Properties

Label 936.2.j.a.755.45
Level $936$
Weight $2$
Character 936.755
Analytic conductor $7.474$
Analytic rank $0$
Dimension $48$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [936,2,Mod(755,936)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(936, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1, 1, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("936.755"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 936 = 2^{3} \cdot 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 936.j (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.47399762919\)
Analytic rank: \(0\)
Dimension: \(48\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 755.45
Character \(\chi\) \(=\) 936.755
Dual form 936.2.j.a.755.46

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.40416 - 0.168324i) q^{2} +(1.94333 - 0.472708i) q^{4} +2.74521 q^{5} +0.0889956i q^{7} +(2.64918 - 0.990868i) q^{8} +(3.85471 - 0.462085i) q^{10} +0.683486i q^{11} -1.00000i q^{13} +(0.0149801 + 0.124964i) q^{14} +(3.55309 - 1.83726i) q^{16} +0.0828094i q^{17} -1.60411 q^{19} +(5.33485 - 1.29768i) q^{20} +(0.115047 + 0.959725i) q^{22} -4.13521 q^{23} +2.53616 q^{25} +(-0.168324 - 1.40416i) q^{26} +(0.0420689 + 0.172948i) q^{28} -1.05035 q^{29} +6.98879i q^{31} +(4.67986 - 3.17788i) q^{32} +(0.0139388 + 0.116278i) q^{34} +0.244311i q^{35} +1.52658i q^{37} +(-2.25243 + 0.270010i) q^{38} +(7.27256 - 2.72014i) q^{40} -6.85637i q^{41} +0.580391 q^{43} +(0.323090 + 1.32824i) q^{44} +(-5.80650 + 0.696056i) q^{46} -7.69506 q^{47} +6.99208 q^{49} +(3.56118 - 0.426897i) q^{50} +(-0.472708 - 1.94333i) q^{52} -2.24587 q^{53} +1.87631i q^{55} +(0.0881829 + 0.235766i) q^{56} +(-1.47485 + 0.176798i) q^{58} -7.93214i q^{59} +5.65426i q^{61} +(1.17638 + 9.81339i) q^{62} +(6.03636 - 5.24999i) q^{64} -2.74521i q^{65} -5.72816 q^{67} +(0.0391447 + 0.160926i) q^{68} +(0.0411235 + 0.343052i) q^{70} -3.71930 q^{71} +6.94518 q^{73} +(0.256960 + 2.14356i) q^{74} +(-3.11732 + 0.758276i) q^{76} -0.0608273 q^{77} +1.75418i q^{79} +(9.75398 - 5.04366i) q^{80} +(-1.15409 - 9.62744i) q^{82} +15.2105i q^{83} +0.227329i q^{85} +(0.814962 - 0.0976938i) q^{86} +(0.677245 + 1.81068i) q^{88} -16.2449i q^{89} +0.0889956 q^{91} +(-8.03610 + 1.95475i) q^{92} +(-10.8051 + 1.29527i) q^{94} -4.40361 q^{95} +4.85412 q^{97} +(9.81800 - 1.17694i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q - 8 q^{4} + 16 q^{10} + 8 q^{16} + 32 q^{19} + 48 q^{25} - 24 q^{28} + 32 q^{34} - 32 q^{40} - 32 q^{43} + 24 q^{46} - 48 q^{49} + 8 q^{52} - 40 q^{58} + 40 q^{64} + 32 q^{67} - 40 q^{70} + 40 q^{76}+ \cdots - 32 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/936\mathbb{Z}\right)^\times\).

\(n\) \(145\) \(209\) \(469\) \(703\)
\(\chi(n)\) \(1\) \(-1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.40416 0.168324i 0.992891 0.119023i
\(3\) 0 0
\(4\) 1.94333 0.472708i 0.971667 0.236354i
\(5\) 2.74521 1.22769 0.613847 0.789425i \(-0.289621\pi\)
0.613847 + 0.789425i \(0.289621\pi\)
\(6\) 0 0
\(7\) 0.0889956i 0.0336372i 0.999859 + 0.0168186i \(0.00535377\pi\)
−0.999859 + 0.0168186i \(0.994646\pi\)
\(8\) 2.64918 0.990868i 0.936628 0.350325i
\(9\) 0 0
\(10\) 3.85471 0.462085i 1.21897 0.146124i
\(11\) 0.683486i 0.206079i 0.994677 + 0.103039i \(0.0328568\pi\)
−0.994677 + 0.103039i \(0.967143\pi\)
\(12\) 0 0
\(13\) 1.00000i 0.277350i
\(14\) 0.0149801 + 0.124964i 0.00400360 + 0.0333981i
\(15\) 0 0
\(16\) 3.55309 1.83726i 0.888273 0.459315i
\(17\) 0.0828094i 0.0200842i 0.999950 + 0.0100421i \(0.00319656\pi\)
−0.999950 + 0.0100421i \(0.996803\pi\)
\(18\) 0 0
\(19\) −1.60411 −0.368008 −0.184004 0.982926i \(-0.558906\pi\)
−0.184004 + 0.982926i \(0.558906\pi\)
\(20\) 5.33485 1.29768i 1.19291 0.290171i
\(21\) 0 0
\(22\) 0.115047 + 0.959725i 0.0245282 + 0.204614i
\(23\) −4.13521 −0.862252 −0.431126 0.902292i \(-0.641884\pi\)
−0.431126 + 0.902292i \(0.641884\pi\)
\(24\) 0 0
\(25\) 2.53616 0.507233
\(26\) −0.168324 1.40416i −0.0330111 0.275379i
\(27\) 0 0
\(28\) 0.0420689 + 0.172948i 0.00795028 + 0.0326841i
\(29\) −1.05035 −0.195044 −0.0975221 0.995233i \(-0.531092\pi\)
−0.0975221 + 0.995233i \(0.531092\pi\)
\(30\) 0 0
\(31\) 6.98879i 1.25522i 0.778526 + 0.627612i \(0.215968\pi\)
−0.778526 + 0.627612i \(0.784032\pi\)
\(32\) 4.67986 3.17788i 0.827290 0.561775i
\(33\) 0 0
\(34\) 0.0139388 + 0.116278i 0.00239049 + 0.0199415i
\(35\) 0.244311i 0.0412961i
\(36\) 0 0
\(37\) 1.52658i 0.250968i 0.992096 + 0.125484i \(0.0400484\pi\)
−0.992096 + 0.125484i \(0.959952\pi\)
\(38\) −2.25243 + 0.270010i −0.365392 + 0.0438014i
\(39\) 0 0
\(40\) 7.27256 2.72014i 1.14989 0.430092i
\(41\) 6.85637i 1.07079i −0.844603 0.535393i \(-0.820164\pi\)
0.844603 0.535393i \(-0.179836\pi\)
\(42\) 0 0
\(43\) 0.580391 0.0885088 0.0442544 0.999020i \(-0.485909\pi\)
0.0442544 + 0.999020i \(0.485909\pi\)
\(44\) 0.323090 + 1.32824i 0.0487076 + 0.200240i
\(45\) 0 0
\(46\) −5.80650 + 0.696056i −0.856122 + 0.102628i
\(47\) −7.69506 −1.12244 −0.561220 0.827667i \(-0.689668\pi\)
−0.561220 + 0.827667i \(0.689668\pi\)
\(48\) 0 0
\(49\) 6.99208 0.998869
\(50\) 3.56118 0.426897i 0.503627 0.0603724i
\(51\) 0 0
\(52\) −0.472708 1.94333i −0.0655528 0.269492i
\(53\) −2.24587 −0.308493 −0.154247 0.988032i \(-0.549295\pi\)
−0.154247 + 0.988032i \(0.549295\pi\)
\(54\) 0 0
\(55\) 1.87631i 0.253002i
\(56\) 0.0881829 + 0.235766i 0.0117839 + 0.0315055i
\(57\) 0 0
\(58\) −1.47485 + 0.176798i −0.193658 + 0.0232148i
\(59\) 7.93214i 1.03268i −0.856385 0.516338i \(-0.827295\pi\)
0.856385 0.516338i \(-0.172705\pi\)
\(60\) 0 0
\(61\) 5.65426i 0.723953i 0.932187 + 0.361977i \(0.117898\pi\)
−0.932187 + 0.361977i \(0.882102\pi\)
\(62\) 1.17638 + 9.81339i 0.149401 + 1.24630i
\(63\) 0 0
\(64\) 6.03636 5.24999i 0.754545 0.656248i
\(65\) 2.74521i 0.340501i
\(66\) 0 0
\(67\) −5.72816 −0.699806 −0.349903 0.936786i \(-0.613785\pi\)
−0.349903 + 0.936786i \(0.613785\pi\)
\(68\) 0.0391447 + 0.160926i 0.00474699 + 0.0195152i
\(69\) 0 0
\(70\) 0.0411235 + 0.343052i 0.00491520 + 0.0410026i
\(71\) −3.71930 −0.441400 −0.220700 0.975342i \(-0.570834\pi\)
−0.220700 + 0.975342i \(0.570834\pi\)
\(72\) 0 0
\(73\) 6.94518 0.812872 0.406436 0.913679i \(-0.366771\pi\)
0.406436 + 0.913679i \(0.366771\pi\)
\(74\) 0.256960 + 2.14356i 0.0298710 + 0.249184i
\(75\) 0 0
\(76\) −3.11732 + 0.758276i −0.357581 + 0.0869802i
\(77\) −0.0608273 −0.00693191
\(78\) 0 0
\(79\) 1.75418i 0.197361i 0.995119 + 0.0986806i \(0.0314622\pi\)
−0.995119 + 0.0986806i \(0.968538\pi\)
\(80\) 9.75398 5.04366i 1.09053 0.563898i
\(81\) 0 0
\(82\) −1.15409 9.62744i −0.127448 1.06317i
\(83\) 15.2105i 1.66957i 0.550579 + 0.834783i \(0.314407\pi\)
−0.550579 + 0.834783i \(0.685593\pi\)
\(84\) 0 0
\(85\) 0.227329i 0.0246573i
\(86\) 0.814962 0.0976938i 0.0878796 0.0105346i
\(87\) 0 0
\(88\) 0.677245 + 1.81068i 0.0721946 + 0.193019i
\(89\) 16.2449i 1.72196i −0.508640 0.860979i \(-0.669852\pi\)
0.508640 0.860979i \(-0.330148\pi\)
\(90\) 0 0
\(91\) 0.0889956 0.00932927
\(92\) −8.03610 + 1.95475i −0.837822 + 0.203797i
\(93\) 0 0
\(94\) −10.8051 + 1.29527i −1.11446 + 0.133596i
\(95\) −4.40361 −0.451801
\(96\) 0 0
\(97\) 4.85412 0.492861 0.246431 0.969160i \(-0.420742\pi\)
0.246431 + 0.969160i \(0.420742\pi\)
\(98\) 9.81800 1.17694i 0.991768 0.118888i
\(99\) 0 0
\(100\) 4.92861 1.19887i 0.492861 0.119887i
\(101\) −11.8637 −1.18048 −0.590240 0.807228i \(-0.700967\pi\)
−0.590240 + 0.807228i \(0.700967\pi\)
\(102\) 0 0
\(103\) 12.5156i 1.23320i 0.787278 + 0.616598i \(0.211490\pi\)
−0.787278 + 0.616598i \(0.788510\pi\)
\(104\) −0.990868 2.64918i −0.0971626 0.259774i
\(105\) 0 0
\(106\) −3.15356 + 0.378033i −0.306300 + 0.0367178i
\(107\) 6.10042i 0.589750i −0.955536 0.294875i \(-0.904722\pi\)
0.955536 0.294875i \(-0.0952780\pi\)
\(108\) 0 0
\(109\) 16.4324i 1.57394i 0.616990 + 0.786971i \(0.288352\pi\)
−0.616990 + 0.786971i \(0.711648\pi\)
\(110\) 0.315829 + 2.63464i 0.0301131 + 0.251203i
\(111\) 0 0
\(112\) 0.163508 + 0.316210i 0.0154501 + 0.0298790i
\(113\) 9.57224i 0.900480i −0.892908 0.450240i \(-0.851338\pi\)
0.892908 0.450240i \(-0.148662\pi\)
\(114\) 0 0
\(115\) −11.3520 −1.05858
\(116\) −2.04117 + 0.496507i −0.189518 + 0.0460995i
\(117\) 0 0
\(118\) −1.33517 11.1380i −0.122912 1.02534i
\(119\) −0.00736967 −0.000675577
\(120\) 0 0
\(121\) 10.5328 0.957531
\(122\) 0.951748 + 7.93948i 0.0861672 + 0.718807i
\(123\) 0 0
\(124\) 3.30366 + 13.5816i 0.296678 + 1.21966i
\(125\) −6.76374 −0.604968
\(126\) 0 0
\(127\) 3.70333i 0.328617i −0.986409 0.164309i \(-0.947461\pi\)
0.986409 0.164309i \(-0.0525393\pi\)
\(128\) 7.59232 8.38789i 0.671072 0.741392i
\(129\) 0 0
\(130\) −0.462085 3.85471i −0.0405275 0.338081i
\(131\) 6.87363i 0.600551i −0.953852 0.300276i \(-0.902921\pi\)
0.953852 0.300276i \(-0.0970787\pi\)
\(132\) 0 0
\(133\) 0.142759i 0.0123787i
\(134\) −8.04325 + 0.964187i −0.694831 + 0.0832931i
\(135\) 0 0
\(136\) 0.0820533 + 0.219378i 0.00703601 + 0.0188115i
\(137\) 7.71953i 0.659524i 0.944064 + 0.329762i \(0.106968\pi\)
−0.944064 + 0.329762i \(0.893032\pi\)
\(138\) 0 0
\(139\) −5.47680 −0.464536 −0.232268 0.972652i \(-0.574615\pi\)
−0.232268 + 0.972652i \(0.574615\pi\)
\(140\) 0.115488 + 0.474778i 0.00976052 + 0.0401261i
\(141\) 0 0
\(142\) −5.22250 + 0.626049i −0.438262 + 0.0525368i
\(143\) 0.683486 0.0571560
\(144\) 0 0
\(145\) −2.88342 −0.239455
\(146\) 9.75215 1.16904i 0.807094 0.0967506i
\(147\) 0 0
\(148\) 0.721626 + 2.96665i 0.0593173 + 0.243857i
\(149\) −7.11749 −0.583088 −0.291544 0.956557i \(-0.594169\pi\)
−0.291544 + 0.956557i \(0.594169\pi\)
\(150\) 0 0
\(151\) 17.2831i 1.40648i −0.710955 0.703238i \(-0.751737\pi\)
0.710955 0.703238i \(-0.248263\pi\)
\(152\) −4.24958 + 1.58946i −0.344687 + 0.128922i
\(153\) 0 0
\(154\) −0.0854113 + 0.0102387i −0.00688264 + 0.000825058i
\(155\) 19.1857i 1.54103i
\(156\) 0 0
\(157\) 0.214171i 0.0170927i −0.999963 0.00854634i \(-0.997280\pi\)
0.999963 0.00854634i \(-0.00272042\pi\)
\(158\) 0.295272 + 2.46316i 0.0234905 + 0.195958i
\(159\) 0 0
\(160\) 12.8472 8.72394i 1.01566 0.689688i
\(161\) 0.368016i 0.0290037i
\(162\) 0 0
\(163\) −18.3321 −1.43588 −0.717939 0.696106i \(-0.754914\pi\)
−0.717939 + 0.696106i \(0.754914\pi\)
\(164\) −3.24106 13.3242i −0.253084 1.04045i
\(165\) 0 0
\(166\) 2.56029 + 21.3579i 0.198717 + 1.65770i
\(167\) 11.0312 0.853617 0.426808 0.904342i \(-0.359638\pi\)
0.426808 + 0.904342i \(0.359638\pi\)
\(168\) 0 0
\(169\) −1.00000 −0.0769231
\(170\) 0.0382650 + 0.319207i 0.00293479 + 0.0244820i
\(171\) 0 0
\(172\) 1.12789 0.274356i 0.0860011 0.0209194i
\(173\) −12.5569 −0.954682 −0.477341 0.878718i \(-0.658399\pi\)
−0.477341 + 0.878718i \(0.658399\pi\)
\(174\) 0 0
\(175\) 0.225707i 0.0170619i
\(176\) 1.25574 + 2.42849i 0.0946551 + 0.183054i
\(177\) 0 0
\(178\) −2.73441 22.8105i −0.204953 1.70972i
\(179\) 20.2124i 1.51075i 0.655294 + 0.755374i \(0.272545\pi\)
−0.655294 + 0.755374i \(0.727455\pi\)
\(180\) 0 0
\(181\) 22.7895i 1.69393i 0.531646 + 0.846966i \(0.321574\pi\)
−0.531646 + 0.846966i \(0.678426\pi\)
\(182\) 0.124964 0.0149801i 0.00926295 0.00111040i
\(183\) 0 0
\(184\) −10.9549 + 4.09745i −0.807609 + 0.302068i
\(185\) 4.19078i 0.308112i
\(186\) 0 0
\(187\) −0.0565991 −0.00413894
\(188\) −14.9541 + 3.63752i −1.09064 + 0.265293i
\(189\) 0 0
\(190\) −6.18338 + 0.741234i −0.448589 + 0.0537748i
\(191\) −9.29602 −0.672636 −0.336318 0.941748i \(-0.609182\pi\)
−0.336318 + 0.941748i \(0.609182\pi\)
\(192\) 0 0
\(193\) −19.5645 −1.40828 −0.704141 0.710061i \(-0.748668\pi\)
−0.704141 + 0.710061i \(0.748668\pi\)
\(194\) 6.81597 0.817066i 0.489358 0.0586619i
\(195\) 0 0
\(196\) 13.5879 3.30521i 0.970568 0.236087i
\(197\) 1.34800 0.0960410 0.0480205 0.998846i \(-0.484709\pi\)
0.0480205 + 0.998846i \(0.484709\pi\)
\(198\) 0 0
\(199\) 12.8425i 0.910378i −0.890395 0.455189i \(-0.849572\pi\)
0.890395 0.455189i \(-0.150428\pi\)
\(200\) 6.71876 2.51300i 0.475088 0.177696i
\(201\) 0 0
\(202\) −16.6585 + 1.99694i −1.17209 + 0.140504i
\(203\) 0.0934761i 0.00656074i
\(204\) 0 0
\(205\) 18.8222i 1.31460i
\(206\) 2.10667 + 17.5739i 0.146779 + 1.22443i
\(207\) 0 0
\(208\) −1.83726 3.55309i −0.127391 0.246363i
\(209\) 1.09639i 0.0758386i
\(210\) 0 0
\(211\) −26.5080 −1.82489 −0.912443 0.409203i \(-0.865807\pi\)
−0.912443 + 0.409203i \(0.865807\pi\)
\(212\) −4.36447 + 1.06164i −0.299753 + 0.0729137i
\(213\) 0 0
\(214\) −1.02685 8.56597i −0.0701939 0.585558i
\(215\) 1.59329 0.108662
\(216\) 0 0
\(217\) −0.621972 −0.0422222
\(218\) 2.76598 + 23.0738i 0.187336 + 1.56275i
\(219\) 0 0
\(220\) 0.886948 + 3.64630i 0.0597980 + 0.245834i
\(221\) 0.0828094 0.00557037
\(222\) 0 0
\(223\) 16.7690i 1.12294i −0.827499 0.561468i \(-0.810237\pi\)
0.827499 0.561468i \(-0.189763\pi\)
\(224\) 0.282817 + 0.416487i 0.0188965 + 0.0278277i
\(225\) 0 0
\(226\) −1.61124 13.4410i −0.107178 0.894079i
\(227\) 22.8718i 1.51806i 0.651058 + 0.759028i \(0.274326\pi\)
−0.651058 + 0.759028i \(0.725674\pi\)
\(228\) 0 0
\(229\) 18.1712i 1.20078i −0.799705 0.600392i \(-0.795011\pi\)
0.799705 0.600392i \(-0.204989\pi\)
\(230\) −15.9401 + 1.91082i −1.05106 + 0.125996i
\(231\) 0 0
\(232\) −2.78256 + 1.04075i −0.182684 + 0.0683289i
\(233\) 16.5865i 1.08662i 0.839533 + 0.543308i \(0.182829\pi\)
−0.839533 + 0.543308i \(0.817171\pi\)
\(234\) 0 0
\(235\) −21.1245 −1.37801
\(236\) −3.74959 15.4148i −0.244077 1.00342i
\(237\) 0 0
\(238\) −0.0103482 + 0.00124049i −0.000670775 + 8.04093e-5i
\(239\) 2.21652 0.143375 0.0716874 0.997427i \(-0.477162\pi\)
0.0716874 + 0.997427i \(0.477162\pi\)
\(240\) 0 0
\(241\) 21.0982 1.35905 0.679526 0.733651i \(-0.262185\pi\)
0.679526 + 0.733651i \(0.262185\pi\)
\(242\) 14.7898 1.77293i 0.950725 0.113968i
\(243\) 0 0
\(244\) 2.67281 + 10.9881i 0.171109 + 0.703441i
\(245\) 19.1947 1.22630
\(246\) 0 0
\(247\) 1.60411i 0.102067i
\(248\) 6.92498 + 18.5146i 0.439736 + 1.17568i
\(249\) 0 0
\(250\) −9.49738 + 1.13850i −0.600667 + 0.0720052i
\(251\) 3.93364i 0.248289i −0.992264 0.124145i \(-0.960381\pi\)
0.992264 0.124145i \(-0.0396187\pi\)
\(252\) 0 0
\(253\) 2.82636i 0.177692i
\(254\) −0.623360 5.20007i −0.0391131 0.326281i
\(255\) 0 0
\(256\) 9.24895 13.0559i 0.578059 0.815995i
\(257\) 12.9326i 0.806714i −0.915043 0.403357i \(-0.867843\pi\)
0.915043 0.403357i \(-0.132157\pi\)
\(258\) 0 0
\(259\) −0.135859 −0.00844185
\(260\) −1.29768 5.33485i −0.0804788 0.330854i
\(261\) 0 0
\(262\) −1.15700 9.65167i −0.0714795 0.596282i
\(263\) 15.7884 0.973555 0.486777 0.873526i \(-0.338172\pi\)
0.486777 + 0.873526i \(0.338172\pi\)
\(264\) 0 0
\(265\) −6.16537 −0.378735
\(266\) −0.0240297 0.200456i −0.00147336 0.0122907i
\(267\) 0 0
\(268\) −11.1317 + 2.70775i −0.679978 + 0.165402i
\(269\) 14.1225 0.861064 0.430532 0.902575i \(-0.358326\pi\)
0.430532 + 0.902575i \(0.358326\pi\)
\(270\) 0 0
\(271\) 25.2238i 1.53224i 0.642700 + 0.766118i \(0.277814\pi\)
−0.642700 + 0.766118i \(0.722186\pi\)
\(272\) 0.152143 + 0.294230i 0.00922499 + 0.0178403i
\(273\) 0 0
\(274\) 1.29938 + 10.8395i 0.0784986 + 0.654835i
\(275\) 1.73343i 0.104530i
\(276\) 0 0
\(277\) 14.5161i 0.872187i −0.899901 0.436093i \(-0.856362\pi\)
0.899901 0.436093i \(-0.143638\pi\)
\(278\) −7.69031 + 0.921878i −0.461234 + 0.0552906i
\(279\) 0 0
\(280\) 0.242080 + 0.647226i 0.0144671 + 0.0386791i
\(281\) 9.91287i 0.591352i −0.955288 0.295676i \(-0.904455\pi\)
0.955288 0.295676i \(-0.0955449\pi\)
\(282\) 0 0
\(283\) 20.8428 1.23897 0.619487 0.785007i \(-0.287341\pi\)
0.619487 + 0.785007i \(0.287341\pi\)
\(284\) −7.22785 + 1.75815i −0.428894 + 0.104327i
\(285\) 0 0
\(286\) 0.959725 0.115047i 0.0567497 0.00680289i
\(287\) 0.610187 0.0360182
\(288\) 0 0
\(289\) 16.9931 0.999597
\(290\) −4.04878 + 0.485349i −0.237752 + 0.0285006i
\(291\) 0 0
\(292\) 13.4968 3.28305i 0.789841 0.192126i
\(293\) 3.18526 0.186085 0.0930425 0.995662i \(-0.470341\pi\)
0.0930425 + 0.995662i \(0.470341\pi\)
\(294\) 0 0
\(295\) 21.7754i 1.26781i
\(296\) 1.51264 + 4.04419i 0.0879203 + 0.235064i
\(297\) 0 0
\(298\) −9.99410 + 1.19805i −0.578943 + 0.0694010i
\(299\) 4.13521i 0.239146i
\(300\) 0 0
\(301\) 0.0516522i 0.00297718i
\(302\) −2.90916 24.2682i −0.167403 1.39648i
\(303\) 0 0
\(304\) −5.69955 + 2.94717i −0.326892 + 0.169032i
\(305\) 15.5221i 0.888793i
\(306\) 0 0
\(307\) 3.05148 0.174157 0.0870786 0.996201i \(-0.472247\pi\)
0.0870786 + 0.996201i \(0.472247\pi\)
\(308\) −0.118208 + 0.0287536i −0.00673551 + 0.00163839i
\(309\) 0 0
\(310\) 3.22942 + 26.9398i 0.183418 + 1.53008i
\(311\) 27.8964 1.58186 0.790930 0.611907i \(-0.209597\pi\)
0.790930 + 0.611907i \(0.209597\pi\)
\(312\) 0 0
\(313\) 12.9375 0.731273 0.365636 0.930758i \(-0.380851\pi\)
0.365636 + 0.930758i \(0.380851\pi\)
\(314\) −0.0360501 0.300730i −0.00203442 0.0169712i
\(315\) 0 0
\(316\) 0.829217 + 3.40897i 0.0466471 + 0.191769i
\(317\) 24.3152 1.36568 0.682838 0.730570i \(-0.260745\pi\)
0.682838 + 0.730570i \(0.260745\pi\)
\(318\) 0 0
\(319\) 0.717897i 0.0401945i
\(320\) 16.5711 14.4123i 0.926350 0.805672i
\(321\) 0 0
\(322\) −0.0619459 0.516753i −0.00345211 0.0287975i
\(323\) 0.132835i 0.00739116i
\(324\) 0 0
\(325\) 2.53616i 0.140681i
\(326\) −25.7412 + 3.08573i −1.42567 + 0.170903i
\(327\) 0 0
\(328\) −6.79376 18.1638i −0.375123 1.00293i
\(329\) 0.684827i 0.0377557i
\(330\) 0 0
\(331\) 20.9383 1.15087 0.575436 0.817847i \(-0.304833\pi\)
0.575436 + 0.817847i \(0.304833\pi\)
\(332\) 7.19012 + 29.5590i 0.394609 + 1.62226i
\(333\) 0 0
\(334\) 15.4895 1.85681i 0.847549 0.101600i
\(335\) −15.7250 −0.859147
\(336\) 0 0
\(337\) 13.0390 0.710280 0.355140 0.934813i \(-0.384433\pi\)
0.355140 + 0.934813i \(0.384433\pi\)
\(338\) −1.40416 + 0.168324i −0.0763763 + 0.00915563i
\(339\) 0 0
\(340\) 0.107460 + 0.441776i 0.00582786 + 0.0239587i
\(341\) −4.77675 −0.258675
\(342\) 0 0
\(343\) 1.24523i 0.0672363i
\(344\) 1.53756 0.575091i 0.0828998 0.0310068i
\(345\) 0 0
\(346\) −17.6319 + 2.11363i −0.947895 + 0.113629i
\(347\) 9.75181i 0.523504i −0.965135 0.261752i \(-0.915700\pi\)
0.965135 0.261752i \(-0.0843003\pi\)
\(348\) 0 0
\(349\) 8.19014i 0.438408i −0.975679 0.219204i \(-0.929654\pi\)
0.975679 0.219204i \(-0.0703460\pi\)
\(350\) 0.0379920 + 0.316929i 0.00203076 + 0.0169406i
\(351\) 0 0
\(352\) 2.17204 + 3.19862i 0.115770 + 0.170487i
\(353\) 17.3545i 0.923687i −0.886961 0.461843i \(-0.847188\pi\)
0.886961 0.461843i \(-0.152812\pi\)
\(354\) 0 0
\(355\) −10.2103 −0.541904
\(356\) −7.67911 31.5693i −0.406992 1.67317i
\(357\) 0 0
\(358\) 3.40224 + 28.3815i 0.179814 + 1.50001i
\(359\) 2.69754 0.142371 0.0711855 0.997463i \(-0.477322\pi\)
0.0711855 + 0.997463i \(0.477322\pi\)
\(360\) 0 0
\(361\) −16.4268 −0.864570
\(362\) 3.83603 + 32.0002i 0.201617 + 1.68189i
\(363\) 0 0
\(364\) 0.172948 0.0420689i 0.00906495 0.00220501i
\(365\) 19.0660 0.997958
\(366\) 0 0
\(367\) 7.83765i 0.409122i −0.978854 0.204561i \(-0.934423\pi\)
0.978854 0.204561i \(-0.0655767\pi\)
\(368\) −14.6928 + 7.59746i −0.765915 + 0.396045i
\(369\) 0 0
\(370\) 0.705409 + 5.88452i 0.0366725 + 0.305922i
\(371\) 0.199872i 0.0103768i
\(372\) 0 0
\(373\) 2.35883i 0.122136i 0.998134 + 0.0610678i \(0.0194506\pi\)
−0.998134 + 0.0610678i \(0.980549\pi\)
\(374\) −0.0794743 + 0.00952700i −0.00410952 + 0.000492630i
\(375\) 0 0
\(376\) −20.3856 + 7.62479i −1.05131 + 0.393219i
\(377\) 1.05035i 0.0540955i
\(378\) 0 0
\(379\) 18.8503 0.968273 0.484136 0.874993i \(-0.339134\pi\)
0.484136 + 0.874993i \(0.339134\pi\)
\(380\) −8.55769 + 2.08162i −0.439000 + 0.106785i
\(381\) 0 0
\(382\) −13.0531 + 1.56474i −0.667855 + 0.0800593i
\(383\) −18.9471 −0.968151 −0.484075 0.875026i \(-0.660844\pi\)
−0.484075 + 0.875026i \(0.660844\pi\)
\(384\) 0 0
\(385\) −0.166983 −0.00851027
\(386\) −27.4717 + 3.29317i −1.39827 + 0.167618i
\(387\) 0 0
\(388\) 9.43318 2.29458i 0.478897 0.116490i
\(389\) 14.7733 0.749035 0.374518 0.927220i \(-0.377808\pi\)
0.374518 + 0.927220i \(0.377808\pi\)
\(390\) 0 0
\(391\) 0.342435i 0.0173177i
\(392\) 18.5233 6.92823i 0.935568 0.349929i
\(393\) 0 0
\(394\) 1.89281 0.226901i 0.0953583 0.0114311i
\(395\) 4.81560i 0.242299i
\(396\) 0 0
\(397\) 24.2208i 1.21561i 0.794088 + 0.607803i \(0.207949\pi\)
−0.794088 + 0.607803i \(0.792051\pi\)
\(398\) −2.16170 18.0329i −0.108356 0.903907i
\(399\) 0 0
\(400\) 9.01122 4.65959i 0.450561 0.232980i
\(401\) 31.9999i 1.59800i −0.601333 0.798998i \(-0.705364\pi\)
0.601333 0.798998i \(-0.294636\pi\)
\(402\) 0 0
\(403\) 6.98879 0.348137
\(404\) −23.0551 + 5.60806i −1.14703 + 0.279011i
\(405\) 0 0
\(406\) −0.0157343 0.131255i −0.000780879 0.00651410i
\(407\) −1.04340 −0.0517192
\(408\) 0 0
\(409\) 36.5920 1.80936 0.904678 0.426096i \(-0.140111\pi\)
0.904678 + 0.426096i \(0.140111\pi\)
\(410\) −3.16822 26.4293i −0.156467 1.30525i
\(411\) 0 0
\(412\) 5.91622 + 24.3219i 0.291471 + 1.19826i
\(413\) 0.705925 0.0347363
\(414\) 0 0
\(415\) 41.7559i 2.04972i
\(416\) −3.17788 4.67986i −0.155808 0.229449i
\(417\) 0 0
\(418\) −0.184548 1.53950i −0.00902656 0.0752995i
\(419\) 34.8640i 1.70322i −0.524179 0.851608i \(-0.675628\pi\)
0.524179 0.851608i \(-0.324372\pi\)
\(420\) 0 0
\(421\) 5.59480i 0.272674i 0.990663 + 0.136337i \(0.0435330\pi\)
−0.990663 + 0.136337i \(0.956467\pi\)
\(422\) −37.2215 + 4.46194i −1.81191 + 0.217204i
\(423\) 0 0
\(424\) −5.94971 + 2.22536i −0.288944 + 0.108073i
\(425\) 0.210018i 0.0101874i
\(426\) 0 0
\(427\) −0.503204 −0.0243517
\(428\) −2.88372 11.8552i −0.139390 0.573041i
\(429\) 0 0
\(430\) 2.23724 0.268190i 0.107889 0.0129333i
\(431\) −17.1684 −0.826974 −0.413487 0.910510i \(-0.635689\pi\)
−0.413487 + 0.910510i \(0.635689\pi\)
\(432\) 0 0
\(433\) 2.73858 0.131608 0.0658039 0.997833i \(-0.479039\pi\)
0.0658039 + 0.997833i \(0.479039\pi\)
\(434\) −0.873348 + 0.104693i −0.0419221 + 0.00502542i
\(435\) 0 0
\(436\) 7.76775 + 31.9337i 0.372008 + 1.52935i
\(437\) 6.63333 0.317315
\(438\) 0 0
\(439\) 2.14328i 0.102293i −0.998691 0.0511465i \(-0.983712\pi\)
0.998691 0.0511465i \(-0.0162876\pi\)
\(440\) 1.85918 + 4.97070i 0.0886328 + 0.236969i
\(441\) 0 0
\(442\) 0.116278 0.0139388i 0.00553077 0.000663003i
\(443\) 34.9106i 1.65865i −0.558765 0.829326i \(-0.688724\pi\)
0.558765 0.829326i \(-0.311276\pi\)
\(444\) 0 0
\(445\) 44.5957i 2.11404i
\(446\) −2.82263 23.5464i −0.133655 1.11495i
\(447\) 0 0
\(448\) 0.467226 + 0.537209i 0.0220743 + 0.0253808i
\(449\) 33.5270i 1.58224i 0.611662 + 0.791119i \(0.290501\pi\)
−0.611662 + 0.791119i \(0.709499\pi\)
\(450\) 0 0
\(451\) 4.68624 0.220666
\(452\) −4.52488 18.6021i −0.212832 0.874967i
\(453\) 0 0
\(454\) 3.84988 + 32.1157i 0.180684 + 1.50727i
\(455\) 0.244311 0.0114535
\(456\) 0 0
\(457\) −18.5231 −0.866475 −0.433237 0.901280i \(-0.642629\pi\)
−0.433237 + 0.901280i \(0.642629\pi\)
\(458\) −3.05865 25.5152i −0.142921 1.19225i
\(459\) 0 0
\(460\) −22.0608 + 5.36619i −1.02859 + 0.250200i
\(461\) −25.1536 −1.17152 −0.585761 0.810484i \(-0.699204\pi\)
−0.585761 + 0.810484i \(0.699204\pi\)
\(462\) 0 0
\(463\) 12.9506i 0.601864i 0.953646 + 0.300932i \(0.0972978\pi\)
−0.953646 + 0.300932i \(0.902702\pi\)
\(464\) −3.73198 + 1.92976i −0.173253 + 0.0895868i
\(465\) 0 0
\(466\) 2.79191 + 23.2901i 0.129333 + 1.07889i
\(467\) 14.7706i 0.683500i 0.939791 + 0.341750i \(0.111020\pi\)
−0.939791 + 0.341750i \(0.888980\pi\)
\(468\) 0 0
\(469\) 0.509781i 0.0235395i
\(470\) −29.6623 + 3.55577i −1.36822 + 0.164015i
\(471\) 0 0
\(472\) −7.85970 21.0137i −0.361772 0.967234i
\(473\) 0.396689i 0.0182398i
\(474\) 0 0
\(475\) −4.06828 −0.186666
\(476\) −0.0143217 + 0.00348371i −0.000656436 + 0.000159675i
\(477\) 0 0
\(478\) 3.11235 0.373094i 0.142356 0.0170649i
\(479\) 33.2576 1.51958 0.759790 0.650168i \(-0.225302\pi\)
0.759790 + 0.650168i \(0.225302\pi\)
\(480\) 0 0
\(481\) 1.52658 0.0696060
\(482\) 29.6252 3.55133i 1.34939 0.161759i
\(483\) 0 0
\(484\) 20.4688 4.97896i 0.930402 0.226317i
\(485\) 13.3256 0.605083
\(486\) 0 0
\(487\) 19.5452i 0.885677i −0.896601 0.442839i \(-0.853971\pi\)
0.896601 0.442839i \(-0.146029\pi\)
\(488\) 5.60262 + 14.9792i 0.253619 + 0.678075i
\(489\) 0 0
\(490\) 26.9525 3.23093i 1.21759 0.145959i
\(491\) 5.44694i 0.245817i −0.992418 0.122908i \(-0.960778\pi\)
0.992418 0.122908i \(-0.0392222\pi\)
\(492\) 0 0
\(493\) 0.0869785i 0.00391732i
\(494\) 0.270010 + 2.25243i 0.0121483 + 0.101341i
\(495\) 0 0
\(496\) 12.8402 + 24.8318i 0.576544 + 1.11498i
\(497\) 0.331002i 0.0148475i
\(498\) 0 0
\(499\) 20.3074 0.909082 0.454541 0.890726i \(-0.349803\pi\)
0.454541 + 0.890726i \(0.349803\pi\)
\(500\) −13.1442 + 3.19728i −0.587827 + 0.142987i
\(501\) 0 0
\(502\) −0.662127 5.52346i −0.0295522 0.246524i
\(503\) −0.606110 −0.0270251 −0.0135126 0.999909i \(-0.504301\pi\)
−0.0135126 + 0.999909i \(0.504301\pi\)
\(504\) 0 0
\(505\) −32.5682 −1.44927
\(506\) −0.475745 3.96867i −0.0211495 0.176429i
\(507\) 0 0
\(508\) −1.75059 7.19680i −0.0776700 0.319306i
\(509\) 34.6953 1.53784 0.768922 0.639343i \(-0.220794\pi\)
0.768922 + 0.639343i \(0.220794\pi\)
\(510\) 0 0
\(511\) 0.618091i 0.0273427i
\(512\) 10.7894 19.8894i 0.476828 0.878997i
\(513\) 0 0
\(514\) −2.17687 18.1595i −0.0960177 0.800980i
\(515\) 34.3578i 1.51399i
\(516\) 0 0
\(517\) 5.25947i 0.231311i
\(518\) −0.190768 + 0.0228683i −0.00838184 + 0.00100478i
\(519\) 0 0
\(520\) −2.72014 7.27256i −0.119286 0.318923i
\(521\) 5.42869i 0.237835i −0.992904 0.118918i \(-0.962058\pi\)
0.992904 0.118918i \(-0.0379424\pi\)
\(522\) 0 0
\(523\) 9.02542 0.394654 0.197327 0.980338i \(-0.436774\pi\)
0.197327 + 0.980338i \(0.436774\pi\)
\(524\) −3.24922 13.3577i −0.141943 0.583536i
\(525\) 0 0
\(526\) 22.1695 2.65757i 0.966634 0.115876i
\(527\) −0.578738 −0.0252102
\(528\) 0 0
\(529\) −5.90000 −0.256522
\(530\) −8.65716 + 1.03778i −0.376043 + 0.0450783i
\(531\) 0 0
\(532\) −0.0674832 0.277428i −0.00292577 0.0120280i
\(533\) −6.85637 −0.296982
\(534\) 0 0
\(535\) 16.7469i 0.724033i
\(536\) −15.1749 + 5.67585i −0.655458 + 0.245159i
\(537\) 0 0
\(538\) 19.8303 2.37716i 0.854943 0.102487i
\(539\) 4.77899i 0.205846i
\(540\) 0 0
\(541\) 14.8589i 0.638833i 0.947614 + 0.319416i \(0.103487\pi\)
−0.947614 + 0.319416i \(0.896513\pi\)
\(542\) 4.24577 + 35.4182i 0.182371 + 1.52134i
\(543\) 0 0
\(544\) 0.263158 + 0.387537i 0.0112828 + 0.0166155i
\(545\) 45.1104i 1.93232i
\(546\) 0 0
\(547\) −23.6294 −1.01032 −0.505160 0.863026i \(-0.668567\pi\)
−0.505160 + 0.863026i \(0.668567\pi\)
\(548\) 3.64908 + 15.0016i 0.155881 + 0.640837i
\(549\) 0 0
\(550\) 0.291779 + 2.43402i 0.0124415 + 0.103787i
\(551\) 1.68487 0.0717778
\(552\) 0 0
\(553\) −0.156115 −0.00663867
\(554\) −2.44341 20.3829i −0.103810 0.865987i
\(555\) 0 0
\(556\) −10.6433 + 2.58893i −0.451375 + 0.109795i
\(557\) −21.2040 −0.898440 −0.449220 0.893421i \(-0.648298\pi\)
−0.449220 + 0.893421i \(0.648298\pi\)
\(558\) 0 0
\(559\) 0.580391i 0.0245479i
\(560\) 0.448863 + 0.868061i 0.0189679 + 0.0366823i
\(561\) 0 0
\(562\) −1.66858 13.9193i −0.0703846 0.587149i
\(563\) 33.0810i 1.39420i −0.716974 0.697100i \(-0.754473\pi\)
0.716974 0.697100i \(-0.245527\pi\)
\(564\) 0 0
\(565\) 26.2778i 1.10551i
\(566\) 29.2666 3.50834i 1.23017 0.147466i
\(567\) 0 0
\(568\) −9.85312 + 3.68534i −0.413428 + 0.154633i
\(569\) 31.4417i 1.31810i −0.752098 0.659051i \(-0.770958\pi\)
0.752098 0.659051i \(-0.229042\pi\)
\(570\) 0 0
\(571\) 0.634572 0.0265560 0.0132780 0.999912i \(-0.495773\pi\)
0.0132780 + 0.999912i \(0.495773\pi\)
\(572\) 1.32824 0.323090i 0.0555366 0.0135091i
\(573\) 0 0
\(574\) 0.856800 0.102709i 0.0357621 0.00428700i
\(575\) −10.4876 −0.437362
\(576\) 0 0
\(577\) −7.64474 −0.318255 −0.159127 0.987258i \(-0.550868\pi\)
−0.159127 + 0.987258i \(0.550868\pi\)
\(578\) 23.8611 2.86036i 0.992491 0.118975i
\(579\) 0 0
\(580\) −5.60344 + 1.36301i −0.232670 + 0.0565961i
\(581\) −1.35366 −0.0561595
\(582\) 0 0
\(583\) 1.53502i 0.0635740i
\(584\) 18.3991 6.88176i 0.761359 0.284769i
\(585\) 0 0
\(586\) 4.47262 0.536157i 0.184762 0.0221484i
\(587\) 12.7111i 0.524645i 0.964980 + 0.262323i \(0.0844885\pi\)
−0.964980 + 0.262323i \(0.915512\pi\)
\(588\) 0 0
\(589\) 11.2108i 0.461932i
\(590\) −3.66532 30.5761i −0.150899 1.25880i
\(591\) 0 0
\(592\) 2.80472 + 5.42408i 0.115273 + 0.222928i
\(593\) 27.1007i 1.11289i 0.830884 + 0.556446i \(0.187835\pi\)
−0.830884 + 0.556446i \(0.812165\pi\)
\(594\) 0 0
\(595\) −0.0202313 −0.000829402
\(596\) −13.8317 + 3.36450i −0.566567 + 0.137815i
\(597\) 0 0
\(598\) 0.696056 + 5.80650i 0.0284639 + 0.237446i
\(599\) 41.6624 1.70228 0.851140 0.524939i \(-0.175912\pi\)
0.851140 + 0.524939i \(0.175912\pi\)
\(600\) 0 0
\(601\) 16.2944 0.664664 0.332332 0.943163i \(-0.392165\pi\)
0.332332 + 0.943163i \(0.392165\pi\)
\(602\) 0.00869432 + 0.0725280i 0.000354354 + 0.00295602i
\(603\) 0 0
\(604\) −8.16985 33.5868i −0.332426 1.36663i
\(605\) 28.9148 1.17556
\(606\) 0 0
\(607\) 22.1095i 0.897395i −0.893684 0.448698i \(-0.851888\pi\)
0.893684 0.448698i \(-0.148112\pi\)
\(608\) −7.50700 + 5.09767i −0.304449 + 0.206738i
\(609\) 0 0
\(610\) 2.61274 + 21.7955i 0.105787 + 0.882475i
\(611\) 7.69506i 0.311309i
\(612\) 0 0
\(613\) 46.3657i 1.87269i 0.351076 + 0.936347i \(0.385816\pi\)
−0.351076 + 0.936347i \(0.614184\pi\)
\(614\) 4.28477 0.513638i 0.172919 0.0207287i
\(615\) 0 0
\(616\) −0.161143 + 0.0602718i −0.00649262 + 0.00242842i
\(617\) 27.6077i 1.11145i 0.831368 + 0.555723i \(0.187558\pi\)
−0.831368 + 0.555723i \(0.812442\pi\)
\(618\) 0 0
\(619\) 40.2262 1.61683 0.808414 0.588615i \(-0.200327\pi\)
0.808414 + 0.588615i \(0.200327\pi\)
\(620\) 9.06923 + 37.2842i 0.364229 + 1.49737i
\(621\) 0 0
\(622\) 39.1710 4.69564i 1.57062 0.188278i
\(623\) 1.44573 0.0579218
\(624\) 0 0
\(625\) −31.2487 −1.24995
\(626\) 18.1664 2.17770i 0.726075 0.0870384i
\(627\) 0 0
\(628\) −0.101240 0.416205i −0.00403992 0.0166084i
\(629\) −0.126415 −0.00504050
\(630\) 0 0
\(631\) 4.60487i 0.183317i 0.995791 + 0.0916585i \(0.0292168\pi\)
−0.995791 + 0.0916585i \(0.970783\pi\)
\(632\) 1.73817 + 4.64716i 0.0691405 + 0.184854i
\(633\) 0 0
\(634\) 34.1424 4.09283i 1.35597 0.162547i
\(635\) 10.1664i 0.403441i
\(636\) 0 0
\(637\) 6.99208i 0.277036i
\(638\) −0.120839 1.00804i −0.00478408 0.0399088i
\(639\) 0 0
\(640\) 20.8425 23.0265i 0.823872 0.910202i
\(641\) 4.62353i 0.182618i −0.995823 0.0913091i \(-0.970895\pi\)
0.995823 0.0913091i \(-0.0291051\pi\)
\(642\) 0 0
\(643\) 40.8652 1.61157 0.805784 0.592210i \(-0.201744\pi\)
0.805784 + 0.592210i \(0.201744\pi\)
\(644\) −0.173964 0.715178i −0.00685515 0.0281819i
\(645\) 0 0
\(646\) −0.0223594 0.186522i −0.000879719 0.00733862i
\(647\) 43.8609 1.72435 0.862175 0.506610i \(-0.169102\pi\)
0.862175 + 0.506610i \(0.169102\pi\)
\(648\) 0 0
\(649\) 5.42151 0.212813
\(650\) −0.426897 3.56118i −0.0167443 0.139681i
\(651\) 0 0
\(652\) −35.6253 + 8.66572i −1.39520 + 0.339376i
\(653\) −38.5643 −1.50914 −0.754568 0.656221i \(-0.772154\pi\)
−0.754568 + 0.656221i \(0.772154\pi\)
\(654\) 0 0
\(655\) 18.8695i 0.737293i
\(656\) −12.5969 24.3613i −0.491828 0.951150i
\(657\) 0 0
\(658\) −0.115273 0.961607i −0.00449380 0.0374873i
\(659\) 13.6233i 0.530688i −0.964154 0.265344i \(-0.914515\pi\)
0.964154 0.265344i \(-0.0854855\pi\)
\(660\) 0 0
\(661\) 23.0462i 0.896394i −0.893935 0.448197i \(-0.852066\pi\)
0.893935 0.448197i \(-0.147934\pi\)
\(662\) 29.4007 3.52442i 1.14269 0.136980i
\(663\) 0 0
\(664\) 15.0716 + 40.2953i 0.584891 + 1.56376i
\(665\) 0.391902i 0.0151973i
\(666\) 0 0
\(667\) 4.34340 0.168177
\(668\) 21.4372 5.21452i 0.829431 0.201756i
\(669\) 0 0
\(670\) −22.0804 + 2.64689i −0.853040 + 0.102258i
\(671\) −3.86461 −0.149191
\(672\) 0 0
\(673\) −28.5978 −1.10236 −0.551182 0.834385i \(-0.685823\pi\)
−0.551182 + 0.834385i \(0.685823\pi\)
\(674\) 18.3089 2.19478i 0.705231 0.0845397i
\(675\) 0 0
\(676\) −1.94333 + 0.472708i −0.0747436 + 0.0181811i
\(677\) −21.4731 −0.825277 −0.412639 0.910895i \(-0.635393\pi\)
−0.412639 + 0.910895i \(0.635393\pi\)
\(678\) 0 0
\(679\) 0.431995i 0.0165785i
\(680\) 0.225253 + 0.602237i 0.00863807 + 0.0230947i
\(681\) 0 0
\(682\) −6.70732 + 0.804042i −0.256837 + 0.0307884i
\(683\) 14.4451i 0.552727i −0.961053 0.276363i \(-0.910871\pi\)
0.961053 0.276363i \(-0.0891293\pi\)
\(684\) 0 0
\(685\) 21.1917i 0.809693i
\(686\) 0.209603 + 1.74851i 0.00800267 + 0.0667583i
\(687\) 0 0
\(688\) 2.06218 1.06633i 0.0786200 0.0406534i
\(689\) 2.24587i 0.0855607i
\(690\) 0 0
\(691\) 0.206894 0.00787064 0.00393532 0.999992i \(-0.498747\pi\)
0.00393532 + 0.999992i \(0.498747\pi\)
\(692\) −24.4022 + 5.93574i −0.927633 + 0.225643i
\(693\) 0 0
\(694\) −1.64146 13.6931i −0.0623091 0.519783i
\(695\) −15.0350 −0.570309
\(696\) 0 0
\(697\) 0.567772 0.0215059
\(698\) −1.37860 11.5003i −0.0521807 0.435292i
\(699\) 0 0
\(700\) 0.106694 + 0.438625i 0.00403264 + 0.0165785i
\(701\) −24.9967 −0.944114 −0.472057 0.881568i \(-0.656488\pi\)
−0.472057 + 0.881568i \(0.656488\pi\)
\(702\) 0 0
\(703\) 2.44880i 0.0923582i
\(704\) 3.58829 + 4.12577i 0.135239 + 0.155496i
\(705\) 0 0
\(706\) −2.92118 24.3685i −0.109940 0.917121i
\(707\) 1.05581i 0.0397080i
\(708\) 0 0
\(709\) 26.5994i 0.998963i 0.866324 + 0.499482i \(0.166476\pi\)
−0.866324 + 0.499482i \(0.833524\pi\)
\(710\) −14.3368 + 1.71863i −0.538052 + 0.0644992i
\(711\) 0 0
\(712\) −16.0966 43.0358i −0.603245 1.61284i
\(713\) 28.9002i 1.08232i
\(714\) 0 0
\(715\) 1.87631 0.0701701
\(716\) 9.55459 + 39.2795i 0.357072 + 1.46794i
\(717\) 0 0
\(718\) 3.78779 0.454062i 0.141359 0.0169454i
\(719\) 7.23300 0.269745 0.134873 0.990863i \(-0.456937\pi\)
0.134873 + 0.990863i \(0.456937\pi\)
\(720\) 0 0
\(721\) −1.11383 −0.0414812
\(722\) −23.0659 + 2.76503i −0.858424 + 0.102904i
\(723\) 0 0
\(724\) 10.7728 + 44.2877i 0.400368 + 1.64594i
\(725\) −2.66385 −0.0989328
\(726\) 0 0
\(727\) 21.0337i 0.780098i 0.920794 + 0.390049i \(0.127542\pi\)
−0.920794 + 0.390049i \(0.872458\pi\)
\(728\) 0.235766 0.0881829i 0.00873806 0.00326828i
\(729\) 0 0
\(730\) 26.7717 3.20926i 0.990864 0.118780i
\(731\) 0.0480619i 0.00177763i
\(732\) 0 0
\(733\) 22.9654i 0.848245i 0.905605 + 0.424122i \(0.139417\pi\)
−0.905605 + 0.424122i \(0.860583\pi\)
\(734\) −1.31927 11.0053i −0.0486950 0.406214i
\(735\) 0 0
\(736\) −19.3522 + 13.1412i −0.713332 + 0.484392i
\(737\) 3.91512i 0.144215i
\(738\) 0 0
\(739\) 2.84081 0.104501 0.0522505 0.998634i \(-0.483361\pi\)
0.0522505 + 0.998634i \(0.483361\pi\)
\(740\) 1.98101 + 8.14408i 0.0728235 + 0.299382i
\(741\) 0 0
\(742\) −0.0336433 0.280653i −0.00123508 0.0103031i
\(743\) 11.2838 0.413964 0.206982 0.978345i \(-0.433636\pi\)
0.206982 + 0.978345i \(0.433636\pi\)
\(744\) 0 0
\(745\) −19.5390 −0.715853
\(746\) 0.397048 + 3.31218i 0.0145370 + 0.121267i
\(747\) 0 0
\(748\) −0.109991 + 0.0267549i −0.00402167 + 0.000978255i
\(749\) 0.542911 0.0198375
\(750\) 0 0
\(751\) 24.0944i 0.879216i 0.898190 + 0.439608i \(0.144883\pi\)
−0.898190 + 0.439608i \(0.855117\pi\)
\(752\) −27.3413 + 14.1378i −0.997034 + 0.515554i
\(753\) 0 0
\(754\) 0.176798 + 1.47485i 0.00643862 + 0.0537110i
\(755\) 47.4456i 1.72672i
\(756\) 0 0
\(757\) 23.7535i 0.863337i −0.902032 0.431668i \(-0.857925\pi\)
0.902032 0.431668i \(-0.142075\pi\)
\(758\) 26.4688 3.17295i 0.961390 0.115247i
\(759\) 0 0
\(760\) −11.6660 + 4.36340i −0.423170 + 0.158277i
\(761\) 28.9002i 1.04763i 0.851832 + 0.523816i \(0.175492\pi\)
−0.851832 + 0.523816i \(0.824508\pi\)
\(762\) 0 0
\(763\) −1.46241 −0.0529429
\(764\) −18.0653 + 4.39430i −0.653578 + 0.158980i
\(765\) 0 0
\(766\) −26.6047 + 3.18925i −0.961269 + 0.115232i
\(767\) −7.93214 −0.286413
\(768\) 0 0
\(769\) −16.4576 −0.593476 −0.296738 0.954959i \(-0.595899\pi\)
−0.296738 + 0.954959i \(0.595899\pi\)
\(770\) −0.234472 + 0.0281074i −0.00844977 + 0.00101292i
\(771\) 0 0
\(772\) −38.0203 + 9.24829i −1.36838 + 0.332853i
\(773\) −1.00884 −0.0362855 −0.0181428 0.999835i \(-0.505775\pi\)
−0.0181428 + 0.999835i \(0.505775\pi\)
\(774\) 0 0
\(775\) 17.7247i 0.636691i
\(776\) 12.8595 4.80980i 0.461628 0.172662i
\(777\) 0 0
\(778\) 20.7441 2.48670i 0.743711 0.0891525i
\(779\) 10.9984i 0.394057i
\(780\) 0 0
\(781\) 2.54209i 0.0909633i
\(782\) −0.0576401 0.480833i −0.00206120 0.0171946i
\(783\) 0 0
\(784\) 24.8435 12.8463i 0.887268 0.458795i
\(785\) 0.587943i 0.0209846i
\(786\) 0 0
\(787\) 4.83938 0.172505 0.0862526 0.996273i \(-0.472511\pi\)
0.0862526 + 0.996273i \(0.472511\pi\)
\(788\) 2.61961 0.637211i 0.0933199 0.0226997i
\(789\) 0 0
\(790\) 0.810582 + 6.76187i 0.0288392 + 0.240577i
\(791\) 0.851887 0.0302896
\(792\) 0 0
\(793\) 5.65426 0.200789
\(794\) 4.07694 + 34.0099i 0.144685 + 1.20697i
\(795\) 0 0
\(796\) −6.07074 24.9572i −0.215172 0.884584i
\(797\) −33.8113 −1.19766 −0.598829 0.800877i \(-0.704367\pi\)
−0.598829 + 0.800877i \(0.704367\pi\)
\(798\) 0 0
\(799\) 0.637224i 0.0225434i
\(800\) 11.8689 8.05962i 0.419628 0.284951i
\(801\) 0 0
\(802\) −5.38635 44.9329i −0.190199 1.58664i
\(803\) 4.74694i 0.167516i
\(804\) 0 0
\(805\) 1.01028i 0.0356077i
\(806\) 9.81339 1.17638i 0.345662 0.0414363i
\(807\) 0 0
\(808\) −31.4291 + 11.7553i −1.10567 + 0.413551i
\(809\) 31.6096i 1.11133i 0.831405 + 0.555666i \(0.187537\pi\)
−0.831405 + 0.555666i \(0.812463\pi\)
\(810\) 0 0
\(811\) 8.46809 0.297355 0.148677 0.988886i \(-0.452498\pi\)
0.148677 + 0.988886i \(0.452498\pi\)
\(812\) −0.0441869 0.181655i −0.00155066 0.00637485i
\(813\) 0 0
\(814\) −1.46510 + 0.175629i −0.0513516 + 0.00615578i
\(815\) −50.3253 −1.76282
\(816\) 0 0
\(817\) −0.931010 −0.0325719
\(818\) 51.3810 6.15931i 1.79649 0.215355i
\(819\) 0 0
\(820\) −8.89739 36.5777i −0.310710 1.27735i
\(821\) 9.61153 0.335445 0.167722 0.985834i \(-0.446359\pi\)
0.167722 + 0.985834i \(0.446359\pi\)
\(822\) 0 0
\(823\) 43.3444i 1.51089i −0.655212 0.755445i \(-0.727421\pi\)
0.655212 0.755445i \(-0.272579\pi\)
\(824\) 12.4013 + 33.1561i 0.432019 + 1.15505i
\(825\) 0 0
\(826\) 0.991232 0.118824i 0.0344894 0.00413442i
\(827\) 17.6404i 0.613416i 0.951804 + 0.306708i \(0.0992276\pi\)
−0.951804 + 0.306708i \(0.900772\pi\)
\(828\) 0 0
\(829\) 10.3644i 0.359972i −0.983669 0.179986i \(-0.942395\pi\)
0.983669 0.179986i \(-0.0576052\pi\)
\(830\) 7.02853 + 58.6320i 0.243964 + 2.03515i
\(831\) 0 0
\(832\) −5.24999 6.03636i −0.182011 0.209273i
\(833\) 0.579010i 0.0200615i
\(834\) 0 0
\(835\) 30.2828 1.04798
\(836\) −0.518271 2.13065i −0.0179248 0.0736899i
\(837\) 0 0
\(838\) −5.86845 48.9546i −0.202722 1.69111i
\(839\) 35.7509 1.23426 0.617129 0.786862i \(-0.288296\pi\)
0.617129 + 0.786862i \(0.288296\pi\)
\(840\) 0 0
\(841\) −27.8968 −0.961958
\(842\) 0.941740 + 7.85600i 0.0324545 + 0.270736i
\(843\) 0 0
\(844\) −51.5139 + 12.5306i −1.77318 + 0.431320i
\(845\) −2.74521 −0.0944380
\(846\) 0 0
\(847\) 0.937377i 0.0322086i
\(848\) −7.97977 + 4.12624i −0.274026 + 0.141696i
\(849\) 0 0
\(850\) 0.0353511 + 0.294899i 0.00121253 + 0.0101150i
\(851\) 6.31273i 0.216398i
\(852\) 0 0
\(853\) 27.7299i 0.949455i 0.880133 + 0.474728i \(0.157453\pi\)
−0.880133 + 0.474728i \(0.842547\pi\)
\(854\) −0.706579 + 0.0847013i −0.0241786 + 0.00289842i
\(855\) 0 0
\(856\) −6.04471 16.1611i −0.206604 0.552376i
\(857\) 1.88241i 0.0643020i −0.999483 0.0321510i \(-0.989764\pi\)
0.999483 0.0321510i \(-0.0102357\pi\)
\(858\) 0 0
\(859\) 6.50488 0.221944 0.110972 0.993824i \(-0.464604\pi\)
0.110972 + 0.993824i \(0.464604\pi\)
\(860\) 3.09630 0.753163i 0.105583 0.0256826i
\(861\) 0 0
\(862\) −24.1072 + 2.88986i −0.821095 + 0.0984290i
\(863\) −56.4785 −1.92255 −0.961274 0.275593i \(-0.911126\pi\)
−0.961274 + 0.275593i \(0.911126\pi\)
\(864\) 0 0
\(865\) −34.4712 −1.17206
\(866\) 3.84541 0.460969i 0.130672 0.0156644i
\(867\) 0 0
\(868\) −1.20870 + 0.294011i −0.0410259 + 0.00997939i
\(869\) −1.19896 −0.0406720
\(870\) 0 0
\(871\) 5.72816i 0.194091i
\(872\) 16.2824 + 43.5326i 0.551391 + 1.47420i
\(873\) 0 0
\(874\) 9.31427 1.11655i 0.315060 0.0377679i
\(875\) 0.601943i 0.0203494i
\(876\) 0 0
\(877\) 2.26903i 0.0766195i −0.999266 0.0383098i \(-0.987803\pi\)
0.999266 0.0383098i \(-0.0121974\pi\)
\(878\) −0.360765 3.00951i −0.0121752 0.101566i
\(879\) 0 0
\(880\) 3.44727 + 6.66671i 0.116208 + 0.224735i
\(881\) 10.4951i 0.353588i −0.984248 0.176794i \(-0.943427\pi\)
0.984248 0.176794i \(-0.0565727\pi\)
\(882\) 0 0
\(883\) 28.9867 0.975482 0.487741 0.872989i \(-0.337821\pi\)
0.487741 + 0.872989i \(0.337821\pi\)
\(884\) 0.160926 0.0391447i 0.00541254 0.00131658i
\(885\) 0 0
\(886\) −5.87630 49.0201i −0.197418 1.64686i
\(887\) 12.2815 0.412372 0.206186 0.978513i \(-0.433895\pi\)
0.206186 + 0.978513i \(0.433895\pi\)
\(888\) 0 0
\(889\) 0.329580 0.0110538
\(890\) −7.50653 62.6195i −0.251620 2.09901i
\(891\) 0 0
\(892\) −7.92685 32.5878i −0.265411 1.09112i
\(893\) 12.3437 0.413067
\(894\) 0 0
\(895\) 55.4873i 1.85474i
\(896\) 0.746485 + 0.675683i 0.0249383 + 0.0225730i
\(897\) 0 0
\(898\) 5.64341 + 47.0773i 0.188323 + 1.57099i
\(899\) 7.34065i 0.244824i
\(900\) 0 0
\(901\) 0.185979i 0.00619585i
\(902\) 6.58023 0.788807i 0.219098 0.0262644i
\(903\) 0 0
\(904\) −9.48483 25.3586i −0.315461 0.843415i
\(905\) 62.5620i 2.07963i
\(906\) 0 0
\(907\) −35.7757 −1.18791 −0.593956 0.804497i \(-0.702435\pi\)
−0.593956 + 0.804497i \(0.702435\pi\)
\(908\) 10.8117 + 44.4476i 0.358799 + 1.47505i
\(909\) 0 0
\(910\) 0.343052 0.0411235i 0.0113721 0.00136323i
\(911\) −37.6040 −1.24588 −0.622938 0.782271i \(-0.714061\pi\)
−0.622938 + 0.782271i \(0.714061\pi\)
\(912\) 0 0
\(913\) −10.3962 −0.344062
\(914\) −26.0094 + 3.11789i −0.860315 + 0.103131i
\(915\) 0 0
\(916\) −8.58966 35.3127i −0.283811 1.16676i
\(917\) 0.611722 0.0202008
\(918\) 0 0
\(919\) 51.1984i 1.68888i −0.535650 0.844440i \(-0.679933\pi\)
0.535650 0.844440i \(-0.320067\pi\)
\(920\) −30.0736 + 11.2484i −0.991497 + 0.370847i
\(921\) 0 0
\(922\) −35.3197 + 4.23396i −1.16319 + 0.139438i
\(923\) 3.71930i 0.122422i
\(924\) 0 0
\(925\) 3.87165i 0.127299i
\(926\) 2.17990 + 18.1847i 0.0716358 + 0.597586i
\(927\) 0 0
\(928\) −4.91547 + 3.33787i −0.161358 + 0.109571i
\(929\) 30.8763i 1.01302i −0.862235 0.506509i \(-0.830936\pi\)
0.862235 0.506509i \(-0.169064\pi\)
\(930\) 0 0
\(931\) −11.2161 −0.367591
\(932\) 7.84057 + 32.2331i 0.256826 + 1.05583i
\(933\) 0 0
\(934\) 2.48624 + 20.7403i 0.0813524 + 0.678642i
\(935\) −0.155376 −0.00508135
\(936\) 0 0
\(937\) −46.2602 −1.51125 −0.755627 0.655002i \(-0.772668\pi\)
−0.755627 + 0.655002i \(0.772668\pi\)
\(938\) −0.0858084 0.715814i −0.00280174 0.0233722i
\(939\) 0 0
\(940\) −41.0520 + 9.98575i −1.33897 + 0.325699i
\(941\) −16.2868 −0.530936 −0.265468 0.964120i \(-0.585526\pi\)
−0.265468 + 0.964120i \(0.585526\pi\)
\(942\) 0 0
\(943\) 28.3526i 0.923286i
\(944\) −14.5734 28.1836i −0.474324 0.917299i
\(945\) 0 0
\(946\) 0.0667724 + 0.557016i 0.00217096 + 0.0181101i
\(947\) 16.6676i 0.541626i −0.962632 0.270813i \(-0.912708\pi\)
0.962632 0.270813i \(-0.0872925\pi\)
\(948\) 0 0
\(949\) 6.94518i 0.225450i
\(950\) −5.71252 + 0.684790i −0.185339 + 0.0222175i
\(951\) 0 0
\(952\) −0.0195236 + 0.00730238i −0.000632764 + 0.000236671i
\(953\) 19.2692i 0.624192i 0.950051 + 0.312096i \(0.101031\pi\)
−0.950051 + 0.312096i \(0.898969\pi\)
\(954\) 0 0
\(955\) −25.5195 −0.825791
\(956\) 4.30744 1.04777i 0.139313 0.0338872i
\(957\) 0 0
\(958\) 46.6991 5.59807i 1.50878 0.180865i
\(959\) −0.687004 −0.0221845
\(960\) 0 0
\(961\) −17.8433 −0.575589
\(962\) 2.14356 0.256960i 0.0691112 0.00828473i
\(963\) 0 0
\(964\) 41.0008 9.97328i 1.32055 0.321218i
\(965\) −53.7085 −1.72894
\(966\) 0 0
\(967\) 53.1884i 1.71042i −0.518279 0.855211i \(-0.673427\pi\)
0.518279 0.855211i \(-0.326573\pi\)
\(968\) 27.9035 10.4367i 0.896851 0.335447i
\(969\) 0 0
\(970\) 18.7112 2.24302i 0.600782 0.0720189i
\(971\) 32.1913i 1.03307i −0.856266 0.516534i \(-0.827222\pi\)
0.856266 0.516534i \(-0.172778\pi\)
\(972\) 0 0
\(973\) 0.487411i 0.0156257i
\(974\) −3.28993 27.4446i −0.105416 0.879382i
\(975\) 0 0
\(976\) 10.3883 + 20.0901i 0.332523 + 0.643068i
\(977\) 42.1645i 1.34896i 0.738292 + 0.674481i \(0.235633\pi\)
−0.738292 + 0.674481i \(0.764367\pi\)
\(978\) 0 0
\(979\) 11.1032 0.354859
\(980\) 37.3017 9.07350i 1.19156 0.289842i
\(981\) 0 0
\(982\) −0.916852 7.64838i −0.0292579 0.244070i
\(983\) 0.948296 0.0302459 0.0151230 0.999886i \(-0.495186\pi\)
0.0151230 + 0.999886i \(0.495186\pi\)
\(984\) 0 0
\(985\) 3.70054 0.117909
\(986\) −0.0146406 0.122132i −0.000466251 0.00388947i
\(987\) 0 0
\(988\) 0.758276 + 3.11732i 0.0241240 + 0.0991751i
\(989\) −2.40004 −0.0763169
\(990\) 0 0
\(991\) 45.9321i 1.45908i 0.683937 + 0.729541i \(0.260266\pi\)
−0.683937 + 0.729541i \(0.739734\pi\)
\(992\) 22.2095 + 32.7066i 0.705154 + 1.03843i
\(993\) 0 0
\(994\) −0.0557156 0.464779i −0.00176719 0.0147419i
\(995\) 35.2552i 1.11767i
\(996\) 0 0
\(997\) 12.4285i 0.393616i 0.980442 + 0.196808i \(0.0630576\pi\)
−0.980442 + 0.196808i \(0.936942\pi\)
\(998\) 28.5148 3.41822i 0.902620 0.108202i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 936.2.j.a.755.45 yes 48
3.2 odd 2 inner 936.2.j.a.755.4 yes 48
4.3 odd 2 3744.2.j.a.2159.40 48
8.3 odd 2 inner 936.2.j.a.755.3 48
8.5 even 2 3744.2.j.a.2159.9 48
12.11 even 2 3744.2.j.a.2159.10 48
24.5 odd 2 3744.2.j.a.2159.39 48
24.11 even 2 inner 936.2.j.a.755.46 yes 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
936.2.j.a.755.3 48 8.3 odd 2 inner
936.2.j.a.755.4 yes 48 3.2 odd 2 inner
936.2.j.a.755.45 yes 48 1.1 even 1 trivial
936.2.j.a.755.46 yes 48 24.11 even 2 inner
3744.2.j.a.2159.9 48 8.5 even 2
3744.2.j.a.2159.10 48 12.11 even 2
3744.2.j.a.2159.39 48 24.5 odd 2
3744.2.j.a.2159.40 48 4.3 odd 2