Properties

Label 936.2.j.a.755.48
Level $936$
Weight $2$
Character 936.755
Analytic conductor $7.474$
Analytic rank $0$
Dimension $48$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [936,2,Mod(755,936)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(936, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1, 1, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("936.755"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 936 = 2^{3} \cdot 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 936.j (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.47399762919\)
Analytic rank: \(0\)
Dimension: \(48\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 755.48
Character \(\chi\) \(=\) 936.755
Dual form 936.2.j.a.755.47

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.40511 + 0.160221i) q^{2} +(1.94866 + 0.450256i) q^{4} -3.43430 q^{5} -1.48385i q^{7} +(2.66594 + 0.944875i) q^{8} +(-4.82556 - 0.550247i) q^{10} -4.11313i q^{11} -1.00000i q^{13} +(0.237744 - 2.08497i) q^{14} +(3.59454 + 1.75479i) q^{16} -6.57820i q^{17} +7.48832 q^{19} +(-6.69227 - 1.54631i) q^{20} +(0.659011 - 5.77940i) q^{22} +2.95626 q^{23} +6.79440 q^{25} +(0.160221 - 1.40511i) q^{26} +(0.668113 - 2.89152i) q^{28} -2.46896 q^{29} -4.42928i q^{31} +(4.76956 + 3.04159i) q^{32} +(1.05397 - 9.24308i) q^{34} +5.09598i q^{35} +9.06101i q^{37} +(10.5219 + 1.19979i) q^{38} +(-9.15562 - 3.24498i) q^{40} -2.36415i q^{41} -11.0152 q^{43} +(1.85196 - 8.01509i) q^{44} +(4.15386 + 0.473655i) q^{46} +4.15658 q^{47} +4.79819 q^{49} +(9.54686 + 1.08861i) q^{50} +(0.450256 - 1.94866i) q^{52} -11.6774 q^{53} +14.1257i q^{55} +(1.40205 - 3.95585i) q^{56} +(-3.46915 - 0.395579i) q^{58} +9.65991i q^{59} -13.0229i q^{61} +(0.709664 - 6.22362i) q^{62} +(6.21442 + 5.03795i) q^{64} +3.43430i q^{65} -5.33582 q^{67} +(2.96187 - 12.8187i) q^{68} +(-0.816484 + 7.16041i) q^{70} -4.14842 q^{71} +2.91895 q^{73} +(-1.45176 + 12.7317i) q^{74} +(14.5922 + 3.37166i) q^{76} -6.10327 q^{77} -6.01233i q^{79} +(-12.3447 - 6.02647i) q^{80} +(0.378786 - 3.32188i) q^{82} -7.31280i q^{83} +22.5915i q^{85} +(-15.4775 - 1.76487i) q^{86} +(3.88639 - 10.9653i) q^{88} +1.95737i q^{89} -1.48385 q^{91} +(5.76074 + 1.33107i) q^{92} +(5.84044 + 0.665971i) q^{94} -25.7171 q^{95} +15.3919 q^{97} +(6.74197 + 0.768771i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q - 8 q^{4} + 16 q^{10} + 8 q^{16} + 32 q^{19} + 48 q^{25} - 24 q^{28} + 32 q^{34} - 32 q^{40} - 32 q^{43} + 24 q^{46} - 48 q^{49} + 8 q^{52} - 40 q^{58} + 40 q^{64} + 32 q^{67} - 40 q^{70} + 40 q^{76}+ \cdots - 32 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/936\mathbb{Z}\right)^\times\).

\(n\) \(145\) \(209\) \(469\) \(703\)
\(\chi(n)\) \(1\) \(-1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.40511 + 0.160221i 0.993562 + 0.113293i
\(3\) 0 0
\(4\) 1.94866 + 0.450256i 0.974329 + 0.225128i
\(5\) −3.43430 −1.53586 −0.767932 0.640531i \(-0.778714\pi\)
−0.767932 + 0.640531i \(0.778714\pi\)
\(6\) 0 0
\(7\) 1.48385i 0.560843i −0.959877 0.280421i \(-0.909526\pi\)
0.959877 0.280421i \(-0.0904742\pi\)
\(8\) 2.66594 + 0.944875i 0.942551 + 0.334064i
\(9\) 0 0
\(10\) −4.82556 0.550247i −1.52598 0.174003i
\(11\) 4.11313i 1.24016i −0.784540 0.620078i \(-0.787101\pi\)
0.784540 0.620078i \(-0.212899\pi\)
\(12\) 0 0
\(13\) 1.00000i 0.277350i
\(14\) 0.237744 2.08497i 0.0635398 0.557232i
\(15\) 0 0
\(16\) 3.59454 + 1.75479i 0.898635 + 0.438698i
\(17\) 6.57820i 1.59545i −0.603024 0.797723i \(-0.706038\pi\)
0.603024 0.797723i \(-0.293962\pi\)
\(18\) 0 0
\(19\) 7.48832 1.71794 0.858970 0.512027i \(-0.171105\pi\)
0.858970 + 0.512027i \(0.171105\pi\)
\(20\) −6.69227 1.54631i −1.49644 0.345766i
\(21\) 0 0
\(22\) 0.659011 5.77940i 0.140502 1.23217i
\(23\) 2.95626 0.616423 0.308211 0.951318i \(-0.400270\pi\)
0.308211 + 0.951318i \(0.400270\pi\)
\(24\) 0 0
\(25\) 6.79440 1.35888
\(26\) 0.160221 1.40511i 0.0314219 0.275564i
\(27\) 0 0
\(28\) 0.668113 2.89152i 0.126261 0.546445i
\(29\) −2.46896 −0.458474 −0.229237 0.973371i \(-0.573623\pi\)
−0.229237 + 0.973371i \(0.573623\pi\)
\(30\) 0 0
\(31\) 4.42928i 0.795522i −0.917489 0.397761i \(-0.869787\pi\)
0.917489 0.397761i \(-0.130213\pi\)
\(32\) 4.76956 + 3.04159i 0.843147 + 0.537682i
\(33\) 0 0
\(34\) 1.05397 9.24308i 0.180754 1.58517i
\(35\) 5.09598i 0.861378i
\(36\) 0 0
\(37\) 9.06101i 1.48962i 0.667276 + 0.744810i \(0.267460\pi\)
−0.667276 + 0.744810i \(0.732540\pi\)
\(38\) 10.5219 + 1.19979i 1.70688 + 0.194631i
\(39\) 0 0
\(40\) −9.15562 3.24498i −1.44763 0.513076i
\(41\) 2.36415i 0.369218i −0.982812 0.184609i \(-0.940898\pi\)
0.982812 0.184609i \(-0.0591018\pi\)
\(42\) 0 0
\(43\) −11.0152 −1.67980 −0.839901 0.542740i \(-0.817387\pi\)
−0.839901 + 0.542740i \(0.817387\pi\)
\(44\) 1.85196 8.01509i 0.279194 1.20832i
\(45\) 0 0
\(46\) 4.15386 + 0.473655i 0.612454 + 0.0698366i
\(47\) 4.15658 0.606299 0.303149 0.952943i \(-0.401962\pi\)
0.303149 + 0.952943i \(0.401962\pi\)
\(48\) 0 0
\(49\) 4.79819 0.685455
\(50\) 9.54686 + 1.08861i 1.35013 + 0.153952i
\(51\) 0 0
\(52\) 0.450256 1.94866i 0.0624393 0.270230i
\(53\) −11.6774 −1.60401 −0.802007 0.597315i \(-0.796234\pi\)
−0.802007 + 0.597315i \(0.796234\pi\)
\(54\) 0 0
\(55\) 14.1257i 1.90471i
\(56\) 1.40205 3.95585i 0.187357 0.528623i
\(57\) 0 0
\(58\) −3.46915 0.395579i −0.455522 0.0519421i
\(59\) 9.65991i 1.25761i 0.777562 + 0.628807i \(0.216456\pi\)
−0.777562 + 0.628807i \(0.783544\pi\)
\(60\) 0 0
\(61\) 13.0229i 1.66741i −0.552206 0.833707i \(-0.686214\pi\)
0.552206 0.833707i \(-0.313786\pi\)
\(62\) 0.709664 6.22362i 0.0901274 0.790400i
\(63\) 0 0
\(64\) 6.21442 + 5.03795i 0.776803 + 0.629744i
\(65\) 3.43430i 0.425972i
\(66\) 0 0
\(67\) −5.33582 −0.651875 −0.325937 0.945391i \(-0.605680\pi\)
−0.325937 + 0.945391i \(0.605680\pi\)
\(68\) 2.96187 12.8187i 0.359180 1.55449i
\(69\) 0 0
\(70\) −0.816484 + 7.16041i −0.0975885 + 0.855833i
\(71\) −4.14842 −0.492327 −0.246164 0.969228i \(-0.579170\pi\)
−0.246164 + 0.969228i \(0.579170\pi\)
\(72\) 0 0
\(73\) 2.91895 0.341637 0.170818 0.985303i \(-0.445359\pi\)
0.170818 + 0.985303i \(0.445359\pi\)
\(74\) −1.45176 + 12.7317i −0.168764 + 1.48003i
\(75\) 0 0
\(76\) 14.5922 + 3.37166i 1.67384 + 0.386756i
\(77\) −6.10327 −0.695533
\(78\) 0 0
\(79\) 6.01233i 0.676440i −0.941067 0.338220i \(-0.890175\pi\)
0.941067 0.338220i \(-0.109825\pi\)
\(80\) −12.3447 6.02647i −1.38018 0.673780i
\(81\) 0 0
\(82\) 0.378786 3.32188i 0.0418299 0.366840i
\(83\) 7.31280i 0.802685i −0.915928 0.401342i \(-0.868544\pi\)
0.915928 0.401342i \(-0.131456\pi\)
\(84\) 0 0
\(85\) 22.5915i 2.45039i
\(86\) −15.4775 1.76487i −1.66899 0.190310i
\(87\) 0 0
\(88\) 3.88639 10.9653i 0.414291 1.16891i
\(89\) 1.95737i 0.207481i 0.994604 + 0.103740i \(0.0330811\pi\)
−0.994604 + 0.103740i \(0.966919\pi\)
\(90\) 0 0
\(91\) −1.48385 −0.155550
\(92\) 5.76074 + 1.33107i 0.600599 + 0.138774i
\(93\) 0 0
\(94\) 5.84044 + 0.665971i 0.602395 + 0.0686897i
\(95\) −25.7171 −2.63852
\(96\) 0 0
\(97\) 15.3919 1.56281 0.781406 0.624023i \(-0.214503\pi\)
0.781406 + 0.624023i \(0.214503\pi\)
\(98\) 6.74197 + 0.768771i 0.681042 + 0.0776576i
\(99\) 0 0
\(100\) 13.2400 + 3.05922i 1.32400 + 0.305922i
\(101\) 1.77864 0.176981 0.0884907 0.996077i \(-0.471796\pi\)
0.0884907 + 0.996077i \(0.471796\pi\)
\(102\) 0 0
\(103\) 0.165835i 0.0163403i 0.999967 + 0.00817013i \(0.00260066\pi\)
−0.999967 + 0.00817013i \(0.997399\pi\)
\(104\) 0.944875 2.66594i 0.0926526 0.261416i
\(105\) 0 0
\(106\) −16.4080 1.87097i −1.59369 0.181724i
\(107\) 11.2981i 1.09223i 0.837710 + 0.546116i \(0.183894\pi\)
−0.837710 + 0.546116i \(0.816106\pi\)
\(108\) 0 0
\(109\) 6.75654i 0.647159i 0.946201 + 0.323580i \(0.104886\pi\)
−0.946201 + 0.323580i \(0.895114\pi\)
\(110\) −2.26324 + 19.8482i −0.215791 + 1.89245i
\(111\) 0 0
\(112\) 2.60385 5.33376i 0.246040 0.503993i
\(113\) 10.7906i 1.01509i 0.861625 + 0.507546i \(0.169447\pi\)
−0.861625 + 0.507546i \(0.830553\pi\)
\(114\) 0 0
\(115\) −10.1527 −0.946742
\(116\) −4.81115 1.11166i −0.446704 0.103215i
\(117\) 0 0
\(118\) −1.54772 + 13.5732i −0.142479 + 1.24952i
\(119\) −9.76106 −0.894795
\(120\) 0 0
\(121\) −5.91786 −0.537987
\(122\) 2.08655 18.2986i 0.188907 1.65668i
\(123\) 0 0
\(124\) 1.99431 8.63115i 0.179094 0.775100i
\(125\) −6.16250 −0.551190
\(126\) 0 0
\(127\) 21.8477i 1.93867i 0.245746 + 0.969334i \(0.420967\pi\)
−0.245746 + 0.969334i \(0.579033\pi\)
\(128\) 7.92475 + 8.07455i 0.700456 + 0.713696i
\(129\) 0 0
\(130\) −0.550247 + 4.82556i −0.0482598 + 0.423230i
\(131\) 3.06648i 0.267919i 0.990987 + 0.133960i \(0.0427692\pi\)
−0.990987 + 0.133960i \(0.957231\pi\)
\(132\) 0 0
\(133\) 11.1116i 0.963494i
\(134\) −7.49741 0.854912i −0.647678 0.0738531i
\(135\) 0 0
\(136\) 6.21557 17.5370i 0.532981 1.50379i
\(137\) 12.5259i 1.07016i −0.844801 0.535081i \(-0.820281\pi\)
0.844801 0.535081i \(-0.179719\pi\)
\(138\) 0 0
\(139\) −6.34023 −0.537771 −0.268885 0.963172i \(-0.586655\pi\)
−0.268885 + 0.963172i \(0.586655\pi\)
\(140\) −2.29450 + 9.93033i −0.193920 + 0.839266i
\(141\) 0 0
\(142\) −5.82898 0.664665i −0.489157 0.0557774i
\(143\) −4.11313 −0.343957
\(144\) 0 0
\(145\) 8.47913 0.704154
\(146\) 4.10144 + 0.467677i 0.339437 + 0.0387052i
\(147\) 0 0
\(148\) −4.07977 + 17.6568i −0.335355 + 1.45138i
\(149\) 11.8939 0.974386 0.487193 0.873294i \(-0.338021\pi\)
0.487193 + 0.873294i \(0.338021\pi\)
\(150\) 0 0
\(151\) 10.7651i 0.876055i 0.898962 + 0.438027i \(0.144323\pi\)
−0.898962 + 0.438027i \(0.855677\pi\)
\(152\) 19.9634 + 7.07553i 1.61924 + 0.573901i
\(153\) 0 0
\(154\) −8.57576 0.977873i −0.691054 0.0787993i
\(155\) 15.2115i 1.22181i
\(156\) 0 0
\(157\) 6.23480i 0.497591i −0.968556 0.248796i \(-0.919965\pi\)
0.968556 0.248796i \(-0.0800348\pi\)
\(158\) 0.963302 8.44797i 0.0766362 0.672084i
\(159\) 0 0
\(160\) −16.3801 10.4457i −1.29496 0.825807i
\(161\) 4.38665i 0.345716i
\(162\) 0 0
\(163\) 10.3506 0.810718 0.405359 0.914158i \(-0.367147\pi\)
0.405359 + 0.914158i \(0.367147\pi\)
\(164\) 1.06447 4.60691i 0.0831212 0.359739i
\(165\) 0 0
\(166\) 1.17167 10.2753i 0.0909389 0.797517i
\(167\) 3.90946 0.302523 0.151262 0.988494i \(-0.451666\pi\)
0.151262 + 0.988494i \(0.451666\pi\)
\(168\) 0 0
\(169\) −1.00000 −0.0769231
\(170\) −3.61963 + 31.7435i −0.277613 + 2.43461i
\(171\) 0 0
\(172\) −21.4648 4.95966i −1.63668 0.378170i
\(173\) 11.0575 0.840683 0.420341 0.907366i \(-0.361910\pi\)
0.420341 + 0.907366i \(0.361910\pi\)
\(174\) 0 0
\(175\) 10.0819i 0.762118i
\(176\) 7.21768 14.7848i 0.544053 1.11445i
\(177\) 0 0
\(178\) −0.313612 + 2.75032i −0.0235062 + 0.206145i
\(179\) 3.06653i 0.229203i −0.993412 0.114602i \(-0.963441\pi\)
0.993412 0.114602i \(-0.0365592\pi\)
\(180\) 0 0
\(181\) 15.7696i 1.17215i −0.810258 0.586073i \(-0.800673\pi\)
0.810258 0.586073i \(-0.199327\pi\)
\(182\) −2.08497 0.237744i −0.154548 0.0176228i
\(183\) 0 0
\(184\) 7.88120 + 2.79329i 0.581009 + 0.205924i
\(185\) 31.1182i 2.28786i
\(186\) 0 0
\(187\) −27.0570 −1.97860
\(188\) 8.09975 + 1.87152i 0.590735 + 0.136495i
\(189\) 0 0
\(190\) −36.1353 4.12043i −2.62153 0.298927i
\(191\) −11.0790 −0.801648 −0.400824 0.916155i \(-0.631276\pi\)
−0.400824 + 0.916155i \(0.631276\pi\)
\(192\) 0 0
\(193\) 7.62208 0.548649 0.274325 0.961637i \(-0.411546\pi\)
0.274325 + 0.961637i \(0.411546\pi\)
\(194\) 21.6273 + 2.46611i 1.55275 + 0.177056i
\(195\) 0 0
\(196\) 9.35003 + 2.16041i 0.667859 + 0.154315i
\(197\) 24.0203 1.71138 0.855688 0.517493i \(-0.173135\pi\)
0.855688 + 0.517493i \(0.173135\pi\)
\(198\) 0 0
\(199\) 9.37481i 0.664562i −0.943180 0.332281i \(-0.892182\pi\)
0.943180 0.332281i \(-0.107818\pi\)
\(200\) 18.1134 + 6.41985i 1.28081 + 0.453952i
\(201\) 0 0
\(202\) 2.49918 + 0.284976i 0.175842 + 0.0200508i
\(203\) 3.66356i 0.257132i
\(204\) 0 0
\(205\) 8.11918i 0.567068i
\(206\) −0.0265703 + 0.233017i −0.00185124 + 0.0162350i
\(207\) 0 0
\(208\) 1.75479 3.59454i 0.121673 0.249236i
\(209\) 30.8005i 2.13051i
\(210\) 0 0
\(211\) 2.85230 0.196360 0.0981801 0.995169i \(-0.468698\pi\)
0.0981801 + 0.995169i \(0.468698\pi\)
\(212\) −22.7553 5.25782i −1.56284 0.361108i
\(213\) 0 0
\(214\) −1.81020 + 15.8751i −0.123743 + 1.08520i
\(215\) 37.8294 2.57995
\(216\) 0 0
\(217\) −6.57239 −0.446163
\(218\) −1.08254 + 9.49367i −0.0733189 + 0.642992i
\(219\) 0 0
\(220\) −6.36019 + 27.5262i −0.428804 + 1.85582i
\(221\) −6.57820 −0.442497
\(222\) 0 0
\(223\) 12.1492i 0.813571i 0.913524 + 0.406786i \(0.133350\pi\)
−0.913524 + 0.406786i \(0.866650\pi\)
\(224\) 4.51327 7.07732i 0.301555 0.472873i
\(225\) 0 0
\(226\) −1.72888 + 15.1619i −0.115003 + 1.00856i
\(227\) 28.9612i 1.92222i 0.276164 + 0.961111i \(0.410937\pi\)
−0.276164 + 0.961111i \(0.589063\pi\)
\(228\) 0 0
\(229\) 7.83253i 0.517588i 0.965932 + 0.258794i \(0.0833251\pi\)
−0.965932 + 0.258794i \(0.916675\pi\)
\(230\) −14.2656 1.62667i −0.940646 0.107260i
\(231\) 0 0
\(232\) −6.58208 2.33286i −0.432135 0.153159i
\(233\) 21.1736i 1.38713i 0.720393 + 0.693566i \(0.243961\pi\)
−0.720393 + 0.693566i \(0.756039\pi\)
\(234\) 0 0
\(235\) −14.2749 −0.931193
\(236\) −4.34943 + 18.8239i −0.283124 + 1.22533i
\(237\) 0 0
\(238\) −13.7153 1.56393i −0.889034 0.101374i
\(239\) 9.63791 0.623425 0.311712 0.950177i \(-0.399097\pi\)
0.311712 + 0.950177i \(0.399097\pi\)
\(240\) 0 0
\(241\) −6.60721 −0.425608 −0.212804 0.977095i \(-0.568260\pi\)
−0.212804 + 0.977095i \(0.568260\pi\)
\(242\) −8.31523 0.948166i −0.534523 0.0609504i
\(243\) 0 0
\(244\) 5.86365 25.3772i 0.375382 1.62461i
\(245\) −16.4784 −1.05277
\(246\) 0 0
\(247\) 7.48832i 0.476471i
\(248\) 4.18511 11.8082i 0.265755 0.749820i
\(249\) 0 0
\(250\) −8.65897 0.987362i −0.547642 0.0624463i
\(251\) 26.3839i 1.66534i 0.553771 + 0.832669i \(0.313188\pi\)
−0.553771 + 0.832669i \(0.686812\pi\)
\(252\) 0 0
\(253\) 12.1595i 0.764460i
\(254\) −3.50046 + 30.6984i −0.219638 + 1.92619i
\(255\) 0 0
\(256\) 9.84142 + 12.6153i 0.615089 + 0.788458i
\(257\) 12.4536i 0.776832i 0.921484 + 0.388416i \(0.126978\pi\)
−0.921484 + 0.388416i \(0.873022\pi\)
\(258\) 0 0
\(259\) 13.4452 0.835443
\(260\) −1.54631 + 6.69227i −0.0958983 + 0.415037i
\(261\) 0 0
\(262\) −0.491314 + 4.30873i −0.0303535 + 0.266194i
\(263\) −12.3191 −0.759631 −0.379816 0.925062i \(-0.624013\pi\)
−0.379816 + 0.925062i \(0.624013\pi\)
\(264\) 0 0
\(265\) 40.1037 2.46355
\(266\) 1.78031 15.6129i 0.109158 0.957290i
\(267\) 0 0
\(268\) −10.3977 2.40249i −0.635141 0.146755i
\(269\) 5.67847 0.346223 0.173111 0.984902i \(-0.444618\pi\)
0.173111 + 0.984902i \(0.444618\pi\)
\(270\) 0 0
\(271\) 24.5812i 1.49320i 0.665274 + 0.746600i \(0.268315\pi\)
−0.665274 + 0.746600i \(0.731685\pi\)
\(272\) 11.5434 23.6456i 0.699919 1.43372i
\(273\) 0 0
\(274\) 2.00692 17.6003i 0.121242 1.06327i
\(275\) 27.9463i 1.68522i
\(276\) 0 0
\(277\) 25.1434i 1.51072i −0.655310 0.755360i \(-0.727462\pi\)
0.655310 0.755360i \(-0.272538\pi\)
\(278\) −8.90870 1.01584i −0.534309 0.0609259i
\(279\) 0 0
\(280\) −4.81507 + 13.5856i −0.287755 + 0.811893i
\(281\) 1.73983i 0.103789i 0.998653 + 0.0518947i \(0.0165260\pi\)
−0.998653 + 0.0518947i \(0.983474\pi\)
\(282\) 0 0
\(283\) −32.9825 −1.96060 −0.980302 0.197502i \(-0.936717\pi\)
−0.980302 + 0.197502i \(0.936717\pi\)
\(284\) −8.08386 1.86785i −0.479689 0.110837i
\(285\) 0 0
\(286\) −5.77940 0.659011i −0.341743 0.0389681i
\(287\) −3.50804 −0.207073
\(288\) 0 0
\(289\) −26.2727 −1.54545
\(290\) 11.9141 + 1.35854i 0.699620 + 0.0797760i
\(291\) 0 0
\(292\) 5.68803 + 1.31427i 0.332867 + 0.0769120i
\(293\) 12.7025 0.742090 0.371045 0.928615i \(-0.379000\pi\)
0.371045 + 0.928615i \(0.379000\pi\)
\(294\) 0 0
\(295\) 33.1750i 1.93152i
\(296\) −8.56152 + 24.1561i −0.497628 + 1.40404i
\(297\) 0 0
\(298\) 16.7122 + 1.90565i 0.968112 + 0.110391i
\(299\) 2.95626i 0.170965i
\(300\) 0 0
\(301\) 16.3449i 0.942104i
\(302\) −1.72480 + 15.1262i −0.0992513 + 0.870415i
\(303\) 0 0
\(304\) 26.9171 + 13.1404i 1.54380 + 0.753656i
\(305\) 44.7246i 2.56092i
\(306\) 0 0
\(307\) −4.14718 −0.236692 −0.118346 0.992972i \(-0.537759\pi\)
−0.118346 + 0.992972i \(0.537759\pi\)
\(308\) −11.8932 2.74804i −0.677678 0.156584i
\(309\) 0 0
\(310\) −2.43720 + 21.3738i −0.138424 + 1.21395i
\(311\) 13.8548 0.785635 0.392817 0.919617i \(-0.371500\pi\)
0.392817 + 0.919617i \(0.371500\pi\)
\(312\) 0 0
\(313\) −27.5845 −1.55917 −0.779585 0.626297i \(-0.784570\pi\)
−0.779585 + 0.626297i \(0.784570\pi\)
\(314\) 0.998947 8.76057i 0.0563738 0.494388i
\(315\) 0 0
\(316\) 2.70709 11.7160i 0.152286 0.659075i
\(317\) −5.43165 −0.305072 −0.152536 0.988298i \(-0.548744\pi\)
−0.152536 + 0.988298i \(0.548744\pi\)
\(318\) 0 0
\(319\) 10.1551i 0.568579i
\(320\) −21.3422 17.3018i −1.19306 0.967201i
\(321\) 0 0
\(322\) 0.702833 6.16371i 0.0391674 0.343490i
\(323\) 49.2597i 2.74088i
\(324\) 0 0
\(325\) 6.79440i 0.376885i
\(326\) 14.5436 + 1.65838i 0.805498 + 0.0918490i
\(327\) 0 0
\(328\) 2.23382 6.30266i 0.123342 0.348006i
\(329\) 6.16774i 0.340038i
\(330\) 0 0
\(331\) 1.82454 0.100286 0.0501430 0.998742i \(-0.484032\pi\)
0.0501430 + 0.998742i \(0.484032\pi\)
\(332\) 3.29263 14.2502i 0.180707 0.782079i
\(333\) 0 0
\(334\) 5.49322 + 0.626379i 0.300576 + 0.0342739i
\(335\) 18.3248 1.00119
\(336\) 0 0
\(337\) −0.724485 −0.0394652 −0.0197326 0.999805i \(-0.506281\pi\)
−0.0197326 + 0.999805i \(0.506281\pi\)
\(338\) −1.40511 0.160221i −0.0764278 0.00871488i
\(339\) 0 0
\(340\) −10.1719 + 44.0231i −0.551651 + 2.38749i
\(341\) −18.2182 −0.986572
\(342\) 0 0
\(343\) 17.5067i 0.945275i
\(344\) −29.3658 10.4080i −1.58330 0.561160i
\(345\) 0 0
\(346\) 15.5369 + 1.77164i 0.835270 + 0.0952438i
\(347\) 21.2480i 1.14065i −0.821419 0.570325i \(-0.806817\pi\)
0.821419 0.570325i \(-0.193183\pi\)
\(348\) 0 0
\(349\) 14.8566i 0.795257i −0.917546 0.397629i \(-0.869833\pi\)
0.917546 0.397629i \(-0.130167\pi\)
\(350\) 1.61533 14.1661i 0.0863429 0.757211i
\(351\) 0 0
\(352\) 12.5105 19.6178i 0.666810 1.04563i
\(353\) 4.19368i 0.223207i −0.993753 0.111604i \(-0.964401\pi\)
0.993753 0.111604i \(-0.0355987\pi\)
\(354\) 0 0
\(355\) 14.2469 0.756148
\(356\) −0.881318 + 3.81425i −0.0467098 + 0.202155i
\(357\) 0 0
\(358\) 0.491323 4.30881i 0.0259672 0.227728i
\(359\) 21.0005 1.10836 0.554182 0.832396i \(-0.313031\pi\)
0.554182 + 0.832396i \(0.313031\pi\)
\(360\) 0 0
\(361\) 37.0750 1.95131
\(362\) 2.52662 22.1580i 0.132796 1.16460i
\(363\) 0 0
\(364\) −2.89152 0.668113i −0.151557 0.0350186i
\(365\) −10.0245 −0.524708
\(366\) 0 0
\(367\) 16.3564i 0.853799i −0.904299 0.426900i \(-0.859606\pi\)
0.904299 0.426900i \(-0.140394\pi\)
\(368\) 10.6264 + 5.18761i 0.553939 + 0.270423i
\(369\) 0 0
\(370\) 4.98579 43.7244i 0.259199 2.27313i
\(371\) 17.3275i 0.899600i
\(372\) 0 0
\(373\) 17.7555i 0.919345i 0.888089 + 0.459672i \(0.152033\pi\)
−0.888089 + 0.459672i \(0.847967\pi\)
\(374\) −38.0180 4.33510i −1.96586 0.224163i
\(375\) 0 0
\(376\) 11.0812 + 3.92744i 0.571467 + 0.202542i
\(377\) 2.46896i 0.127158i
\(378\) 0 0
\(379\) −10.1380 −0.520757 −0.260378 0.965507i \(-0.583847\pi\)
−0.260378 + 0.965507i \(0.583847\pi\)
\(380\) −50.1139 11.5793i −2.57079 0.594005i
\(381\) 0 0
\(382\) −15.5672 1.77509i −0.796487 0.0908215i
\(383\) 9.25148 0.472728 0.236364 0.971665i \(-0.424044\pi\)
0.236364 + 0.971665i \(0.424044\pi\)
\(384\) 0 0
\(385\) 20.9605 1.06824
\(386\) 10.7099 + 1.22122i 0.545117 + 0.0621584i
\(387\) 0 0
\(388\) 29.9936 + 6.93030i 1.52269 + 0.351833i
\(389\) 25.2900 1.28225 0.641127 0.767435i \(-0.278467\pi\)
0.641127 + 0.767435i \(0.278467\pi\)
\(390\) 0 0
\(391\) 19.4468i 0.983469i
\(392\) 12.7917 + 4.53369i 0.646076 + 0.228986i
\(393\) 0 0
\(394\) 33.7511 + 3.84856i 1.70036 + 0.193888i
\(395\) 20.6481i 1.03892i
\(396\) 0 0
\(397\) 15.7899i 0.792474i 0.918148 + 0.396237i \(0.129684\pi\)
−0.918148 + 0.396237i \(0.870316\pi\)
\(398\) 1.50204 13.1726i 0.0752906 0.660284i
\(399\) 0 0
\(400\) 24.4227 + 11.9227i 1.22114 + 0.596137i
\(401\) 10.7963i 0.539141i −0.962981 0.269571i \(-0.913118\pi\)
0.962981 0.269571i \(-0.0868818\pi\)
\(402\) 0 0
\(403\) −4.42928 −0.220638
\(404\) 3.46596 + 0.800844i 0.172438 + 0.0398435i
\(405\) 0 0
\(406\) −0.586980 + 5.14770i −0.0291313 + 0.255476i
\(407\) 37.2691 1.84736
\(408\) 0 0
\(409\) −26.6099 −1.31577 −0.657887 0.753117i \(-0.728549\pi\)
−0.657887 + 0.753117i \(0.728549\pi\)
\(410\) −1.30086 + 11.4083i −0.0642451 + 0.563417i
\(411\) 0 0
\(412\) −0.0746684 + 0.323157i −0.00367865 + 0.0159208i
\(413\) 14.3339 0.705323
\(414\) 0 0
\(415\) 25.1143i 1.23281i
\(416\) 3.04159 4.76956i 0.149126 0.233847i
\(417\) 0 0
\(418\) 4.93488 43.2780i 0.241373 2.11680i
\(419\) 6.79469i 0.331942i −0.986131 0.165971i \(-0.946924\pi\)
0.986131 0.165971i \(-0.0530759\pi\)
\(420\) 0 0
\(421\) 1.59188i 0.0775835i 0.999247 + 0.0387918i \(0.0123509\pi\)
−0.999247 + 0.0387918i \(0.987649\pi\)
\(422\) 4.00778 + 0.456998i 0.195096 + 0.0222463i
\(423\) 0 0
\(424\) −31.1312 11.0337i −1.51186 0.535843i
\(425\) 44.6949i 2.16802i
\(426\) 0 0
\(427\) −19.3241 −0.935158
\(428\) −5.08705 + 22.0162i −0.245892 + 1.06419i
\(429\) 0 0
\(430\) 53.1545 + 6.06108i 2.56334 + 0.292291i
\(431\) −16.2055 −0.780589 −0.390295 0.920690i \(-0.627627\pi\)
−0.390295 + 0.920690i \(0.627627\pi\)
\(432\) 0 0
\(433\) 13.0208 0.625739 0.312870 0.949796i \(-0.398710\pi\)
0.312870 + 0.949796i \(0.398710\pi\)
\(434\) −9.23492 1.05304i −0.443290 0.0505473i
\(435\) 0 0
\(436\) −3.04217 + 13.1662i −0.145694 + 0.630546i
\(437\) 22.1374 1.05898
\(438\) 0 0
\(439\) 24.1906i 1.15455i −0.816549 0.577276i \(-0.804116\pi\)
0.816549 0.577276i \(-0.195884\pi\)
\(440\) −13.3470 + 37.6583i −0.636295 + 1.79529i
\(441\) 0 0
\(442\) −9.24308 1.05397i −0.439648 0.0501320i
\(443\) 20.5907i 0.978295i 0.872201 + 0.489147i \(0.162692\pi\)
−0.872201 + 0.489147i \(0.837308\pi\)
\(444\) 0 0
\(445\) 6.72220i 0.318663i
\(446\) −1.94656 + 17.0710i −0.0921723 + 0.808333i
\(447\) 0 0
\(448\) 7.47556 9.22128i 0.353187 0.435664i
\(449\) 40.3421i 1.90386i −0.306316 0.951930i \(-0.599096\pi\)
0.306316 0.951930i \(-0.400904\pi\)
\(450\) 0 0
\(451\) −9.72405 −0.457887
\(452\) −4.85852 + 21.0271i −0.228525 + 0.989033i
\(453\) 0 0
\(454\) −4.64019 + 40.6936i −0.217775 + 1.90985i
\(455\) 5.09598 0.238903
\(456\) 0 0
\(457\) −7.86556 −0.367935 −0.183968 0.982932i \(-0.558894\pi\)
−0.183968 + 0.982932i \(0.558894\pi\)
\(458\) −1.25494 + 11.0056i −0.0586394 + 0.514256i
\(459\) 0 0
\(460\) −19.7841 4.57130i −0.922438 0.213138i
\(461\) −22.9618 −1.06944 −0.534719 0.845030i \(-0.679583\pi\)
−0.534719 + 0.845030i \(0.679583\pi\)
\(462\) 0 0
\(463\) 10.0614i 0.467594i −0.972285 0.233797i \(-0.924885\pi\)
0.972285 0.233797i \(-0.0751152\pi\)
\(464\) −8.87476 4.33250i −0.412001 0.201131i
\(465\) 0 0
\(466\) −3.39246 + 29.7513i −0.157153 + 1.37820i
\(467\) 21.4264i 0.991494i 0.868467 + 0.495747i \(0.165106\pi\)
−0.868467 + 0.495747i \(0.834894\pi\)
\(468\) 0 0
\(469\) 7.91757i 0.365599i
\(470\) −20.0578 2.28714i −0.925197 0.105498i
\(471\) 0 0
\(472\) −9.12741 + 25.7527i −0.420123 + 1.18536i
\(473\) 45.3069i 2.08322i
\(474\) 0 0
\(475\) 50.8786 2.33447
\(476\) −19.0210 4.39497i −0.871825 0.201443i
\(477\) 0 0
\(478\) 13.5423 + 1.54420i 0.619411 + 0.0706299i
\(479\) 8.85381 0.404541 0.202270 0.979330i \(-0.435168\pi\)
0.202270 + 0.979330i \(0.435168\pi\)
\(480\) 0 0
\(481\) 9.06101 0.413146
\(482\) −9.28385 1.05861i −0.422868 0.0482186i
\(483\) 0 0
\(484\) −11.5319 2.66455i −0.524177 0.121116i
\(485\) −52.8604 −2.40027
\(486\) 0 0
\(487\) 8.83371i 0.400293i −0.979766 0.200147i \(-0.935858\pi\)
0.979766 0.200147i \(-0.0641419\pi\)
\(488\) 12.3050 34.7183i 0.557023 1.57162i
\(489\) 0 0
\(490\) −23.1539 2.64019i −1.04599 0.119272i
\(491\) 29.1663i 1.31626i −0.752906 0.658128i \(-0.771349\pi\)
0.752906 0.658128i \(-0.228651\pi\)
\(492\) 0 0
\(493\) 16.2413i 0.731471i
\(494\) 1.19979 10.5219i 0.0539810 0.473403i
\(495\) 0 0
\(496\) 7.77246 15.9212i 0.348994 0.714884i
\(497\) 6.15564i 0.276118i
\(498\) 0 0
\(499\) 31.5806 1.41374 0.706870 0.707343i \(-0.250106\pi\)
0.706870 + 0.707343i \(0.250106\pi\)
\(500\) −12.0086 2.77470i −0.537041 0.124088i
\(501\) 0 0
\(502\) −4.22726 + 37.0723i −0.188672 + 1.65462i
\(503\) −32.4054 −1.44488 −0.722442 0.691431i \(-0.756981\pi\)
−0.722442 + 0.691431i \(0.756981\pi\)
\(504\) 0 0
\(505\) −6.10838 −0.271819
\(506\) 1.94821 17.0854i 0.0866083 0.759538i
\(507\) 0 0
\(508\) −9.83705 + 42.5737i −0.436449 + 1.88890i
\(509\) 7.52326 0.333463 0.166731 0.986002i \(-0.446679\pi\)
0.166731 + 0.986002i \(0.446679\pi\)
\(510\) 0 0
\(511\) 4.33128i 0.191605i
\(512\) 11.8070 + 19.3027i 0.521802 + 0.853067i
\(513\) 0 0
\(514\) −1.99532 + 17.4986i −0.0880100 + 0.771831i
\(515\) 0.569528i 0.0250964i
\(516\) 0 0
\(517\) 17.0965i 0.751905i
\(518\) 18.8919 + 2.15420i 0.830064 + 0.0946502i
\(519\) 0 0
\(520\) −3.24498 + 9.15562i −0.142302 + 0.401500i
\(521\) 12.4067i 0.543549i −0.962361 0.271775i \(-0.912390\pi\)
0.962361 0.271775i \(-0.0876105\pi\)
\(522\) 0 0
\(523\) 18.9625 0.829174 0.414587 0.910010i \(-0.363926\pi\)
0.414587 + 0.910010i \(0.363926\pi\)
\(524\) −1.38070 + 5.97551i −0.0603161 + 0.261042i
\(525\) 0 0
\(526\) −17.3097 1.97379i −0.754740 0.0860612i
\(527\) −29.1367 −1.26921
\(528\) 0 0
\(529\) −14.2605 −0.620023
\(530\) 56.3500 + 6.42545i 2.44769 + 0.279104i
\(531\) 0 0
\(532\) 5.00304 21.6526i 0.216909 0.938760i
\(533\) −2.36415 −0.102403
\(534\) 0 0
\(535\) 38.8011i 1.67752i
\(536\) −14.2250 5.04169i −0.614425 0.217768i
\(537\) 0 0
\(538\) 7.97887 + 0.909811i 0.343993 + 0.0392247i
\(539\) 19.7356i 0.850072i
\(540\) 0 0
\(541\) 18.2295i 0.783748i 0.920019 + 0.391874i \(0.128173\pi\)
−0.920019 + 0.391874i \(0.871827\pi\)
\(542\) −3.93842 + 34.5392i −0.169170 + 1.48359i
\(543\) 0 0
\(544\) 20.0082 31.3751i 0.857844 1.34520i
\(545\) 23.2040i 0.993949i
\(546\) 0 0
\(547\) 24.0359 1.02770 0.513849 0.857880i \(-0.328219\pi\)
0.513849 + 0.857880i \(0.328219\pi\)
\(548\) 5.63987 24.4087i 0.240923 1.04269i
\(549\) 0 0
\(550\) 4.47758 39.2675i 0.190925 1.67437i
\(551\) −18.4884 −0.787630
\(552\) 0 0
\(553\) −8.92140 −0.379376
\(554\) 4.02850 35.3292i 0.171155 1.50099i
\(555\) 0 0
\(556\) −12.3549 2.85472i −0.523966 0.121067i
\(557\) 26.7567 1.13372 0.566859 0.823815i \(-0.308158\pi\)
0.566859 + 0.823815i \(0.308158\pi\)
\(558\) 0 0
\(559\) 11.0152i 0.465893i
\(560\) −8.94238 + 18.3177i −0.377885 + 0.774065i
\(561\) 0 0
\(562\) −0.278757 + 2.44464i −0.0117587 + 0.103121i
\(563\) 13.2621i 0.558932i −0.960156 0.279466i \(-0.909843\pi\)
0.960156 0.279466i \(-0.0901574\pi\)
\(564\) 0 0
\(565\) 37.0580i 1.55904i
\(566\) −46.3440 5.28449i −1.94798 0.222124i
\(567\) 0 0
\(568\) −11.0594 3.91974i −0.464043 0.164469i
\(569\) 27.8794i 1.16877i 0.811478 + 0.584383i \(0.198663\pi\)
−0.811478 + 0.584383i \(0.801337\pi\)
\(570\) 0 0
\(571\) 26.2805 1.09981 0.549903 0.835229i \(-0.314665\pi\)
0.549903 + 0.835229i \(0.314665\pi\)
\(572\) −8.01509 1.85196i −0.335128 0.0774344i
\(573\) 0 0
\(574\) −4.92917 0.562062i −0.205740 0.0234600i
\(575\) 20.0860 0.837644
\(576\) 0 0
\(577\) −14.5803 −0.606986 −0.303493 0.952834i \(-0.598153\pi\)
−0.303493 + 0.952834i \(0.598153\pi\)
\(578\) −36.9159 4.20943i −1.53550 0.175089i
\(579\) 0 0
\(580\) 16.5229 + 3.81778i 0.686078 + 0.158525i
\(581\) −10.8511 −0.450180
\(582\) 0 0
\(583\) 48.0307i 1.98923i
\(584\) 7.78172 + 2.75804i 0.322010 + 0.114128i
\(585\) 0 0
\(586\) 17.8484 + 2.03521i 0.737312 + 0.0840739i
\(587\) 6.62727i 0.273537i 0.990603 + 0.136768i \(0.0436716\pi\)
−0.990603 + 0.136768i \(0.956328\pi\)
\(588\) 0 0
\(589\) 33.1679i 1.36666i
\(590\) 5.31534 46.6145i 0.218829 1.91909i
\(591\) 0 0
\(592\) −15.9002 + 32.5702i −0.653493 + 1.33862i
\(593\) 31.2980i 1.28525i 0.766179 + 0.642627i \(0.222155\pi\)
−0.766179 + 0.642627i \(0.777845\pi\)
\(594\) 0 0
\(595\) 33.5224 1.37428
\(596\) 23.1771 + 5.35530i 0.949372 + 0.219361i
\(597\) 0 0
\(598\) 0.473655 4.15386i 0.0193692 0.169864i
\(599\) 23.5010 0.960225 0.480113 0.877207i \(-0.340596\pi\)
0.480113 + 0.877207i \(0.340596\pi\)
\(600\) 0 0
\(601\) −7.71826 −0.314834 −0.157417 0.987532i \(-0.550317\pi\)
−0.157417 + 0.987532i \(0.550317\pi\)
\(602\) −2.61880 + 22.9664i −0.106734 + 0.936039i
\(603\) 0 0
\(604\) −4.84707 + 20.9776i −0.197225 + 0.853566i
\(605\) 20.3237 0.826275
\(606\) 0 0
\(607\) 40.1656i 1.63027i −0.579270 0.815136i \(-0.696662\pi\)
0.579270 0.815136i \(-0.303338\pi\)
\(608\) 35.7160 + 22.7764i 1.44848 + 0.923706i
\(609\) 0 0
\(610\) −7.16583 + 62.8429i −0.290136 + 2.54443i
\(611\) 4.15658i 0.168157i
\(612\) 0 0
\(613\) 6.53797i 0.264066i 0.991245 + 0.132033i \(0.0421505\pi\)
−0.991245 + 0.132033i \(0.957850\pi\)
\(614\) −5.82724 0.664466i −0.235168 0.0268157i
\(615\) 0 0
\(616\) −16.2709 5.76683i −0.655575 0.232352i
\(617\) 15.2512i 0.613991i −0.951711 0.306996i \(-0.900676\pi\)
0.951711 0.306996i \(-0.0993237\pi\)
\(618\) 0 0
\(619\) 15.8477 0.636973 0.318486 0.947927i \(-0.396826\pi\)
0.318486 + 0.947927i \(0.396826\pi\)
\(620\) −6.84905 + 29.6419i −0.275065 + 1.19045i
\(621\) 0 0
\(622\) 19.4675 + 2.21983i 0.780576 + 0.0890072i
\(623\) 2.90445 0.116364
\(624\) 0 0
\(625\) −12.8081 −0.512326
\(626\) −38.7592 4.41962i −1.54913 0.176644i
\(627\) 0 0
\(628\) 2.80726 12.1495i 0.112022 0.484818i
\(629\) 59.6051 2.37661
\(630\) 0 0
\(631\) 30.2794i 1.20540i 0.797967 + 0.602701i \(0.205909\pi\)
−0.797967 + 0.602701i \(0.794091\pi\)
\(632\) 5.68090 16.0285i 0.225974 0.637579i
\(633\) 0 0
\(634\) −7.63206 0.870265i −0.303108 0.0345627i
\(635\) 75.0314i 2.97753i
\(636\) 0 0
\(637\) 4.79819i 0.190111i
\(638\) −1.62707 + 14.2691i −0.0644163 + 0.564918i
\(639\) 0 0
\(640\) −27.2160 27.7304i −1.07581 1.09614i
\(641\) 7.03695i 0.277943i −0.990296 0.138971i \(-0.955620\pi\)
0.990296 0.138971i \(-0.0443796\pi\)
\(642\) 0 0
\(643\) −5.27680 −0.208097 −0.104048 0.994572i \(-0.533180\pi\)
−0.104048 + 0.994572i \(0.533180\pi\)
\(644\) 1.97511 8.54807i 0.0778304 0.336841i
\(645\) 0 0
\(646\) 7.89244 69.2151i 0.310524 2.72323i
\(647\) −9.40269 −0.369658 −0.184829 0.982771i \(-0.559173\pi\)
−0.184829 + 0.982771i \(0.559173\pi\)
\(648\) 0 0
\(649\) 39.7325 1.55964
\(650\) 1.08861 9.54686i 0.0426986 0.374459i
\(651\) 0 0
\(652\) 20.1697 + 4.66040i 0.789906 + 0.182515i
\(653\) −21.0712 −0.824578 −0.412289 0.911053i \(-0.635271\pi\)
−0.412289 + 0.911053i \(0.635271\pi\)
\(654\) 0 0
\(655\) 10.5312i 0.411488i
\(656\) 4.14858 8.49802i 0.161975 0.331792i
\(657\) 0 0
\(658\) 0.988202 8.66634i 0.0385241 0.337849i
\(659\) 18.4813i 0.719930i −0.932966 0.359965i \(-0.882789\pi\)
0.932966 0.359965i \(-0.117211\pi\)
\(660\) 0 0
\(661\) 8.57840i 0.333661i −0.985986 0.166831i \(-0.946647\pi\)
0.985986 0.166831i \(-0.0533533\pi\)
\(662\) 2.56368 + 0.292331i 0.0996403 + 0.0113617i
\(663\) 0 0
\(664\) 6.90968 19.4955i 0.268148 0.756571i
\(665\) 38.1604i 1.47980i
\(666\) 0 0
\(667\) −7.29888 −0.282614
\(668\) 7.61821 + 1.76026i 0.294757 + 0.0681065i
\(669\) 0 0
\(670\) 25.7483 + 2.93602i 0.994745 + 0.113428i
\(671\) −53.5650 −2.06785
\(672\) 0 0
\(673\) −1.55751 −0.0600376 −0.0300188 0.999549i \(-0.509557\pi\)
−0.0300188 + 0.999549i \(0.509557\pi\)
\(674\) −1.01798 0.116078i −0.0392111 0.00447115i
\(675\) 0 0
\(676\) −1.94866 0.450256i −0.0749484 0.0173175i
\(677\) 27.1384 1.04301 0.521507 0.853247i \(-0.325370\pi\)
0.521507 + 0.853247i \(0.325370\pi\)
\(678\) 0 0
\(679\) 22.8393i 0.876492i
\(680\) −21.3461 + 60.2274i −0.818586 + 2.30962i
\(681\) 0 0
\(682\) −25.5986 2.91894i −0.980220 0.111772i
\(683\) 6.05171i 0.231562i −0.993275 0.115781i \(-0.963063\pi\)
0.993275 0.115781i \(-0.0369371\pi\)
\(684\) 0 0
\(685\) 43.0177i 1.64362i
\(686\) 2.80495 24.5989i 0.107094 0.939189i
\(687\) 0 0
\(688\) −39.5945 19.3294i −1.50953 0.736925i
\(689\) 11.6774i 0.444873i
\(690\) 0 0
\(691\) −34.4081 −1.30895 −0.654473 0.756085i \(-0.727110\pi\)
−0.654473 + 0.756085i \(0.727110\pi\)
\(692\) 21.5472 + 4.97868i 0.819102 + 0.189261i
\(693\) 0 0
\(694\) 3.40437 29.8557i 0.129228 1.13331i
\(695\) 21.7742 0.825943
\(696\) 0 0
\(697\) −15.5518 −0.589067
\(698\) 2.38035 20.8752i 0.0900974 0.790137i
\(699\) 0 0
\(700\) 4.53942 19.6461i 0.171574 0.742554i
\(701\) 49.7859 1.88039 0.940193 0.340642i \(-0.110644\pi\)
0.940193 + 0.340642i \(0.110644\pi\)
\(702\) 0 0
\(703\) 67.8518i 2.55908i
\(704\) 20.7218 25.5607i 0.780980 0.963357i
\(705\) 0 0
\(706\) 0.671917 5.89258i 0.0252879 0.221770i
\(707\) 2.63924i 0.0992587i
\(708\) 0 0
\(709\) 11.9217i 0.447727i −0.974620 0.223864i \(-0.928133\pi\)
0.974620 0.223864i \(-0.0718670\pi\)
\(710\) 20.0185 + 2.28266i 0.751279 + 0.0856666i
\(711\) 0 0
\(712\) −1.84947 + 5.21823i −0.0693118 + 0.195561i
\(713\) 13.0941i 0.490378i
\(714\) 0 0
\(715\) 14.1257 0.528272
\(716\) 1.38072 5.97562i 0.0516001 0.223319i
\(717\) 0 0
\(718\) 29.5080 + 3.36472i 1.10123 + 0.125570i
\(719\) −12.0486 −0.449336 −0.224668 0.974435i \(-0.572130\pi\)
−0.224668 + 0.974435i \(0.572130\pi\)
\(720\) 0 0
\(721\) 0.246075 0.00916431
\(722\) 52.0944 + 5.94019i 1.93875 + 0.221071i
\(723\) 0 0
\(724\) 7.10036 30.7296i 0.263883 1.14206i
\(725\) −16.7751 −0.623011
\(726\) 0 0
\(727\) 32.1438i 1.19215i 0.802929 + 0.596074i \(0.203274\pi\)
−0.802929 + 0.596074i \(0.796726\pi\)
\(728\) −3.95585 1.40205i −0.146614 0.0519635i
\(729\) 0 0
\(730\) −14.0856 1.60614i −0.521330 0.0594460i
\(731\) 72.4601i 2.68003i
\(732\) 0 0
\(733\) 9.56968i 0.353464i −0.984259 0.176732i \(-0.943447\pi\)
0.984259 0.176732i \(-0.0565526\pi\)
\(734\) 2.62065 22.9826i 0.0967298 0.848302i
\(735\) 0 0
\(736\) 14.1001 + 8.99173i 0.519735 + 0.331440i
\(737\) 21.9470i 0.808426i
\(738\) 0 0
\(739\) −42.5861 −1.56656 −0.783278 0.621672i \(-0.786454\pi\)
−0.783278 + 0.621672i \(0.786454\pi\)
\(740\) 14.0112 60.6387i 0.515060 2.22912i
\(741\) 0 0
\(742\) −2.77623 + 24.3470i −0.101919 + 0.893808i
\(743\) 6.02679 0.221101 0.110551 0.993870i \(-0.464739\pi\)
0.110551 + 0.993870i \(0.464739\pi\)
\(744\) 0 0
\(745\) −40.8472 −1.49652
\(746\) −2.84481 + 24.9484i −0.104156 + 0.913426i
\(747\) 0 0
\(748\) −52.7248 12.1826i −1.92781 0.445439i
\(749\) 16.7647 0.612570
\(750\) 0 0
\(751\) 29.2953i 1.06900i 0.845168 + 0.534501i \(0.179500\pi\)
−0.845168 + 0.534501i \(0.820500\pi\)
\(752\) 14.9410 + 7.29392i 0.544841 + 0.265982i
\(753\) 0 0
\(754\) −0.395579 + 3.46915i −0.0144061 + 0.126339i
\(755\) 36.9707i 1.34550i
\(756\) 0 0
\(757\) 34.8134i 1.26532i −0.774431 0.632658i \(-0.781964\pi\)
0.774431 0.632658i \(-0.218036\pi\)
\(758\) −14.2451 1.62433i −0.517404 0.0589983i
\(759\) 0 0
\(760\) −68.5602 24.2995i −2.48694 0.881434i
\(761\) 17.7411i 0.643114i 0.946890 + 0.321557i \(0.104206\pi\)
−0.946890 + 0.321557i \(0.895794\pi\)
\(762\) 0 0
\(763\) 10.0257 0.362955
\(764\) −21.5892 4.98839i −0.781069 0.180473i
\(765\) 0 0
\(766\) 12.9993 + 1.48228i 0.469685 + 0.0535570i
\(767\) 9.65991 0.348799
\(768\) 0 0
\(769\) 14.2239 0.512928 0.256464 0.966554i \(-0.417443\pi\)
0.256464 + 0.966554i \(0.417443\pi\)
\(770\) 29.4517 + 3.35831i 1.06137 + 0.121025i
\(771\) 0 0
\(772\) 14.8528 + 3.43189i 0.534565 + 0.123516i
\(773\) −46.4252 −1.66980 −0.834899 0.550403i \(-0.814474\pi\)
−0.834899 + 0.550403i \(0.814474\pi\)
\(774\) 0 0
\(775\) 30.0943i 1.08102i
\(776\) 41.0339 + 14.5434i 1.47303 + 0.522079i
\(777\) 0 0
\(778\) 35.5352 + 4.05199i 1.27400 + 0.145271i
\(779\) 17.7035i 0.634293i
\(780\) 0 0
\(781\) 17.0630i 0.610562i
\(782\) 3.11580 27.3249i 0.111421 0.977137i
\(783\) 0 0
\(784\) 17.2473 + 8.41981i 0.615974 + 0.300708i
\(785\) 21.4122i 0.764233i
\(786\) 0 0
\(787\) −9.64648 −0.343860 −0.171930 0.985109i \(-0.555000\pi\)
−0.171930 + 0.985109i \(0.555000\pi\)
\(788\) 46.8073 + 10.8153i 1.66744 + 0.385278i
\(789\) 0 0
\(790\) −3.30826 + 29.0128i −0.117703 + 1.03223i
\(791\) 16.0116 0.569306
\(792\) 0 0
\(793\) −13.0229 −0.462458
\(794\) −2.52988 + 22.1866i −0.0897821 + 0.787372i
\(795\) 0 0
\(796\) 4.22106 18.2683i 0.149612 0.647503i
\(797\) −12.0174 −0.425677 −0.212839 0.977087i \(-0.568271\pi\)
−0.212839 + 0.977087i \(0.568271\pi\)
\(798\) 0 0
\(799\) 27.3428i 0.967318i
\(800\) 32.4063 + 20.6658i 1.14574 + 0.730646i
\(801\) 0 0
\(802\) 1.72980 15.1700i 0.0610812 0.535670i
\(803\) 12.0060i 0.423683i
\(804\) 0 0
\(805\) 15.0650i 0.530973i
\(806\) −6.22362 0.709664i −0.219218 0.0249969i
\(807\) 0 0
\(808\) 4.74174 + 1.68059i 0.166814 + 0.0591230i
\(809\) 13.3426i 0.469102i −0.972104 0.234551i \(-0.924638\pi\)
0.972104 0.234551i \(-0.0753620\pi\)
\(810\) 0 0
\(811\) −11.5782 −0.406565 −0.203283 0.979120i \(-0.565161\pi\)
−0.203283 + 0.979120i \(0.565161\pi\)
\(812\) −1.64954 + 7.13903i −0.0578876 + 0.250531i
\(813\) 0 0
\(814\) 52.3672 + 5.97130i 1.83547 + 0.209294i
\(815\) −35.5469 −1.24515
\(816\) 0 0
\(817\) −82.4853 −2.88580
\(818\) −37.3897 4.26346i −1.30730 0.149068i
\(819\) 0 0
\(820\) −3.65571 + 15.8215i −0.127663 + 0.552511i
\(821\) −34.6761 −1.21020 −0.605102 0.796148i \(-0.706868\pi\)
−0.605102 + 0.796148i \(0.706868\pi\)
\(822\) 0 0
\(823\) 11.4656i 0.399666i 0.979830 + 0.199833i \(0.0640399\pi\)
−0.979830 + 0.199833i \(0.935960\pi\)
\(824\) −0.156694 + 0.442107i −0.00545868 + 0.0154015i
\(825\) 0 0
\(826\) 20.1406 + 2.29659i 0.700782 + 0.0799085i
\(827\) 31.3392i 1.08977i 0.838511 + 0.544885i \(0.183427\pi\)
−0.838511 + 0.544885i \(0.816573\pi\)
\(828\) 0 0
\(829\) 51.7029i 1.79572i −0.440284 0.897859i \(-0.645122\pi\)
0.440284 0.897859i \(-0.354878\pi\)
\(830\) −4.02385 + 35.2884i −0.139670 + 1.22488i
\(831\) 0 0
\(832\) 5.03795 6.21442i 0.174659 0.215446i
\(833\) 31.5634i 1.09361i
\(834\) 0 0
\(835\) −13.4263 −0.464635
\(836\) 13.8681 60.0196i 0.479638 2.07582i
\(837\) 0 0
\(838\) 1.08865 9.54728i 0.0376069 0.329805i
\(839\) −44.6953 −1.54305 −0.771526 0.636198i \(-0.780506\pi\)
−0.771526 + 0.636198i \(0.780506\pi\)
\(840\) 0 0
\(841\) −22.9042 −0.789802
\(842\) −0.255053 + 2.23677i −0.00878971 + 0.0770840i
\(843\) 0 0
\(844\) 5.55815 + 1.28426i 0.191319 + 0.0442062i
\(845\) 3.43430 0.118143
\(846\) 0 0
\(847\) 8.78122i 0.301726i
\(848\) −41.9749 20.4914i −1.44142 0.703677i
\(849\) 0 0
\(850\) 7.16106 62.8011i 0.245622 2.15406i
\(851\) 26.7867i 0.918236i
\(852\) 0 0
\(853\) 19.0904i 0.653642i −0.945086 0.326821i \(-0.894022\pi\)
0.945086 0.326821i \(-0.105978\pi\)
\(854\) −27.1524 3.09612i −0.929137 0.105947i
\(855\) 0 0
\(856\) −10.6753 + 30.1201i −0.364875 + 1.02948i
\(857\) 55.8671i 1.90839i 0.299193 + 0.954193i \(0.403283\pi\)
−0.299193 + 0.954193i \(0.596717\pi\)
\(858\) 0 0
\(859\) −9.28709 −0.316871 −0.158436 0.987369i \(-0.550645\pi\)
−0.158436 + 0.987369i \(0.550645\pi\)
\(860\) 73.7167 + 17.0329i 2.51372 + 0.580818i
\(861\) 0 0
\(862\) −22.7704 2.59646i −0.775563 0.0884356i
\(863\) −49.0184 −1.66860 −0.834302 0.551307i \(-0.814129\pi\)
−0.834302 + 0.551307i \(0.814129\pi\)
\(864\) 0 0
\(865\) −37.9746 −1.29117
\(866\) 18.2956 + 2.08621i 0.621711 + 0.0708922i
\(867\) 0 0
\(868\) −12.8073 2.95926i −0.434710 0.100444i
\(869\) −24.7295 −0.838891
\(870\) 0 0
\(871\) 5.33582i 0.180798i
\(872\) −6.38408 + 18.0125i −0.216192 + 0.609980i
\(873\) 0 0
\(874\) 31.1055 + 3.54688i 1.05216 + 0.119975i
\(875\) 9.14422i 0.309131i
\(876\) 0 0
\(877\) 20.8671i 0.704631i 0.935881 + 0.352316i \(0.114606\pi\)
−0.935881 + 0.352316i \(0.885394\pi\)
\(878\) 3.87584 33.9904i 0.130803 1.14712i
\(879\) 0 0
\(880\) −24.7877 + 50.7755i −0.835592 + 1.71164i
\(881\) 7.48262i 0.252096i −0.992024 0.126048i \(-0.959771\pi\)
0.992024 0.126048i \(-0.0402293\pi\)
\(882\) 0 0
\(883\) 58.6643 1.97421 0.987105 0.160071i \(-0.0511724\pi\)
0.987105 + 0.160071i \(0.0511724\pi\)
\(884\) −12.8187 2.96187i −0.431138 0.0996185i
\(885\) 0 0
\(886\) −3.29907 + 28.9322i −0.110834 + 0.971996i
\(887\) 32.5991 1.09457 0.547285 0.836947i \(-0.315662\pi\)
0.547285 + 0.836947i \(0.315662\pi\)
\(888\) 0 0
\(889\) 32.4187 1.08729
\(890\) 1.07704 9.44541i 0.0361024 0.316611i
\(891\) 0 0
\(892\) −5.47025 + 23.6747i −0.183158 + 0.792686i
\(893\) 31.1258 1.04158
\(894\) 0 0
\(895\) 10.5314i 0.352025i
\(896\) 11.9814 11.7591i 0.400271 0.392846i
\(897\) 0 0
\(898\) 6.46365 56.6850i 0.215695 1.89160i
\(899\) 10.9357i 0.364726i
\(900\) 0 0
\(901\) 76.8162i 2.55912i
\(902\) −13.6633 1.55800i −0.454939 0.0518756i
\(903\) 0 0
\(904\) −10.1957 + 28.7670i −0.339105 + 0.956775i
\(905\) 54.1575i 1.80026i
\(906\) 0 0
\(907\) −27.7859 −0.922615 −0.461308 0.887240i \(-0.652620\pi\)
−0.461308 + 0.887240i \(0.652620\pi\)
\(908\) −13.0399 + 56.4355i −0.432746 + 1.87288i
\(909\) 0 0
\(910\) 7.16041 + 0.816484i 0.237365 + 0.0270662i
\(911\) −35.8904 −1.18910 −0.594551 0.804058i \(-0.702670\pi\)
−0.594551 + 0.804058i \(0.702670\pi\)
\(912\) 0 0
\(913\) −30.0785 −0.995454
\(914\) −11.0520 1.26023i −0.365567 0.0416847i
\(915\) 0 0
\(916\) −3.52664 + 15.2629i −0.116524 + 0.504301i
\(917\) 4.55019 0.150261
\(918\) 0 0
\(919\) 10.5323i 0.347429i −0.984796 0.173715i \(-0.944423\pi\)
0.984796 0.173715i \(-0.0555770\pi\)
\(920\) −27.0664 9.59300i −0.892352 0.316272i
\(921\) 0 0
\(922\) −32.2638 3.67897i −1.06255 0.121160i
\(923\) 4.14842i 0.136547i
\(924\) 0 0
\(925\) 61.5641i 2.02422i
\(926\) 1.61205 14.1374i 0.0529754 0.464584i
\(927\) 0 0
\(928\) −11.7758 7.50956i −0.386561 0.246513i
\(929\) 27.6997i 0.908799i 0.890798 + 0.454400i \(0.150146\pi\)
−0.890798 + 0.454400i \(0.849854\pi\)
\(930\) 0 0
\(931\) 35.9304 1.17757
\(932\) −9.53356 + 41.2602i −0.312282 + 1.35152i
\(933\) 0 0
\(934\) −3.43296 + 30.1064i −0.112330 + 0.985110i
\(935\) 92.9217 3.03887
\(936\) 0 0
\(937\) −42.5811 −1.39106 −0.695532 0.718495i \(-0.744831\pi\)
−0.695532 + 0.718495i \(0.744831\pi\)
\(938\) −1.26856 + 11.1250i −0.0414200 + 0.363245i
\(939\) 0 0
\(940\) −27.8169 6.42737i −0.907288 0.209638i
\(941\) 21.1059 0.688033 0.344017 0.938964i \(-0.388212\pi\)
0.344017 + 0.938964i \(0.388212\pi\)
\(942\) 0 0
\(943\) 6.98903i 0.227594i
\(944\) −16.9511 + 34.7229i −0.551712 + 1.13014i
\(945\) 0 0
\(946\) −7.25913 + 63.6612i −0.236015 + 2.06980i
\(947\) 31.1667i 1.01278i 0.862304 + 0.506391i \(0.169021\pi\)
−0.862304 + 0.506391i \(0.830979\pi\)
\(948\) 0 0
\(949\) 2.91895i 0.0947530i
\(950\) 71.4900 + 8.15183i 2.31944 + 0.264480i
\(951\) 0 0
\(952\) −26.0224 9.22298i −0.843389 0.298918i
\(953\) 10.0942i 0.326984i 0.986545 + 0.163492i \(0.0522759\pi\)
−0.986545 + 0.163492i \(0.947724\pi\)
\(954\) 0 0
\(955\) 38.0486 1.23122
\(956\) 18.7810 + 4.33953i 0.607421 + 0.140350i
\(957\) 0 0
\(958\) 12.4406 + 1.41857i 0.401936 + 0.0458318i
\(959\) −18.5866 −0.600192
\(960\) 0 0
\(961\) 11.3815 0.367144
\(962\) 12.7317 + 1.45176i 0.410486 + 0.0468068i
\(963\) 0 0
\(964\) −12.8752 2.97494i −0.414682 0.0958162i
\(965\) −26.1765 −0.842651
\(966\) 0 0
\(967\) 43.6067i 1.40230i 0.713015 + 0.701149i \(0.247329\pi\)
−0.713015 + 0.701149i \(0.752671\pi\)
\(968\) −15.7766 5.59163i −0.507080 0.179722i
\(969\) 0 0
\(970\) −74.2746 8.46935i −2.38481 0.271935i
\(971\) 32.6183i 1.04677i −0.852096 0.523386i \(-0.824669\pi\)
0.852096 0.523386i \(-0.175331\pi\)
\(972\) 0 0
\(973\) 9.40795i 0.301605i
\(974\) 1.41535 12.4123i 0.0453506 0.397716i
\(975\) 0 0
\(976\) 22.8525 46.8114i 0.731491 1.49840i
\(977\) 18.8377i 0.602672i 0.953518 + 0.301336i \(0.0974326\pi\)
−0.953518 + 0.301336i \(0.902567\pi\)
\(978\) 0 0
\(979\) 8.05093 0.257309
\(980\) −32.1108 7.41950i −1.02574 0.237007i
\(981\) 0 0
\(982\) 4.67305 40.9818i 0.149123 1.30778i
\(983\) 30.7835 0.981841 0.490920 0.871204i \(-0.336661\pi\)
0.490920 + 0.871204i \(0.336661\pi\)
\(984\) 0 0
\(985\) −82.4928 −2.62844
\(986\) −2.60220 + 22.8208i −0.0828708 + 0.726761i
\(987\) 0 0
\(988\) 3.37166 14.5922i 0.107267 0.464239i
\(989\) −32.5638 −1.03547
\(990\) 0 0
\(991\) 54.0367i 1.71653i 0.513206 + 0.858265i \(0.328458\pi\)
−0.513206 + 0.858265i \(0.671542\pi\)
\(992\) 13.4721 21.1257i 0.427738 0.670742i
\(993\) 0 0
\(994\) −0.986263 + 8.64934i −0.0312824 + 0.274340i
\(995\) 32.1959i 1.02068i
\(996\) 0 0
\(997\) 55.9698i 1.77258i 0.463130 + 0.886290i \(0.346726\pi\)
−0.463130 + 0.886290i \(0.653274\pi\)
\(998\) 44.3741 + 5.05987i 1.40464 + 0.160168i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 936.2.j.a.755.48 yes 48
3.2 odd 2 inner 936.2.j.a.755.1 48
4.3 odd 2 3744.2.j.a.2159.5 48
8.3 odd 2 inner 936.2.j.a.755.2 yes 48
8.5 even 2 3744.2.j.a.2159.44 48
12.11 even 2 3744.2.j.a.2159.43 48
24.5 odd 2 3744.2.j.a.2159.6 48
24.11 even 2 inner 936.2.j.a.755.47 yes 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
936.2.j.a.755.1 48 3.2 odd 2 inner
936.2.j.a.755.2 yes 48 8.3 odd 2 inner
936.2.j.a.755.47 yes 48 24.11 even 2 inner
936.2.j.a.755.48 yes 48 1.1 even 1 trivial
3744.2.j.a.2159.5 48 4.3 odd 2
3744.2.j.a.2159.6 48 24.5 odd 2
3744.2.j.a.2159.43 48 12.11 even 2
3744.2.j.a.2159.44 48 8.5 even 2