) 5.76116 0.233454
\(610\) −2.70525 −0.109532
\(611\) 39.0078 1.57809
\(612\) −15.6941 −0.634395
\(613\) −14.2643 −0.576131 −0.288066 0.957611i \(-0.593012\pi\)
−0.288066 + 0.957611i \(0.593012\pi\)
\(614\) −16.1865 −0.653235
\(615\) 1.67058 0.0673642
\(616\) −1.24195 −0.0500396
\(617\) 17.5809 0.707779 0.353890 0.935287i \(-0.384859\pi\)
0.353890 + 0.935287i \(0.384859\pi\)
\(618\) 32.9493 1.32542
\(619\) 37.2591 1.49757 0.748785 0.662813i \(-0.230638\pi\)
0.748785 + 0.662813i \(0.230638\pi\)
\(620\) −0.507519 −0.0203825
\(621\) −16.7572 −0.672442
\(622\) 8.74137 0.350497
\(623\) 5.10034 0.204341
\(624\) −46.1787 −1.84863
\(625\) 24.8735 0.994940
\(626\) 36.9980 1.47874
\(627\) 13.4774 0.538235
\(628\) −30.6024 −1.22117
\(629\) 14.3189 0.570933
\(630\) 0.476975 0.0190031
\(631\) −13.2847 −0.528855 −0.264428 0.964406i \(-0.585183\pi\)
−0.264428 + 0.964406i \(0.585183\pi\)
\(632\) 0.417688 0.0166147
\(633\) −18.2354 −0.724790
\(634\) 18.6184 0.739430
\(635\) 0.0709026 0.00281368
\(636\) −67.2543 −2.66680
\(637\) 31.1789 1.23535
\(638\) 8.35957 0.330959
\(639\) 0.682263 0.0269899
\(640\) 0.331410 0.0131001
\(641\) −13.2345 −0.522732 −0.261366 0.965240i \(-0.584173\pi\)
−0.261366 + 0.965240i \(0.584173\pi\)
\(642\) 61.9649 2.44556
\(643\) 19.9672 0.787430 0.393715 0.919233i \(-0.371190\pi\)
0.393715 + 0.919233i \(0.371190\pi\)
\(644\) 20.3950 0.803676
\(645\) 0.464700 0.0182976
\(646\) 22.3206 0.878192
\(647\) 20.4095 0.802379 0.401190 0.915995i \(-0.368597\pi\)
0.401190 + 0.915995i \(0.368597\pi\)
\(648\) −5.02777 −0.197509
\(649\) 29.3721 1.15295
\(650\) 60.8890 2.38826
\(651\) 7.29057 0.285740
\(652\) 30.7308 1.20351
\(653\) 19.9143 0.779307 0.389653 0.920962i \(-0.372595\pi\)
0.389653 + 0.920962i \(0.372595\pi\)
\(654\) −73.4622 −2.87260
\(655\) 1.85816 0.0726042
\(656\) −28.7998 −1.12444
\(657\) −12.0325 −0.469432
\(658\) 17.8493 0.695837
\(659\) −35.4757 −1.38194 −0.690969 0.722884i \(-0.742816\pi\)
−0.690969 + 0.722884i \(0.742816\pi\)
\(660\) 0.935793 0.0364257
\(661\) −13.1135 −0.510057 −0.255028 0.966934i \(-0.582085\pi\)
−0.255028 + 0.966934i \(0.582085\pi\)
\(662\) 61.2367 2.38003
\(663\) −48.6542 −1.88957
\(664\) 0.180652 0.00701068
\(665\) −0.356932 −0.0138412
\(666\) −15.2045 −0.589164
\(667\) −13.6515 −0.528589
\(668\) 23.3041 0.901665
\(669\) −23.8338 −0.921467
\(670\) 0.0146093 0.000564407 0
\(671\) 29.6694 1.14537
\(672\) −23.7900 −0.917718
\(673\) 4.91397 0.189420 0.0947099 0.995505i \(-0.469808\pi\)
0.0947099 + 0.995505i \(0.469808\pi\)
\(674\) 19.9220 0.767367
\(675\) −12.0449 −0.463609
\(676\) 49.4223 1.90086
\(677\) −2.10971 −0.0810828 −0.0405414 0.999178i \(-0.512908\pi\)
−0.0405414 + 0.999178i \(0.512908\pi\)
\(678\) 44.1848 1.69691
\(679\) 0 0
\(680\) 0.154120 0.00591022
\(681\) 2.77434 0.106313
\(682\) 10.5788 0.405082
\(683\) −22.2737 −0.852278 −0.426139 0.904658i \(-0.640127\pi\)
−0.426139 + 0.904658i \(0.640127\pi\)
\(684\) −12.4706 −0.476826
\(685\) 0.0104557 0.000399491 0
\(686\) 33.2851 1.27083
\(687\) −13.1559 −0.501929
\(688\) −8.01118 −0.305423
\(689\) −81.1358 −3.09103
\(690\) −2.90441 −0.110569
\(691\) 39.1525 1.48943 0.744716 0.667381i \(-0.232585\pi\)
0.744716 + 0.667381i \(0.232585\pi\)
\(692\) −43.7358 −1.66258
\(693\) −5.23115 −0.198715
\(694\) 40.9068 1.55280
\(695\) −0.997744 −0.0378466
\(696\) −1.97668 −0.0749257
\(697\) −30.3437 −1.14935
\(698\) 70.4071 2.66495
\(699\) −3.75753 −0.142123
\(700\) 14.6598 0.554087
\(701\) −48.1568 −1.81886 −0.909429 0.415859i \(-0.863481\pi\)
−0.909429 + 0.415859i \(0.863481\pi\)
\(702\) −29.4354 −1.11097
\(703\) 11.3779 0.429127
\(704\) −19.9915 −0.753457
\(705\) −1.33744 −0.0503708
\(706\) −0.0931567 −0.00350600
\(707\) −13.8373 −0.520406
\(708\) −69.8407 −2.62477
\(709\) −37.0841 −1.39272 −0.696361 0.717692i \(-0.745199\pi\)
−0.696361 + 0.717692i \(0.745199\pi\)
\(710\) −0.0673746 −0.00252852
\(711\) 1.75932 0.0659795
\(712\) −1.74995 −0.0655820
\(713\) −17.2756 −0.646975
\(714\) −22.2633 −0.833181
\(715\) 1.12895 0.0422202
\(716\) −24.5708 −0.918254
\(717\) 28.5470 1.06611
\(718\) −30.2351 −1.12837
\(719\) 38.0518 1.41909 0.709546 0.704659i \(-0.248900\pi\)
0.709546 + 0.704659i \(0.248900\pi\)
\(720\) 0.616130 0.0229618
\(721\) 9.57034 0.356418
\(722\) −21.2988 −0.792660
\(723\) −3.51733 −0.130811
\(724\) 37.3803 1.38923
\(725\) −9.81261 −0.364431
\(726\) 30.5764 1.13480
\(727\) 41.0730 1.52331 0.761657 0.647981i \(-0.224386\pi\)
0.761657 + 0.647981i \(0.224386\pi\)
\(728\) 3.56264 0.132040
\(729\) −5.13438 −0.190162
\(730\) 1.18823 0.0439783
\(731\) −8.44063 −0.312188
\(732\) −70.5476 −2.60752
\(733\) 2.41093 0.0890498 0.0445249 0.999008i \(-0.485823\pi\)
0.0445249 + 0.999008i \(0.485823\pi\)
\(734\) 7.68604 0.283697
\(735\) −1.06901 −0.0394311
\(736\) 56.3722 2.07791
\(737\) −0.160226 −0.00590198
\(738\) 32.2204 1.18605
\(739\) 52.7638 1.94095 0.970473 0.241209i \(-0.0775438\pi\)
0.970473 + 0.241209i \(0.0775438\pi\)
\(740\) 0.790018 0.0290417
\(741\) −38.6610 −1.42025
\(742\) −37.1263 −1.36295
\(743\) 37.4433 1.37366 0.686830 0.726818i \(-0.259002\pi\)
0.686830 + 0.726818i \(0.259002\pi\)
\(744\) −2.50142 −0.0917066
\(745\) −0.614455 −0.0225119
\(746\) −51.8454 −1.89820
\(747\) 0.760916 0.0278405
\(748\) −16.9974 −0.621485
\(749\) 17.9981 0.657637
\(750\) −4.17886 −0.152590
\(751\) −18.5087 −0.675390 −0.337695 0.941256i \(-0.609647\pi\)
−0.337695 + 0.941256i \(0.609647\pi\)
\(752\) 23.0567 0.840791
\(753\) −1.99843 −0.0728267
\(754\) −23.9801 −0.873303
\(755\) 1.39053 0.0506065
\(756\) −7.08693 −0.257749
\(757\) 12.2326 0.444600 0.222300 0.974978i \(-0.428644\pi\)
0.222300 + 0.974978i \(0.428644\pi\)
\(758\) 70.4150 2.55759
\(759\) 31.8537 1.15622
\(760\) 0.122465 0.00444226
\(761\) 15.2179 0.551648 0.275824 0.961208i \(-0.411049\pi\)
0.275824 + 0.961208i \(0.411049\pi\)
\(762\) 3.51414 0.127304
\(763\) −21.3376 −0.772472
\(764\) 18.3016 0.662129
\(765\) 0.649158 0.0234704
\(766\) 9.52666 0.344212
\(767\) −84.2561 −3.04231
\(768\) −26.3828 −0.952008
\(769\) −11.3160 −0.408066 −0.204033 0.978964i \(-0.565405\pi\)
−0.204033 + 0.978964i \(0.565405\pi\)
\(770\) 0.516585 0.0186164
\(771\) 7.27760 0.262096
\(772\) 30.4942 1.09751
\(773\) −4.09044 −0.147123 −0.0735614 0.997291i \(-0.523436\pi\)
−0.0735614 + 0.997291i \(0.523436\pi\)
\(774\) 8.96268 0.322157
\(775\) −12.4175 −0.446051
\(776\) 0 0
\(777\) −11.3487 −0.407132
\(778\) −29.8205 −1.06912
\(779\) −24.1113 −0.863878
\(780\) −2.68440 −0.0961168
\(781\) 0.738921 0.0264407
\(782\) 52.7545 1.88650
\(783\) 4.74368 0.169525
\(784\) 18.4292 0.658185
\(785\) 1.26582 0.0451789
\(786\) 92.0956 3.28494
\(787\) 34.7587 1.23901 0.619507 0.784991i \(-0.287333\pi\)
0.619507 + 0.784991i \(0.287333\pi\)
\(788\) 7.14879 0.254665
\(789\) 43.7799 1.55861
\(790\) −0.173735 −0.00618123
\(791\) 12.8338 0.456316
\(792\) 1.79483 0.0637764
\(793\) −85.1090 −3.02231
\(794\) −41.9808 −1.48984
\(795\) 2.78186 0.0986623
\(796\) 41.5780 1.47369
\(797\) −8.28837 −0.293589 −0.146794 0.989167i \(-0.546896\pi\)
−0.146794 + 0.989167i \(0.546896\pi\)
\(798\) −17.6905 −0.626239
\(799\) 24.2927 0.859413
\(800\) 40.5199 1.43259
\(801\) −7.37085 −0.260436
\(802\) −42.5077 −1.50100
\(803\) −13.0317 −0.459880
\(804\) 0.380983 0.0134362
\(805\) −0.843604 −0.0297331
\(806\) −30.3460 −1.06889
\(807\) −33.3701 −1.17468
\(808\) 4.74764 0.167021
\(809\) 37.3272 1.31235 0.656176 0.754608i \(-0.272173\pi\)
0.656176 + 0.754608i \(0.272173\pi\)
\(810\) 2.09128 0.0734801
\(811\) 47.4210 1.66518 0.832588 0.553893i \(-0.186858\pi\)
0.832588 + 0.553893i \(0.186858\pi\)
\(812\) −5.77349 −0.202610
\(813\) 45.0947 1.58154
\(814\) −16.4672 −0.577175
\(815\) −1.27113 −0.0445256
\(816\) −28.7585 −1.00675
\(817\) −6.70699 −0.234648
\(818\) −40.5400 −1.41745
\(819\) 15.0060 0.524351
\(820\) −1.67415 −0.0584639
\(821\) 19.5356 0.681797 0.340898 0.940100i \(-0.389269\pi\)
0.340898 + 0.940100i \(0.389269\pi\)
\(822\) 0.518213 0.0180747
\(823\) 11.5968 0.404240 0.202120 0.979361i \(-0.435217\pi\)
0.202120 + 0.979361i \(0.435217\pi\)
\(824\) −3.28362 −0.114390
\(825\) 22.8962 0.797143
\(826\) −38.5541 −1.34147
\(827\) 7.06876 0.245805 0.122903 0.992419i \(-0.460780\pi\)
0.122903 + 0.992419i \(0.460780\pi\)
\(828\) −29.4742 −1.02430
\(829\) −41.1047 −1.42763 −0.713813 0.700337i \(-0.753033\pi\)
−0.713813 + 0.700337i \(0.753033\pi\)
\(830\) −0.0751417 −0.00260821
\(831\) 43.3830 1.50494
\(832\) 57.3471 1.98815
\(833\) 19.4171 0.672762
\(834\) −49.4510 −1.71235
\(835\) −0.963936 −0.0333584
\(836\) −13.5062 −0.467123
\(837\) 6.00298 0.207493
\(838\) 46.1908 1.59564
\(839\) −9.05827 −0.312726 −0.156363 0.987700i \(-0.549977\pi\)
−0.156363 + 0.987700i \(0.549977\pi\)
\(840\) −0.122150 −0.00421457
\(841\) −25.1355 −0.866741
\(842\) −51.3707 −1.77035
\(843\) −50.3267 −1.73334
\(844\) 18.2744 0.629030
\(845\) −2.04427 −0.0703249
\(846\) −25.7952 −0.886856
\(847\) 8.88112 0.305159
\(848\) −47.9577 −1.64687
\(849\) −47.6087 −1.63393
\(850\) 37.9195 1.30063
\(851\) 26.8916 0.921833
\(852\) −1.75700 −0.0601939
\(853\) 31.5504 1.08027 0.540133 0.841580i \(-0.318374\pi\)
0.540133 + 0.841580i \(0.318374\pi\)
\(854\) −38.9443 −1.33265
\(855\) 0.515826 0.0176409
\(856\) −6.17522 −0.211065
\(857\) −22.9673 −0.784547 −0.392273 0.919849i \(-0.628311\pi\)
−0.392273 + 0.919849i \(0.628311\pi\)
\(858\) 55.9538 1.91023
\(859\) 10.8958 0.371760 0.185880 0.982572i \(-0.440486\pi\)
0.185880 + 0.982572i \(0.440486\pi\)
\(860\) −0.465695 −0.0158801
\(861\) 24.0494 0.819601
\(862\) −18.8017 −0.640388
\(863\) −24.7321 −0.841891 −0.420945 0.907086i \(-0.638302\pi\)
−0.420945 + 0.907086i \(0.638302\pi\)
\(864\) −19.5884 −0.666411
\(865\) 1.80905 0.0615097
\(866\) −17.0662 −0.579932
\(867\) 7.37372 0.250425
\(868\) −7.30617 −0.247988
\(869\) 1.90542 0.0646369
\(870\) 0.822191 0.0278749
\(871\) 0.459620 0.0155736
\(872\) 7.32101 0.247921
\(873\) 0 0
\(874\) 41.9191 1.41794
\(875\) −1.21378 −0.0410332
\(876\) 30.9867 1.04694
\(877\) 2.25839 0.0762603 0.0381301 0.999273i \(-0.487860\pi\)
0.0381301 + 0.999273i \(0.487860\pi\)
\(878\) 18.4496 0.622645
\(879\) −41.0124 −1.38331
\(880\) 0.667296 0.0224945
\(881\) −31.9329 −1.07585 −0.537924 0.842993i \(-0.680791\pi\)
−0.537924 + 0.842993i \(0.680791\pi\)
\(882\) −20.6180 −0.694245
\(883\) −9.71072 −0.326792 −0.163396 0.986561i \(-0.552245\pi\)
−0.163396 + 0.986561i \(0.552245\pi\)
\(884\) 48.7583 1.63992
\(885\) 2.88884 0.0971073
\(886\) 40.4154 1.35778
\(887\) −29.6172 −0.994447 −0.497224 0.867622i \(-0.665647\pi\)
−0.497224 + 0.867622i \(0.665647\pi\)
\(888\) 3.89378 0.130667
\(889\) 1.02070 0.0342333
\(890\) 0.727884 0.0243987
\(891\) −22.9358 −0.768378
\(892\) 23.8848 0.799722
\(893\) 19.3031 0.645955
\(894\) −30.4542 −1.01854
\(895\) 1.01633 0.0339721
\(896\) 4.77093 0.159385
\(897\) −91.3748 −3.05092
\(898\) −44.4501 −1.48332
\(899\) 4.89043 0.163105
\(900\) −21.1858 −0.706194
\(901\) −50.5285 −1.68335
\(902\) 34.8962 1.16191
\(903\) 6.68976 0.222621
\(904\) −4.40331 −0.146452
\(905\) −1.54617 −0.0513964
\(906\) 68.9185 2.28966
\(907\) −2.24731 −0.0746208 −0.0373104 0.999304i \(-0.511879\pi\)
−0.0373104 + 0.999304i \(0.511879\pi\)
\(908\) −2.78027 −0.0922666
\(909\) 19.9973 0.663267
\(910\) −1.48186 −0.0491233
\(911\) −9.21236 −0.305219 −0.152610 0.988287i \(-0.548768\pi\)
−0.152610 + 0.988287i \(0.548768\pi\)
\(912\) −22.8517 −0.756695
\(913\) 0.824105 0.0272739
\(914\) −65.8575 −2.17837
\(915\) 2.91808 0.0964688
\(916\) 13.1841 0.435613
\(917\) 26.7498 0.883355
\(918\) −18.3313 −0.605024
\(919\) 29.8530 0.984760 0.492380 0.870380i \(-0.336127\pi\)
0.492380 + 0.870380i \(0.336127\pi\)
\(920\) 0.289444 0.00954268
\(921\) 17.4600 0.575326
\(922\) −80.8583 −2.66292
\(923\) −2.11965 −0.0697693
\(924\) 13.4715 0.443181
\(925\) 19.3295 0.635550
\(926\) 51.2490 1.68415
\(927\) −13.8307 −0.454261
\(928\) −15.9580 −0.523849
\(929\) −41.4723 −1.36066 −0.680332 0.732904i \(-0.738164\pi\)
−0.680332 + 0.732904i \(0.738164\pi\)
\(930\) 1.04046 0.0341179
\(931\) 15.4290 0.505664
\(932\) 3.76557 0.123345
\(933\) −9.42910 −0.308695
\(934\) 33.2200 1.08699
\(935\) 0.703067 0.0229927
\(936\) −5.14860 −0.168287
\(937\) −40.3210 −1.31723 −0.658614 0.752481i \(-0.728857\pi\)
−0.658614 + 0.752481i \(0.728857\pi\)
\(938\) 0.210314 0.00686698
\(939\) −39.9088 −1.30237
\(940\) 1.34030 0.0437158
\(941\) −10.1881 −0.332122 −0.166061 0.986115i \(-0.553105\pi\)
−0.166061 + 0.986115i \(0.553105\pi\)
\(942\) 62.7375 2.04410
\(943\) −56.9869 −1.85575
\(944\) −49.8020 −1.62092
\(945\) 0.293139 0.00953580
\(946\) 9.70698 0.315601
\(947\) −7.60664 −0.247183 −0.123591 0.992333i \(-0.539441\pi\)
−0.123591 + 0.992333i \(0.539441\pi\)
\(948\) −4.53069 −0.147150
\(949\) 37.3825 1.21349
\(950\) 30.1311 0.977583
\(951\) −20.0832 −0.651241
\(952\) 2.21868 0.0719079
\(953\) 30.9970 1.00409 0.502046 0.864841i \(-0.332581\pi\)
0.502046 + 0.864841i \(0.332581\pi\)
\(954\) 53.6537 1.73710
\(955\) −0.757015 −0.0244964
\(956\) −28.6081 −0.925253
\(957\) −9.01726 −0.291487
\(958\) 0.505085 0.0163186
\(959\) 0.150518 0.00486049
\(960\) −1.96623 −0.0634597
\(961\) −24.8113 −0.800365
\(962\) 47.2375 1.52300
\(963\) −26.0103 −0.838170
\(964\) 3.52486 0.113528
\(965\) −1.26134 −0.0406040
\(966\) −41.8115 −1.34526
\(967\) 11.6596 0.374948 0.187474 0.982270i \(-0.439970\pi\)
0.187474 + 0.982270i \(0.439970\pi\)
\(968\) −3.04715 −0.0979390
\(969\) −24.0767 −0.773454
\(970\) 0 0
\(971\) −39.3179 −1.26177 −0.630885 0.775876i \(-0.717308\pi\)
−0.630885 + 0.775876i \(0.717308\pi\)
\(972\) 38.4595 1.23359
\(973\) −14.3634 −0.460468
\(974\) −64.9132 −2.07995
\(975\) −65.6795 −2.10343
\(976\) −50.3061 −1.61026
\(977\) −42.3157 −1.35380 −0.676899 0.736076i \(-0.736677\pi\)
−0.676899 + 0.736076i \(0.736677\pi\)
\(978\) −63.0007 −2.01454
\(979\) −7.98296 −0.255136
\(980\) 1.07130 0.0342214
\(981\) 30.8364 0.984530
\(982\) −26.3986 −0.842413
\(983\) −26.3186 −0.839433 −0.419716 0.907655i \(-0.637870\pi\)
−0.419716 + 0.907655i \(0.637870\pi\)
\(984\) −8.25143 −0.263046
\(985\) −0.295697 −0.00942170
\(986\) −14.9339 −0.475594
\(987\) −19.2536 −0.612847
\(988\) 38.7437 1.23260
\(989\) −15.8519 −0.504061
\(990\) −0.746551 −0.0237270
\(991\) 19.7307 0.626766 0.313383 0.949627i \(-0.398538\pi\)
0.313383 + 0.949627i \(0.398538\pi\)
\(992\) −20.1944 −0.641173
\(993\) −66.0545 −2.09618
\(994\) −0.969915 −0.0307638
\(995\) −1.71980 −0.0545214
\(996\) −1.95955 −0.0620908
\(997\) −1.76471 −0.0558888 −0.0279444 0.999609i \(-0.508896\pi\)
−0.0279444 + 0.999609i \(0.508896\pi\)
\(998\) −46.7459 −1.47972
\(999\) −9.34440 −0.295644
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 9409.2.a.o.1.105 128
97.60 odd 96 97.2.k.a.11.7 128
97.76 odd 96 97.2.k.a.53.7 yes 128
97.96 even 2 inner 9409.2.a.o.1.106 128
291.173 even 96 873.2.bu.d.829.2 128
291.254 even 96 873.2.bu.d.496.2 128
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
97.2.k.a.11.7 128 97.60 odd 96
97.2.k.a.53.7 yes 128 97.76 odd 96
873.2.bu.d.496.2 128 291.254 even 96
873.2.bu.d.829.2 128 291.173 even 96
9409.2.a.o.1.105 128 1.1 even 1 trivial
9409.2.a.o.1.106 128 97.96 even 2 inner