Properties

Label 936.2.ed.e.739.3
Level $936$
Weight $2$
Character 936.739
Analytic conductor $7.474$
Analytic rank $0$
Dimension $56$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [936,2,Mod(19,936)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("936.19"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(936, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([6, 6, 0, 5])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 936 = 2^{3} \cdot 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 936.ed (of order \(12\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [56,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.47399762919\)
Analytic rank: \(0\)
Dimension: \(56\)
Relative dimension: \(14\) over \(\Q(\zeta_{12})\)
Twist minimal: no (minimal twist has level 312)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 739.3
Character \(\chi\) \(=\) 936.739
Dual form 936.2.ed.e.19.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.21599 - 0.722056i) q^{2} +(0.957270 + 1.75603i) q^{4} +(0.403590 - 0.403590i) q^{5} +(4.65174 - 1.24643i) q^{7} +(0.103920 - 2.82652i) q^{8} +(-0.782176 + 0.199347i) q^{10} +(5.72510 + 1.53404i) q^{11} +(-0.849788 - 3.50398i) q^{13} +(-6.55647 - 1.84317i) q^{14} +(-2.16727 + 3.36198i) q^{16} +(0.917794 + 0.529889i) q^{17} +(0.617530 - 0.165467i) q^{19} +(1.09506 + 0.322371i) q^{20} +(-5.85401 - 5.99922i) q^{22} +(-1.02761 - 1.77988i) q^{23} +4.67423i q^{25} +(-1.49673 + 4.87440i) q^{26} +(6.64174 + 6.97542i) q^{28} +(-4.86733 + 2.81016i) q^{29} +(-2.54931 + 2.54931i) q^{31} +(5.06292 - 2.52325i) q^{32} +(-0.733420 - 1.30704i) q^{34} +(1.37435 - 2.38044i) q^{35} +(1.83349 - 6.84268i) q^{37} +(-0.870387 - 0.244685i) q^{38} +(-1.09881 - 1.18269i) q^{40} +(-1.37457 + 5.12996i) q^{41} +(-8.58213 - 4.95490i) q^{43} +(2.78665 + 11.5219i) q^{44} +(-0.0356035 + 2.90631i) q^{46} +(5.92269 + 5.92269i) q^{47} +(14.0230 - 8.09616i) q^{49} +(3.37506 - 5.68382i) q^{50} +(5.33961 - 4.84650i) q^{52} +1.19577i q^{53} +(2.92971 - 1.69147i) q^{55} +(-3.03965 - 13.2778i) q^{56} +(7.94772 + 0.0973630i) q^{58} +(-2.11560 - 7.89551i) q^{59} +(5.30143 + 3.06078i) q^{61} +(4.94068 - 1.25919i) q^{62} +(-7.97840 - 0.587462i) q^{64} +(-1.75714 - 1.07120i) q^{65} +(-2.06834 + 7.71916i) q^{67} +(-0.0519231 + 2.11892i) q^{68} +(-3.39001 + 1.90224i) q^{70} +(-0.113135 - 0.422224i) q^{71} +(7.34514 - 7.34514i) q^{73} +(-7.17031 + 6.99675i) q^{74} +(0.881707 + 0.926004i) q^{76} +28.5438 q^{77} +7.20853i q^{79} +(0.482175 + 2.23155i) q^{80} +(5.37559 - 5.24547i) q^{82} +(-7.79731 - 7.79731i) q^{83} +(0.584270 - 0.156555i) q^{85} +(6.85808 + 12.2219i) q^{86} +(4.93093 - 16.0227i) q^{88} +(0.708365 + 0.189806i) q^{89} +(-8.32047 - 15.2404i) q^{91} +(2.14181 - 3.50834i) q^{92} +(-2.92542 - 11.4784i) q^{94} +(0.182448 - 0.316009i) q^{95} +(-4.48735 + 1.20238i) q^{97} +(-22.8977 - 0.280506i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 56 q + 12 q^{8} + 28 q^{14} + 12 q^{16} - 8 q^{19} + 4 q^{20} + 10 q^{22} - 34 q^{26} - 14 q^{28} + 30 q^{32} + 56 q^{34} - 28 q^{40} - 40 q^{41} + 44 q^{44} - 18 q^{46} + 24 q^{49} + 72 q^{50} + 32 q^{52}+ \cdots - 4 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/936\mathbb{Z}\right)^\times\).

\(n\) \(145\) \(209\) \(469\) \(703\)
\(\chi(n)\) \(e\left(\frac{7}{12}\right)\) \(1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.21599 0.722056i −0.859836 0.510571i
\(3\) 0 0
\(4\) 0.957270 + 1.75603i 0.478635 + 0.878014i
\(5\) 0.403590 0.403590i 0.180491 0.180491i −0.611079 0.791570i \(-0.709264\pi\)
0.791570 + 0.611079i \(0.209264\pi\)
\(6\) 0 0
\(7\) 4.65174 1.24643i 1.75819 0.471107i 0.771850 0.635805i \(-0.219332\pi\)
0.986344 + 0.164698i \(0.0526649\pi\)
\(8\) 0.103920 2.82652i 0.0367412 0.999325i
\(9\) 0 0
\(10\) −0.782176 + 0.199347i −0.247346 + 0.0630391i
\(11\) 5.72510 + 1.53404i 1.72618 + 0.462529i 0.979298 0.202424i \(-0.0648819\pi\)
0.746885 + 0.664953i \(0.231549\pi\)
\(12\) 0 0
\(13\) −0.849788 3.50398i −0.235689 0.971829i
\(14\) −6.55647 1.84317i −1.75229 0.492608i
\(15\) 0 0
\(16\) −2.16727 + 3.36198i −0.541818 + 0.840496i
\(17\) 0.917794 + 0.529889i 0.222598 + 0.128517i 0.607153 0.794585i \(-0.292312\pi\)
−0.384555 + 0.923102i \(0.625645\pi\)
\(18\) 0 0
\(19\) 0.617530 0.165467i 0.141671 0.0379606i −0.187287 0.982305i \(-0.559969\pi\)
0.328958 + 0.944345i \(0.393303\pi\)
\(20\) 1.09506 + 0.322371i 0.244863 + 0.0720843i
\(21\) 0 0
\(22\) −5.85401 5.99922i −1.24808 1.27904i
\(23\) −1.02761 1.77988i −0.214272 0.371130i 0.738775 0.673952i \(-0.235405\pi\)
−0.953047 + 0.302822i \(0.902071\pi\)
\(24\) 0 0
\(25\) 4.67423i 0.934846i
\(26\) −1.49673 + 4.87440i −0.293534 + 0.955949i
\(27\) 0 0
\(28\) 6.64174 + 6.97542i 1.25517 + 1.31823i
\(29\) −4.86733 + 2.81016i −0.903841 + 0.521833i −0.878444 0.477845i \(-0.841418\pi\)
−0.0253965 + 0.999677i \(0.508085\pi\)
\(30\) 0 0
\(31\) −2.54931 + 2.54931i −0.457869 + 0.457869i −0.897956 0.440086i \(-0.854948\pi\)
0.440086 + 0.897956i \(0.354948\pi\)
\(32\) 5.06292 2.52325i 0.895007 0.446052i
\(33\) 0 0
\(34\) −0.733420 1.30704i −0.125781 0.224155i
\(35\) 1.37435 2.38044i 0.232308 0.402368i
\(36\) 0 0
\(37\) 1.83349 6.84268i 0.301424 1.12493i −0.634556 0.772877i \(-0.718817\pi\)
0.935980 0.352053i \(-0.114516\pi\)
\(38\) −0.870387 0.244685i −0.141195 0.0396932i
\(39\) 0 0
\(40\) −1.09881 1.18269i −0.173738 0.187000i
\(41\) −1.37457 + 5.12996i −0.214672 + 0.801166i 0.771610 + 0.636096i \(0.219452\pi\)
−0.986282 + 0.165070i \(0.947215\pi\)
\(42\) 0 0
\(43\) −8.58213 4.95490i −1.30876 0.755615i −0.326873 0.945068i \(-0.605995\pi\)
−0.981890 + 0.189454i \(0.939328\pi\)
\(44\) 2.78665 + 11.5219i 0.420104 + 1.73700i
\(45\) 0 0
\(46\) −0.0356035 + 2.90631i −0.00524945 + 0.428512i
\(47\) 5.92269 + 5.92269i 0.863912 + 0.863912i 0.991790 0.127878i \(-0.0408164\pi\)
−0.127878 + 0.991790i \(0.540816\pi\)
\(48\) 0 0
\(49\) 14.0230 8.09616i 2.00328 1.15659i
\(50\) 3.37506 5.68382i 0.477305 0.803814i
\(51\) 0 0
\(52\) 5.33961 4.84650i 0.740470 0.672089i
\(53\) 1.19577i 0.164251i 0.996622 + 0.0821255i \(0.0261708\pi\)
−0.996622 + 0.0821255i \(0.973829\pi\)
\(54\) 0 0
\(55\) 2.92971 1.69147i 0.395043 0.228078i
\(56\) −3.03965 13.2778i −0.406191 1.77432i
\(57\) 0 0
\(58\) 7.94772 + 0.0973630i 1.04359 + 0.0127844i
\(59\) −2.11560 7.89551i −0.275427 1.02791i −0.955555 0.294814i \(-0.904742\pi\)
0.680127 0.733094i \(-0.261924\pi\)
\(60\) 0 0
\(61\) 5.30143 + 3.06078i 0.678778 + 0.391893i 0.799395 0.600806i \(-0.205154\pi\)
−0.120616 + 0.992699i \(0.538487\pi\)
\(62\) 4.94068 1.25919i 0.627467 0.159918i
\(63\) 0 0
\(64\) −7.97840 0.587462i −0.997300 0.0734327i
\(65\) −1.75714 1.07120i −0.217946 0.132866i
\(66\) 0 0
\(67\) −2.06834 + 7.71916i −0.252688 + 0.943045i 0.716674 + 0.697409i \(0.245664\pi\)
−0.969362 + 0.245637i \(0.921003\pi\)
\(68\) −0.0519231 + 2.11892i −0.00629660 + 0.256957i
\(69\) 0 0
\(70\) −3.39001 + 1.90224i −0.405184 + 0.227361i
\(71\) −0.113135 0.422224i −0.0134266 0.0501087i 0.958888 0.283786i \(-0.0915906\pi\)
−0.972314 + 0.233678i \(0.924924\pi\)
\(72\) 0 0
\(73\) 7.34514 7.34514i 0.859684 0.859684i −0.131617 0.991301i \(-0.542017\pi\)
0.991301 + 0.131617i \(0.0420169\pi\)
\(74\) −7.17031 + 6.99675i −0.833531 + 0.813356i
\(75\) 0 0
\(76\) 0.881707 + 0.926004i 0.101139 + 0.106220i
\(77\) 28.5438 3.25287
\(78\) 0 0
\(79\) 7.20853i 0.811023i 0.914090 + 0.405511i \(0.132907\pi\)
−0.914090 + 0.405511i \(0.867093\pi\)
\(80\) 0.482175 + 2.23155i 0.0539088 + 0.249495i
\(81\) 0 0
\(82\) 5.37559 5.24547i 0.593634 0.579266i
\(83\) −7.79731 7.79731i −0.855866 0.855866i 0.134982 0.990848i \(-0.456902\pi\)
−0.990848 + 0.134982i \(0.956902\pi\)
\(84\) 0 0
\(85\) 0.584270 0.156555i 0.0633730 0.0169807i
\(86\) 6.85808 + 12.2219i 0.739526 + 1.31792i
\(87\) 0 0
\(88\) 4.93093 16.0227i 0.525639 1.70802i
\(89\) 0.708365 + 0.189806i 0.0750865 + 0.0201194i 0.296167 0.955136i \(-0.404292\pi\)
−0.221080 + 0.975256i \(0.570958\pi\)
\(90\) 0 0
\(91\) −8.32047 15.2404i −0.872222 1.59763i
\(92\) 2.14181 3.50834i 0.223299 0.365770i
\(93\) 0 0
\(94\) −2.92542 11.4784i −0.301734 1.18391i
\(95\) 0.182448 0.316009i 0.0187188 0.0324219i
\(96\) 0 0
\(97\) −4.48735 + 1.20238i −0.455621 + 0.122083i −0.479329 0.877636i \(-0.659120\pi\)
0.0237071 + 0.999719i \(0.492453\pi\)
\(98\) −22.8977 0.280506i −2.31301 0.0283354i
\(99\) 0 0
\(100\) −8.20808 + 4.47450i −0.820808 + 0.447450i
\(101\) −2.03641 3.52717i −0.202631 0.350966i 0.746745 0.665111i \(-0.231616\pi\)
−0.949375 + 0.314144i \(0.898282\pi\)
\(102\) 0 0
\(103\) −0.447521 −0.0440955 −0.0220478 0.999757i \(-0.507019\pi\)
−0.0220478 + 0.999757i \(0.507019\pi\)
\(104\) −9.99236 + 2.03781i −0.979832 + 0.199824i
\(105\) 0 0
\(106\) 0.863410 1.45404i 0.0838618 0.141229i
\(107\) −3.67665 6.36815i −0.355436 0.615632i 0.631757 0.775167i \(-0.282334\pi\)
−0.987192 + 0.159534i \(0.949001\pi\)
\(108\) 0 0
\(109\) −1.83648 + 1.83648i −0.175903 + 0.175903i −0.789567 0.613664i \(-0.789695\pi\)
0.613664 + 0.789567i \(0.289695\pi\)
\(110\) −4.78384 0.0586041i −0.456122 0.00558768i
\(111\) 0 0
\(112\) −5.89110 + 18.3404i −0.556657 + 1.73301i
\(113\) 9.71582 16.8283i 0.913987 1.58307i 0.105609 0.994408i \(-0.466321\pi\)
0.808378 0.588664i \(-0.200346\pi\)
\(114\) 0 0
\(115\) −1.13307 0.303606i −0.105660 0.0283114i
\(116\) −9.59406 5.85710i −0.890786 0.543818i
\(117\) 0 0
\(118\) −3.12846 + 11.1285i −0.287998 + 1.02446i
\(119\) 4.92981 + 1.32094i 0.451915 + 0.121090i
\(120\) 0 0
\(121\) 20.8972 + 12.0650i 1.89975 + 1.09682i
\(122\) −4.23644 7.54981i −0.383549 0.683528i
\(123\) 0 0
\(124\) −6.91703 2.03628i −0.621168 0.182864i
\(125\) 3.90442 + 3.90442i 0.349222 + 0.349222i
\(126\) 0 0
\(127\) −6.86367 11.8882i −0.609053 1.05491i −0.991397 0.130890i \(-0.958217\pi\)
0.382344 0.924020i \(-0.375117\pi\)
\(128\) 9.27749 + 6.47520i 0.820022 + 0.572332i
\(129\) 0 0
\(130\) 1.36319 + 2.57133i 0.119560 + 0.225520i
\(131\) 5.90363 0.515802 0.257901 0.966171i \(-0.416969\pi\)
0.257901 + 0.966171i \(0.416969\pi\)
\(132\) 0 0
\(133\) 2.66635 1.53942i 0.231202 0.133484i
\(134\) 8.08875 7.89297i 0.698762 0.681849i
\(135\) 0 0
\(136\) 1.59312 2.53909i 0.136609 0.217726i
\(137\) 4.50130 + 16.7991i 0.384572 + 1.43524i 0.838840 + 0.544378i \(0.183234\pi\)
−0.454268 + 0.890865i \(0.650099\pi\)
\(138\) 0 0
\(139\) −7.04702 + 12.2058i −0.597721 + 1.03528i 0.395436 + 0.918494i \(0.370594\pi\)
−0.993157 + 0.116789i \(0.962740\pi\)
\(140\) 5.49575 + 0.134671i 0.464476 + 0.0113818i
\(141\) 0 0
\(142\) −0.167299 + 0.595110i −0.0140394 + 0.0499405i
\(143\) 0.510104 21.3642i 0.0426570 1.78657i
\(144\) 0 0
\(145\) −0.830256 + 3.09856i −0.0689490 + 0.257321i
\(146\) −14.2352 + 3.62802i −1.17812 + 0.300257i
\(147\) 0 0
\(148\) 13.7711 3.33063i 1.13198 0.273776i
\(149\) −2.88789 10.7777i −0.236585 0.882947i −0.977428 0.211269i \(-0.932240\pi\)
0.740843 0.671678i \(-0.234426\pi\)
\(150\) 0 0
\(151\) −8.18475 8.18475i −0.666066 0.666066i 0.290737 0.956803i \(-0.406099\pi\)
−0.956803 + 0.290737i \(0.906099\pi\)
\(152\) −0.403521 1.76265i −0.0327299 0.142970i
\(153\) 0 0
\(154\) −34.7090 20.6102i −2.79693 1.66082i
\(155\) 2.05775i 0.165283i
\(156\) 0 0
\(157\) 19.5674i 1.56165i 0.624750 + 0.780825i \(0.285201\pi\)
−0.624750 + 0.780825i \(0.714799\pi\)
\(158\) 5.20496 8.76551i 0.414085 0.697346i
\(159\) 0 0
\(160\) 1.02499 3.06170i 0.0810322 0.242049i
\(161\) −6.99869 6.99869i −0.551574 0.551574i
\(162\) 0 0
\(163\) −1.63834 6.11436i −0.128325 0.478914i 0.871612 0.490197i \(-0.163075\pi\)
−0.999936 + 0.0112829i \(0.996408\pi\)
\(164\) −10.3242 + 2.49697i −0.806184 + 0.194981i
\(165\) 0 0
\(166\) 3.85136 + 15.1116i 0.298924 + 1.17288i
\(167\) −1.29517 + 4.83364i −0.100223 + 0.374039i −0.997760 0.0669022i \(-0.978688\pi\)
0.897536 + 0.440941i \(0.145355\pi\)
\(168\) 0 0
\(169\) −11.5557 + 5.95528i −0.888901 + 0.458098i
\(170\) −0.823509 0.231507i −0.0631602 0.0177558i
\(171\) 0 0
\(172\) 0.485524 19.8136i 0.0370208 1.51078i
\(173\) −6.02967 + 10.4437i −0.458427 + 0.794019i −0.998878 0.0473563i \(-0.984920\pi\)
0.540451 + 0.841376i \(0.318254\pi\)
\(174\) 0 0
\(175\) 5.82611 + 21.7433i 0.440412 + 1.64364i
\(176\) −17.5652 + 15.9230i −1.32403 + 1.20024i
\(177\) 0 0
\(178\) −0.724315 0.742281i −0.0542897 0.0556363i
\(179\) 15.2086 8.78071i 1.13675 0.656301i 0.191123 0.981566i \(-0.438787\pi\)
0.945623 + 0.325265i \(0.105454\pi\)
\(180\) 0 0
\(181\) 7.03736 0.523083 0.261541 0.965192i \(-0.415769\pi\)
0.261541 + 0.965192i \(0.415769\pi\)
\(182\) −0.886817 + 24.5400i −0.0657352 + 1.81903i
\(183\) 0 0
\(184\) −5.13764 + 2.71960i −0.378752 + 0.200492i
\(185\) −2.02166 3.50161i −0.148635 0.257444i
\(186\) 0 0
\(187\) 4.44160 + 4.44160i 0.324802 + 0.324802i
\(188\) −4.73080 + 16.0700i −0.345029 + 1.17203i
\(189\) 0 0
\(190\) −0.450032 + 0.252527i −0.0326488 + 0.0183202i
\(191\) 17.8511 + 10.3063i 1.29166 + 0.745740i 0.978948 0.204108i \(-0.0654295\pi\)
0.312711 + 0.949848i \(0.398763\pi\)
\(192\) 0 0
\(193\) −4.18310 1.12086i −0.301106 0.0806812i 0.105103 0.994461i \(-0.466483\pi\)
−0.406209 + 0.913780i \(0.633150\pi\)
\(194\) 6.32477 + 1.77803i 0.454092 + 0.127655i
\(195\) 0 0
\(196\) 27.6408 + 16.8745i 1.97435 + 1.20532i
\(197\) −10.2512 2.74681i −0.730370 0.195702i −0.125576 0.992084i \(-0.540078\pi\)
−0.604794 + 0.796382i \(0.706745\pi\)
\(198\) 0 0
\(199\) −12.0604 + 20.8892i −0.854937 + 1.48079i 0.0217665 + 0.999763i \(0.493071\pi\)
−0.876703 + 0.481031i \(0.840262\pi\)
\(200\) 13.2118 + 0.485745i 0.934215 + 0.0343473i
\(201\) 0 0
\(202\) −0.0705552 + 5.75941i −0.00496425 + 0.405231i
\(203\) −19.1389 + 19.1389i −1.34329 + 1.34329i
\(204\) 0 0
\(205\) 1.51564 + 2.62516i 0.105857 + 0.183349i
\(206\) 0.544182 + 0.323135i 0.0379149 + 0.0225139i
\(207\) 0 0
\(208\) 13.6220 + 4.73709i 0.944519 + 0.328458i
\(209\) 3.78925 0.262108
\(210\) 0 0
\(211\) −7.25156 12.5601i −0.499218 0.864671i 0.500782 0.865574i \(-0.333046\pi\)
−1.00000 0.000902928i \(0.999713\pi\)
\(212\) −2.09980 + 1.14467i −0.144215 + 0.0786162i
\(213\) 0 0
\(214\) −0.127384 + 10.3984i −0.00870782 + 0.710818i
\(215\) −5.46341 + 1.46392i −0.372601 + 0.0998382i
\(216\) 0 0
\(217\) −8.68120 + 15.0363i −0.589318 + 1.02073i
\(218\) 3.55919 0.907102i 0.241059 0.0614367i
\(219\) 0 0
\(220\) 5.77480 + 3.52547i 0.389337 + 0.237687i
\(221\) 1.07679 3.66622i 0.0724325 0.246617i
\(222\) 0 0
\(223\) 23.4642 + 6.28722i 1.57128 + 0.421024i 0.936213 0.351432i \(-0.114305\pi\)
0.635068 + 0.772456i \(0.280972\pi\)
\(224\) 20.4064 18.0481i 1.36346 1.20589i
\(225\) 0 0
\(226\) −23.9653 + 13.4477i −1.59415 + 0.894527i
\(227\) −19.5131 + 5.22852i −1.29513 + 0.347029i −0.839607 0.543195i \(-0.817215\pi\)
−0.455524 + 0.890224i \(0.650548\pi\)
\(228\) 0 0
\(229\) 0.537694 + 0.537694i 0.0355318 + 0.0355318i 0.724649 0.689118i \(-0.242002\pi\)
−0.689118 + 0.724649i \(0.742002\pi\)
\(230\) 1.15859 + 1.18733i 0.0763950 + 0.0782900i
\(231\) 0 0
\(232\) 7.43714 + 14.0496i 0.488272 + 0.922403i
\(233\) 5.06336i 0.331712i 0.986150 + 0.165856i \(0.0530387\pi\)
−0.986150 + 0.165856i \(0.946961\pi\)
\(234\) 0 0
\(235\) 4.78067 0.311857
\(236\) 11.8395 11.2732i 0.770689 0.733822i
\(237\) 0 0
\(238\) −5.04082 5.16585i −0.326748 0.334853i
\(239\) −20.1780 + 20.1780i −1.30521 + 1.30521i −0.380376 + 0.924832i \(0.624205\pi\)
−0.924832 + 0.380376i \(0.875795\pi\)
\(240\) 0 0
\(241\) 3.50678 + 13.0875i 0.225891 + 0.843038i 0.982045 + 0.188645i \(0.0604094\pi\)
−0.756154 + 0.654394i \(0.772924\pi\)
\(242\) −16.6992 29.7599i −1.07347 1.91304i
\(243\) 0 0
\(244\) −0.299922 + 12.2395i −0.0192005 + 0.783551i
\(245\) 2.39200 8.92705i 0.152819 0.570328i
\(246\) 0 0
\(247\) −1.10456 2.02320i −0.0702815 0.128733i
\(248\) 6.94074 + 7.47059i 0.440738 + 0.474383i
\(249\) 0 0
\(250\) −1.92853 7.56695i −0.121971 0.478576i
\(251\) −14.5185 8.38225i −0.916398 0.529083i −0.0339142 0.999425i \(-0.510797\pi\)
−0.882484 + 0.470342i \(0.844131\pi\)
\(252\) 0 0
\(253\) −3.15279 11.7664i −0.198214 0.739745i
\(254\) −0.237805 + 19.4119i −0.0149212 + 1.21801i
\(255\) 0 0
\(256\) −6.60588 14.5727i −0.412868 0.910791i
\(257\) 7.66304 4.42426i 0.478007 0.275978i −0.241578 0.970381i \(-0.577665\pi\)
0.719586 + 0.694404i \(0.244332\pi\)
\(258\) 0 0
\(259\) 34.1157i 2.11985i
\(260\) 0.199012 4.11101i 0.0123422 0.254954i
\(261\) 0 0
\(262\) −7.17876 4.26275i −0.443505 0.263354i
\(263\) 5.49660 3.17346i 0.338935 0.195684i −0.320866 0.947125i \(-0.603974\pi\)
0.659801 + 0.751440i \(0.270641\pi\)
\(264\) 0 0
\(265\) 0.482599 + 0.482599i 0.0296458 + 0.0296458i
\(266\) −4.35380 0.0533359i −0.266949 0.00327024i
\(267\) 0 0
\(268\) −15.5350 + 3.75725i −0.948952 + 0.229510i
\(269\) 5.51917 + 3.18649i 0.336509 + 0.194284i 0.658727 0.752382i \(-0.271095\pi\)
−0.322218 + 0.946666i \(0.604428\pi\)
\(270\) 0 0
\(271\) 2.27246 8.48094i 0.138042 0.515181i −0.861925 0.507036i \(-0.830741\pi\)
0.999967 0.00814415i \(-0.00259239\pi\)
\(272\) −3.77058 + 1.93720i −0.228625 + 0.117460i
\(273\) 0 0
\(274\) 6.65634 23.6777i 0.402124 1.43042i
\(275\) −7.17044 + 26.7604i −0.432394 + 1.61372i
\(276\) 0 0
\(277\) 3.44140 5.96068i 0.206774 0.358143i −0.743923 0.668266i \(-0.767037\pi\)
0.950696 + 0.310123i \(0.100370\pi\)
\(278\) 17.3824 9.75380i 1.04253 0.584994i
\(279\) 0 0
\(280\) −6.58554 4.13200i −0.393562 0.246934i
\(281\) −1.24628 + 1.24628i −0.0743466 + 0.0743466i −0.743302 0.668956i \(-0.766742\pi\)
0.668956 + 0.743302i \(0.266742\pi\)
\(282\) 0 0
\(283\) 11.6080 6.70190i 0.690025 0.398386i −0.113596 0.993527i \(-0.536237\pi\)
0.803622 + 0.595141i \(0.202904\pi\)
\(284\) 0.633137 0.602849i 0.0375697 0.0357725i
\(285\) 0 0
\(286\) −16.0465 + 25.6104i −0.948847 + 1.51437i
\(287\) 25.5766i 1.50974i
\(288\) 0 0
\(289\) −7.93844 13.7498i −0.466967 0.808810i
\(290\) 3.24692 3.16833i 0.190665 0.186051i
\(291\) 0 0
\(292\) 19.9296 + 5.86700i 1.16629 + 0.343340i
\(293\) −22.6215 + 6.06142i −1.32156 + 0.354112i −0.849563 0.527486i \(-0.823135\pi\)
−0.472000 + 0.881598i \(0.656468\pi\)
\(294\) 0 0
\(295\) −4.04038 2.33272i −0.235240 0.135816i
\(296\) −19.1504 5.89348i −1.11310 0.342552i
\(297\) 0 0
\(298\) −4.27049 + 15.1909i −0.247383 + 0.879983i
\(299\) −5.36340 + 5.11325i −0.310173 + 0.295707i
\(300\) 0 0
\(301\) −46.0978 12.3519i −2.65703 0.711950i
\(302\) 4.04274 + 15.8624i 0.232633 + 0.912781i
\(303\) 0 0
\(304\) −0.782058 + 2.43474i −0.0448541 + 0.139642i
\(305\) 3.37490 0.904303i 0.193246 0.0517802i
\(306\) 0 0
\(307\) −21.1986 + 21.1986i −1.20987 + 1.20987i −0.238798 + 0.971069i \(0.576753\pi\)
−0.971069 + 0.238798i \(0.923247\pi\)
\(308\) 27.3241 + 50.1237i 1.55693 + 2.85606i
\(309\) 0 0
\(310\) 1.48581 2.50221i 0.0843884 0.142116i
\(311\) −23.6077 −1.33867 −0.669335 0.742961i \(-0.733421\pi\)
−0.669335 + 0.742961i \(0.733421\pi\)
\(312\) 0 0
\(313\) −1.67315 −0.0945720 −0.0472860 0.998881i \(-0.515057\pi\)
−0.0472860 + 0.998881i \(0.515057\pi\)
\(314\) 14.1288 23.7938i 0.797333 1.34276i
\(315\) 0 0
\(316\) −12.6584 + 6.90050i −0.712089 + 0.388184i
\(317\) 1.99292 1.99292i 0.111933 0.111933i −0.648922 0.760855i \(-0.724780\pi\)
0.760855 + 0.648922i \(0.224780\pi\)
\(318\) 0 0
\(319\) −32.1768 + 8.62176i −1.80156 + 0.482726i
\(320\) −3.45710 + 2.98291i −0.193258 + 0.166750i
\(321\) 0 0
\(322\) 3.45690 + 13.5638i 0.192645 + 0.755880i
\(323\) 0.654444 + 0.175358i 0.0364142 + 0.00975717i
\(324\) 0 0
\(325\) 16.3784 3.97211i 0.908510 0.220333i
\(326\) −2.42271 + 8.61799i −0.134181 + 0.477306i
\(327\) 0 0
\(328\) 14.3571 + 4.41835i 0.792737 + 0.243962i
\(329\) 34.9330 + 20.1686i 1.92592 + 1.11193i
\(330\) 0 0
\(331\) −5.44493 + 1.45897i −0.299281 + 0.0801920i −0.405335 0.914168i \(-0.632845\pi\)
0.106054 + 0.994360i \(0.466178\pi\)
\(332\) 6.22817 21.1564i 0.341815 1.16111i
\(333\) 0 0
\(334\) 5.06508 4.94248i 0.277149 0.270441i
\(335\) 2.28061 + 3.95014i 0.124603 + 0.215819i
\(336\) 0 0
\(337\) 9.98987i 0.544183i 0.962271 + 0.272091i \(0.0877153\pi\)
−0.962271 + 0.272091i \(0.912285\pi\)
\(338\) 18.3517 + 1.10231i 0.998201 + 0.0599578i
\(339\) 0 0
\(340\) 0.834218 + 0.876130i 0.0452418 + 0.0475148i
\(341\) −18.5058 + 10.6843i −1.00214 + 0.578588i
\(342\) 0 0
\(343\) 31.3027 31.3027i 1.69019 1.69019i
\(344\) −14.8970 + 23.7426i −0.803190 + 1.28012i
\(345\) 0 0
\(346\) 14.8730 8.34568i 0.799575 0.448666i
\(347\) 11.8582 20.5391i 0.636584 1.10260i −0.349594 0.936901i \(-0.613680\pi\)
0.986177 0.165694i \(-0.0529863\pi\)
\(348\) 0 0
\(349\) 5.11905 19.1046i 0.274017 1.02264i −0.682481 0.730903i \(-0.739099\pi\)
0.956498 0.291740i \(-0.0942343\pi\)
\(350\) 8.61541 30.6465i 0.460513 1.63812i
\(351\) 0 0
\(352\) 32.8565 6.67917i 1.75126 0.356001i
\(353\) −2.87468 + 10.7284i −0.153004 + 0.571017i 0.846264 + 0.532763i \(0.178846\pi\)
−0.999268 + 0.0382541i \(0.987820\pi\)
\(354\) 0 0
\(355\) −0.216065 0.124745i −0.0114675 0.00662079i
\(356\) 0.344792 + 1.42560i 0.0182739 + 0.0755569i
\(357\) 0 0
\(358\) −24.8337 0.304224i −1.31250 0.0160787i
\(359\) −10.0901 10.0901i −0.532537 0.532537i 0.388790 0.921327i \(-0.372893\pi\)
−0.921327 + 0.388790i \(0.872893\pi\)
\(360\) 0 0
\(361\) −16.1005 + 9.29564i −0.847396 + 0.489244i
\(362\) −8.55736 5.08137i −0.449765 0.267071i
\(363\) 0 0
\(364\) 18.7977 29.2001i 0.985265 1.53050i
\(365\) 5.92885i 0.310330i
\(366\) 0 0
\(367\) −5.69564 + 3.28838i −0.297310 + 0.171652i −0.641234 0.767346i \(-0.721577\pi\)
0.343924 + 0.938997i \(0.388244\pi\)
\(368\) 8.21103 + 0.402657i 0.428030 + 0.0209899i
\(369\) 0 0
\(370\) −0.0700440 + 5.71768i −0.00364142 + 0.297248i
\(371\) 1.49044 + 5.56240i 0.0773798 + 0.288785i
\(372\) 0 0
\(373\) 7.36621 + 4.25288i 0.381408 + 0.220206i 0.678431 0.734665i \(-0.262660\pi\)
−0.297023 + 0.954870i \(0.595994\pi\)
\(374\) −2.19386 8.60802i −0.113442 0.445110i
\(375\) 0 0
\(376\) 17.3561 16.1251i 0.895070 0.831588i
\(377\) 13.9829 + 14.6670i 0.720157 + 0.755388i
\(378\) 0 0
\(379\) 4.52705 16.8952i 0.232539 0.867847i −0.746704 0.665156i \(-0.768365\pi\)
0.979243 0.202690i \(-0.0649685\pi\)
\(380\) 0.729574 + 0.0178779i 0.0374263 + 0.000917115i
\(381\) 0 0
\(382\) −14.2650 25.4219i −0.729862 1.30070i
\(383\) −2.58315 9.64043i −0.131993 0.492603i 0.868000 0.496565i \(-0.165406\pi\)
−0.999992 + 0.00396183i \(0.998739\pi\)
\(384\) 0 0
\(385\) 11.5200 11.5200i 0.587113 0.587113i
\(386\) 4.27729 + 4.38339i 0.217709 + 0.223109i
\(387\) 0 0
\(388\) −6.40702 6.72891i −0.325267 0.341609i
\(389\) −0.803809 −0.0407547 −0.0203774 0.999792i \(-0.506487\pi\)
−0.0203774 + 0.999792i \(0.506487\pi\)
\(390\) 0 0
\(391\) 2.17808i 0.110150i
\(392\) −21.4267 40.4775i −1.08221 2.04442i
\(393\) 0 0
\(394\) 10.4821 + 10.7421i 0.528079 + 0.541177i
\(395\) 2.90929 + 2.90929i 0.146382 + 0.146382i
\(396\) 0 0
\(397\) 1.17900 0.315913i 0.0591725 0.0158552i −0.229111 0.973400i \(-0.573582\pi\)
0.288284 + 0.957545i \(0.406915\pi\)
\(398\) 29.7485 16.6928i 1.49116 0.836734i
\(399\) 0 0
\(400\) −15.7147 10.1303i −0.785735 0.506516i
\(401\) 4.73196 + 1.26792i 0.236303 + 0.0633171i 0.375027 0.927014i \(-0.377633\pi\)
−0.138724 + 0.990331i \(0.544300\pi\)
\(402\) 0 0
\(403\) 11.0991 + 6.76635i 0.552885 + 0.337056i
\(404\) 4.24441 6.95245i 0.211167 0.345897i
\(405\) 0 0
\(406\) 37.0921 9.45338i 1.84085 0.469164i
\(407\) 20.9938 36.3624i 1.04063 1.80242i
\(408\) 0 0
\(409\) 13.7141 3.67467i 0.678117 0.181701i 0.0967086 0.995313i \(-0.469169\pi\)
0.581408 + 0.813612i \(0.302502\pi\)
\(410\) 0.0525121 4.28655i 0.00259339 0.211698i
\(411\) 0 0
\(412\) −0.428398 0.785859i −0.0211057 0.0387165i
\(413\) −19.6824 34.0910i −0.968509 1.67751i
\(414\) 0 0
\(415\) −6.29383 −0.308952
\(416\) −13.1438 15.5961i −0.644430 0.764664i
\(417\) 0 0
\(418\) −4.60770 2.73605i −0.225370 0.133825i
\(419\) 2.36107 + 4.08949i 0.115346 + 0.199785i 0.917918 0.396770i \(-0.129869\pi\)
−0.802572 + 0.596555i \(0.796536\pi\)
\(420\) 0 0
\(421\) 4.38018 4.38018i 0.213477 0.213477i −0.592266 0.805743i \(-0.701766\pi\)
0.805743 + 0.592266i \(0.201766\pi\)
\(422\) −0.251244 + 20.5090i −0.0122303 + 0.998361i
\(423\) 0 0
\(424\) 3.37985 + 0.124264i 0.164140 + 0.00603477i
\(425\) −2.47682 + 4.28998i −0.120143 + 0.208095i
\(426\) 0 0
\(427\) 28.4759 + 7.63011i 1.37805 + 0.369247i
\(428\) 7.66310 12.5523i 0.370410 0.606740i
\(429\) 0 0
\(430\) 7.70049 + 2.16478i 0.371350 + 0.104395i
\(431\) −2.21278 0.592912i −0.106586 0.0285596i 0.205132 0.978734i \(-0.434238\pi\)
−0.311718 + 0.950175i \(0.600904\pi\)
\(432\) 0 0
\(433\) 13.9535 + 8.05603i 0.670560 + 0.387148i 0.796289 0.604917i \(-0.206794\pi\)
−0.125729 + 0.992065i \(0.540127\pi\)
\(434\) 21.4133 12.0157i 1.02787 0.576770i
\(435\) 0 0
\(436\) −4.98292 1.46690i −0.238639 0.0702520i
\(437\) −0.929092 0.929092i −0.0444445 0.0444445i
\(438\) 0 0
\(439\) −10.1992 17.6656i −0.486783 0.843133i 0.513102 0.858328i \(-0.328496\pi\)
−0.999885 + 0.0151950i \(0.995163\pi\)
\(440\) −4.47652 8.45667i −0.213410 0.403156i
\(441\) 0 0
\(442\) −3.95658 + 3.68059i −0.188195 + 0.175068i
\(443\) −4.48358 −0.213021 −0.106511 0.994312i \(-0.533968\pi\)
−0.106511 + 0.994312i \(0.533968\pi\)
\(444\) 0 0
\(445\) 0.362493 0.209285i 0.0171838 0.00992107i
\(446\) −23.9926 24.5877i −1.13608 1.16426i
\(447\) 0 0
\(448\) −37.8457 + 7.21181i −1.78804 + 0.340726i
\(449\) −3.28057 12.2433i −0.154820 0.577795i −0.999121 0.0419259i \(-0.986651\pi\)
0.844301 0.535869i \(-0.180016\pi\)
\(450\) 0 0
\(451\) −15.7391 + 27.2609i −0.741125 + 1.28367i
\(452\) 38.8516 + 0.952040i 1.82743 + 0.0447802i
\(453\) 0 0
\(454\) 27.5031 + 7.73172i 1.29078 + 0.362868i
\(455\) −9.50893 2.79282i −0.445786 0.130929i
\(456\) 0 0
\(457\) 6.68865 24.9624i 0.312882 1.16769i −0.613064 0.790033i \(-0.710063\pi\)
0.925946 0.377657i \(-0.123270\pi\)
\(458\) −0.265586 1.04208i −0.0124100 0.0486930i
\(459\) 0 0
\(460\) −0.551516 2.28034i −0.0257146 0.106322i
\(461\) 4.57308 + 17.0670i 0.212990 + 0.794888i 0.986865 + 0.161550i \(0.0516491\pi\)
−0.773875 + 0.633338i \(0.781684\pi\)
\(462\) 0 0
\(463\) −0.916082 0.916082i −0.0425740 0.0425740i 0.685499 0.728073i \(-0.259584\pi\)
−0.728073 + 0.685499i \(0.759584\pi\)
\(464\) 1.10112 22.4543i 0.0511184 1.04241i
\(465\) 0 0
\(466\) 3.65603 6.15700i 0.169362 0.285218i
\(467\) 1.02377i 0.0473745i 0.999719 + 0.0236872i \(0.00754059\pi\)
−0.999719 + 0.0236872i \(0.992459\pi\)
\(468\) 0 0
\(469\) 38.4856i 1.77710i
\(470\) −5.81326 3.45191i −0.268145 0.159225i
\(471\) 0 0
\(472\) −22.5367 + 5.15927i −1.03733 + 0.237475i
\(473\) −41.5326 41.5326i −1.90967 1.90967i
\(474\) 0 0
\(475\) 0.773429 + 2.88648i 0.0354874 + 0.132441i
\(476\) 2.39955 + 9.92139i 0.109983 + 0.454746i
\(477\) 0 0
\(478\) 39.1060 9.96663i 1.78867 0.455863i
\(479\) 0.0511532 0.190906i 0.00233725 0.00872273i −0.964747 0.263178i \(-0.915229\pi\)
0.967085 + 0.254455i \(0.0818961\pi\)
\(480\) 0 0
\(481\) −25.5347 0.609680i −1.16428 0.0277990i
\(482\) 5.18568 18.4463i 0.236201 0.840208i
\(483\) 0 0
\(484\) −1.18224 + 48.2456i −0.0537380 + 2.19298i
\(485\) −1.32578 + 2.29632i −0.0602006 + 0.104270i
\(486\) 0 0
\(487\) 2.09884 + 7.83299i 0.0951077 + 0.354947i 0.997036 0.0769395i \(-0.0245148\pi\)
−0.901928 + 0.431886i \(0.857848\pi\)
\(488\) 9.20228 14.6665i 0.416567 0.663922i
\(489\) 0 0
\(490\) −9.35448 + 9.12806i −0.422592 + 0.412364i
\(491\) −13.2895 + 7.67272i −0.599748 + 0.346265i −0.768943 0.639318i \(-0.779217\pi\)
0.169194 + 0.985583i \(0.445884\pi\)
\(492\) 0 0
\(493\) −5.95628 −0.268257
\(494\) −0.117727 + 3.25775i −0.00529679 + 0.146573i
\(495\) 0 0
\(496\) −3.04570 14.0958i −0.136756 0.632919i
\(497\) −1.05255 1.82306i −0.0472131 0.0817755i
\(498\) 0 0
\(499\) 10.5996 + 10.5996i 0.474502 + 0.474502i 0.903368 0.428866i \(-0.141087\pi\)
−0.428866 + 0.903368i \(0.641087\pi\)
\(500\) −3.11869 + 10.5939i −0.139472 + 0.473772i
\(501\) 0 0
\(502\) 11.6019 + 20.6759i 0.517818 + 0.922811i
\(503\) −32.2230 18.6039i −1.43675 0.829508i −0.439128 0.898424i \(-0.644713\pi\)
−0.997622 + 0.0689162i \(0.978046\pi\)
\(504\) 0 0
\(505\) −2.24541 0.601655i −0.0999192 0.0267733i
\(506\) −4.66222 + 16.5843i −0.207261 + 0.737262i
\(507\) 0 0
\(508\) 14.3057 23.4330i 0.634712 1.03967i
\(509\) 39.9366 + 10.7010i 1.77016 + 0.474312i 0.988733 0.149687i \(-0.0478267\pi\)
0.781425 + 0.624000i \(0.214493\pi\)
\(510\) 0 0
\(511\) 25.0125 43.3229i 1.10649 1.91649i
\(512\) −2.48958 + 22.4900i −0.110025 + 0.993929i
\(513\) 0 0
\(514\) −12.5127 0.153286i −0.551914 0.00676118i
\(515\) −0.180615 + 0.180615i −0.00795884 + 0.00795884i
\(516\) 0 0
\(517\) 24.8224 + 42.9936i 1.09169 + 1.89086i
\(518\) −24.6335 + 41.4844i −1.08233 + 1.82272i
\(519\) 0 0
\(520\) −3.21038 + 4.85526i −0.140784 + 0.212917i
\(521\) −35.6854 −1.56341 −0.781703 0.623650i \(-0.785649\pi\)
−0.781703 + 0.623650i \(0.785649\pi\)
\(522\) 0 0
\(523\) 2.52621 + 4.37553i 0.110464 + 0.191328i 0.915957 0.401276i \(-0.131433\pi\)
−0.805494 + 0.592604i \(0.798100\pi\)
\(524\) 5.65136 + 10.3669i 0.246881 + 0.452882i
\(525\) 0 0
\(526\) −8.97524 0.109950i −0.391339 0.00479407i
\(527\) −3.69059 + 0.988891i −0.160765 + 0.0430768i
\(528\) 0 0
\(529\) 9.38802 16.2605i 0.408175 0.706980i
\(530\) −0.238372 0.935299i −0.0103542 0.0406268i
\(531\) 0 0
\(532\) 5.25567 + 3.20855i 0.227862 + 0.139108i
\(533\) 19.1434 + 0.457077i 0.829191 + 0.0197982i
\(534\) 0 0
\(535\) −4.05398 1.08626i −0.175269 0.0469632i
\(536\) 21.6034 + 6.64838i 0.933125 + 0.287166i
\(537\) 0 0
\(538\) −4.41043 7.85989i −0.190147 0.338864i
\(539\) 92.7027 24.8396i 3.99299 1.06992i
\(540\) 0 0
\(541\) −16.2450 16.2450i −0.698429 0.698429i 0.265643 0.964072i \(-0.414416\pi\)
−0.964072 + 0.265643i \(0.914416\pi\)
\(542\) −8.88701 + 8.67191i −0.381730 + 0.372490i
\(543\) 0 0
\(544\) 5.98376 + 0.366959i 0.256552 + 0.0157332i
\(545\) 1.48237i 0.0634978i
\(546\) 0 0
\(547\) −6.47392 −0.276805 −0.138402 0.990376i \(-0.544197\pi\)
−0.138402 + 0.990376i \(0.544197\pi\)
\(548\) −25.1907 + 23.9857i −1.07609 + 1.02462i
\(549\) 0 0
\(550\) 28.0417 27.3630i 1.19570 1.16676i
\(551\) −2.54074 + 2.54074i −0.108239 + 0.108239i
\(552\) 0 0
\(553\) 8.98493 + 33.5322i 0.382078 + 1.42594i
\(554\) −8.48866 + 4.76325i −0.360649 + 0.202371i
\(555\) 0 0
\(556\) −28.1796 0.690529i −1.19508 0.0292849i
\(557\) −4.79101 + 17.8803i −0.203002 + 0.757612i 0.787048 + 0.616892i \(0.211608\pi\)
−0.990049 + 0.140720i \(0.955058\pi\)
\(558\) 0 0
\(559\) −10.0688 + 34.2822i −0.425867 + 1.44998i
\(560\) 5.02443 + 9.77961i 0.212321 + 0.413264i
\(561\) 0 0
\(562\) 2.41534 0.615579i 0.101885 0.0259666i
\(563\) −11.7692 6.79494i −0.496012 0.286373i 0.231053 0.972941i \(-0.425783\pi\)
−0.727065 + 0.686568i \(0.759116\pi\)
\(564\) 0 0
\(565\) −2.87052 10.7129i −0.120764 0.450696i
\(566\) −18.9544 0.232199i −0.796713 0.00976007i
\(567\) 0 0
\(568\) −1.20518 + 0.275899i −0.0505682 + 0.0115765i
\(569\) −5.17128 + 2.98564i −0.216791 + 0.125164i −0.604464 0.796633i \(-0.706613\pi\)
0.387672 + 0.921797i \(0.373279\pi\)
\(570\) 0 0
\(571\) 7.35140i 0.307647i 0.988098 + 0.153823i \(0.0491587\pi\)
−0.988098 + 0.153823i \(0.950841\pi\)
\(572\) 38.0045 19.5556i 1.58905 0.817660i
\(573\) 0 0
\(574\) 18.4677 31.1009i 0.770828 1.29813i
\(575\) 8.31956 4.80330i 0.346949 0.200311i
\(576\) 0 0
\(577\) 8.59954 + 8.59954i 0.358004 + 0.358004i 0.863077 0.505073i \(-0.168534\pi\)
−0.505073 + 0.863077i \(0.668534\pi\)
\(578\) −0.275042 + 22.4516i −0.0114402 + 0.933864i
\(579\) 0 0
\(580\) −6.23593 + 1.50820i −0.258933 + 0.0626247i
\(581\) −45.9899 26.5523i −1.90798 1.10157i
\(582\) 0 0
\(583\) −1.83435 + 6.84588i −0.0759709 + 0.283527i
\(584\) −19.9979 21.5245i −0.827518 0.890689i
\(585\) 0 0
\(586\) 31.8843 + 8.96338i 1.31713 + 0.370274i
\(587\) −5.77087 + 21.5372i −0.238189 + 0.888934i 0.738496 + 0.674258i \(0.235536\pi\)
−0.976685 + 0.214676i \(0.931130\pi\)
\(588\) 0 0
\(589\) −1.15245 + 1.99610i −0.0474858 + 0.0822479i
\(590\) 3.22872 + 5.75395i 0.132924 + 0.236886i
\(591\) 0 0
\(592\) 19.0313 + 20.9941i 0.782182 + 0.862852i
\(593\) −24.9155 + 24.9155i −1.02316 + 1.02316i −0.0234302 + 0.999725i \(0.507459\pi\)
−0.999725 + 0.0234302i \(0.992541\pi\)
\(594\) 0 0
\(595\) 2.52274 1.45650i 0.103422 0.0597109i
\(596\) 16.1615 15.3884i 0.662002 0.630334i
\(597\) 0 0
\(598\) 10.2139 2.34499i 0.417677 0.0958939i
\(599\) 32.0155i 1.30812i −0.756444 0.654059i \(-0.773065\pi\)
0.756444 0.654059i \(-0.226935\pi\)
\(600\) 0 0
\(601\) −6.17445 10.6945i −0.251861 0.436236i 0.712177 0.702000i \(-0.247709\pi\)
−0.964038 + 0.265764i \(0.914376\pi\)
\(602\) 47.1358 + 48.3050i 1.92111 + 1.96876i
\(603\) 0 0
\(604\) 6.53764 22.2077i 0.266013 0.903617i
\(605\) 13.3032 3.56459i 0.540853 0.144921i
\(606\) 0 0
\(607\) −23.6311 13.6435i −0.959159 0.553771i −0.0632447 0.997998i \(-0.520145\pi\)
−0.895914 + 0.444227i \(0.853478\pi\)
\(608\) 2.70899 2.39593i 0.109864 0.0971678i
\(609\) 0 0
\(610\) −4.75681 1.33725i −0.192598 0.0541435i
\(611\) 15.7199 25.7860i 0.635960 1.04319i
\(612\) 0 0
\(613\) 1.68752 + 0.452170i 0.0681583 + 0.0182630i 0.292737 0.956193i \(-0.405434\pi\)
−0.224579 + 0.974456i \(0.572101\pi\)
\(614\) 41.0839 10.4707i 1.65801 0.422564i
\(615\) 0 0
\(616\) 2.96626 80.6795i 0.119514 3.25067i
\(617\) 21.8225 5.84731i 0.878539 0.235404i 0.208762 0.977966i \(-0.433057\pi\)
0.669777 + 0.742563i \(0.266390\pi\)
\(618\) 0 0
\(619\) −16.8078 + 16.8078i −0.675564 + 0.675564i −0.958993 0.283429i \(-0.908528\pi\)
0.283429 + 0.958993i \(0.408528\pi\)
\(620\) −3.61347 + 1.96982i −0.145120 + 0.0791100i
\(621\) 0 0
\(622\) 28.7068 + 17.0461i 1.15104 + 0.683486i
\(623\) 3.53171 0.141495
\(624\) 0 0
\(625\) −20.2196 −0.808783
\(626\) 2.03454 + 1.20811i 0.0813164 + 0.0482857i
\(627\) 0 0
\(628\) −34.3609 + 18.7313i −1.37115 + 0.747460i
\(629\) 5.30862 5.30862i 0.211669 0.211669i
\(630\) 0 0
\(631\) −28.5528 + 7.65071i −1.13667 + 0.304570i −0.777612 0.628745i \(-0.783569\pi\)
−0.359059 + 0.933315i \(0.616902\pi\)
\(632\) 20.3750 + 0.749108i 0.810475 + 0.0297979i
\(633\) 0 0
\(634\) −3.86237 + 0.984372i −0.153394 + 0.0390944i
\(635\) −7.56808 2.02786i −0.300330 0.0804732i
\(636\) 0 0
\(637\) −40.2853 42.2561i −1.59616 1.67425i
\(638\) 45.3522 + 12.7495i 1.79551 + 0.504758i
\(639\) 0 0
\(640\) 6.35763 1.13097i 0.251307 0.0447056i
\(641\) −16.7228 9.65492i −0.660511 0.381346i 0.131961 0.991255i \(-0.457873\pi\)
−0.792472 + 0.609909i \(0.791206\pi\)
\(642\) 0 0
\(643\) 20.6865 5.54294i 0.815797 0.218592i 0.173289 0.984871i \(-0.444561\pi\)
0.642508 + 0.766279i \(0.277894\pi\)
\(644\) 5.59026 18.9895i 0.220287 0.748292i
\(645\) 0 0
\(646\) −0.669180 0.685779i −0.0263285 0.0269816i
\(647\) 13.1707 + 22.8124i 0.517794 + 0.896846i 0.999786 + 0.0206706i \(0.00658014\pi\)
−0.481992 + 0.876176i \(0.660087\pi\)
\(648\) 0 0
\(649\) 48.4480i 1.90175i
\(650\) −22.7841 6.99608i −0.893665 0.274409i
\(651\) 0 0
\(652\) 9.16866 8.73006i 0.359073 0.341896i
\(653\) −4.85800 + 2.80477i −0.190108 + 0.109759i −0.592033 0.805914i \(-0.701675\pi\)
0.401925 + 0.915673i \(0.368341\pi\)
\(654\) 0 0
\(655\) 2.38264 2.38264i 0.0930976 0.0930976i
\(656\) −14.2678 15.7393i −0.557064 0.614516i
\(657\) 0 0
\(658\) −27.9154 49.7485i −1.08826 1.93940i
\(659\) −18.1430 + 31.4246i −0.706751 + 1.22413i 0.259305 + 0.965795i \(0.416507\pi\)
−0.966056 + 0.258333i \(0.916827\pi\)
\(660\) 0 0
\(661\) 3.16335 11.8058i 0.123040 0.459192i −0.876722 0.480997i \(-0.840275\pi\)
0.999762 + 0.0218054i \(0.00694141\pi\)
\(662\) 7.67444 + 2.15746i 0.298276 + 0.0838520i
\(663\) 0 0
\(664\) −22.8495 + 21.2289i −0.886734 + 0.823842i
\(665\) 0.454818 1.69740i 0.0176371 0.0658225i
\(666\) 0 0
\(667\) 10.0035 + 5.77550i 0.387336 + 0.223628i
\(668\) −9.72784 + 2.35274i −0.376382 + 0.0910304i
\(669\) 0 0
\(670\) 0.0790160 6.45006i 0.00305265 0.249188i
\(671\) 25.6559 + 25.6559i 0.990434 + 0.990434i
\(672\) 0 0
\(673\) 21.4840 12.4038i 0.828146 0.478130i −0.0250717 0.999686i \(-0.507981\pi\)
0.853217 + 0.521556i \(0.174648\pi\)
\(674\) 7.21325 12.1476i 0.277844 0.467908i
\(675\) 0 0
\(676\) −21.5196 14.5914i −0.827676 0.561206i
\(677\) 41.5137i 1.59550i 0.602988 + 0.797750i \(0.293977\pi\)
−0.602988 + 0.797750i \(0.706023\pi\)
\(678\) 0 0
\(679\) −19.3753 + 11.1863i −0.743557 + 0.429293i
\(680\) −0.381787 1.66772i −0.0146409 0.0639541i
\(681\) 0 0
\(682\) 30.2176 + 0.370178i 1.15709 + 0.0141748i
\(683\) 9.94935 + 37.1315i 0.380701 + 1.42080i 0.844833 + 0.535030i \(0.179700\pi\)
−0.464132 + 0.885766i \(0.653634\pi\)
\(684\) 0 0
\(685\) 8.59662 + 4.96326i 0.328460 + 0.189636i
\(686\) −60.6662 + 15.4615i −2.31625 + 0.590323i
\(687\) 0 0
\(688\) 35.2581 18.1144i 1.34420 0.690605i
\(689\) 4.18994 1.01615i 0.159624 0.0387121i
\(690\) 0 0
\(691\) −0.476425 + 1.77804i −0.0181241 + 0.0676399i −0.974396 0.224840i \(-0.927814\pi\)
0.956272 + 0.292480i \(0.0944806\pi\)
\(692\) −24.1114 0.590839i −0.916579 0.0224603i
\(693\) 0 0
\(694\) −29.2499 + 16.4130i −1.11031 + 0.623030i
\(695\) 2.08203 + 7.77025i 0.0789760 + 0.294742i
\(696\) 0 0
\(697\) −3.97988 + 3.97988i −0.150749 + 0.150749i
\(698\) −20.0193 + 19.5347i −0.757741 + 0.739401i
\(699\) 0 0
\(700\) −32.6047 + 31.0450i −1.23234 + 1.17339i
\(701\) 30.7524 1.16150 0.580752 0.814081i \(-0.302759\pi\)
0.580752 + 0.814081i \(0.302759\pi\)
\(702\) 0 0
\(703\) 4.52894i 0.170812i
\(704\) −44.7760 15.6024i −1.68756 0.588039i
\(705\) 0 0
\(706\) 11.2421 10.9700i 0.423103 0.412862i
\(707\) −13.8692 13.8692i −0.521607 0.521607i
\(708\) 0 0
\(709\) 6.75910 1.81110i 0.253844 0.0680172i −0.129653 0.991559i \(-0.541386\pi\)
0.383497 + 0.923542i \(0.374720\pi\)
\(710\) 0.172660 + 0.307700i 0.00647982 + 0.0115478i
\(711\) 0 0
\(712\) 0.610102 1.98248i 0.0228646 0.0742966i
\(713\) 7.15716 + 1.91775i 0.268038 + 0.0718205i
\(714\) 0 0
\(715\) −8.41652 8.82826i −0.314760 0.330158i
\(716\) 29.9779 + 18.3013i 1.12033 + 0.683951i
\(717\) 0 0
\(718\) 4.98387 + 19.5552i 0.185996 + 0.729792i
\(719\) −10.9833 + 19.0236i −0.409608 + 0.709461i −0.994846 0.101400i \(-0.967668\pi\)
0.585238 + 0.810862i \(0.301001\pi\)
\(720\) 0 0
\(721\) −2.08175 + 0.557804i −0.0775285 + 0.0207737i
\(722\) 26.2901 + 0.322064i 0.978415 + 0.0119860i
\(723\) 0 0
\(724\) 6.73665 + 12.3578i 0.250365 + 0.459274i
\(725\) −13.1353 22.7510i −0.487833 0.844952i
\(726\) 0 0
\(727\) 32.3235 1.19881 0.599407 0.800445i \(-0.295403\pi\)
0.599407 + 0.800445i \(0.295403\pi\)
\(728\) −43.9419 + 21.9342i −1.62860 + 0.812934i
\(729\) 0 0
\(730\) −4.28096 + 7.20943i −0.158446 + 0.266833i
\(731\) −5.25109 9.09515i −0.194218 0.336396i
\(732\) 0 0
\(733\) −27.9317 + 27.9317i −1.03168 + 1.03168i −0.0321977 + 0.999482i \(0.510251\pi\)
−0.999482 + 0.0321977i \(0.989749\pi\)
\(734\) 9.30024 + 0.113932i 0.343278 + 0.00420530i
\(735\) 0 0
\(736\) −9.69380 6.41846i −0.357318 0.236587i
\(737\) −23.6829 + 41.0200i −0.872372 + 1.51099i
\(738\) 0 0
\(739\) 33.0386 + 8.85267i 1.21534 + 0.325651i 0.808857 0.588005i \(-0.200087\pi\)
0.406488 + 0.913656i \(0.366753\pi\)
\(740\) 4.21366 6.90208i 0.154897 0.253725i
\(741\) 0 0
\(742\) 2.20400 7.84001i 0.0809114 0.287816i
\(743\) 48.6992 + 13.0489i 1.78660 + 0.478718i 0.991761 0.128102i \(-0.0408884\pi\)
0.794839 + 0.606820i \(0.207555\pi\)
\(744\) 0 0
\(745\) −5.51531 3.18427i −0.202065 0.116662i
\(746\) −5.88642 10.4903i −0.215517 0.384077i
\(747\) 0 0
\(748\) −3.54776 + 12.0514i −0.129719 + 0.440642i
\(749\) −25.0403 25.0403i −0.914953 0.914953i
\(750\) 0 0
\(751\) 24.4568 + 42.3605i 0.892443 + 1.54576i 0.836938 + 0.547298i \(0.184343\pi\)
0.0555049 + 0.998458i \(0.482323\pi\)
\(752\) −32.7480 + 7.07592i −1.19420 + 0.258032i
\(753\) 0 0
\(754\) −6.41273 27.9314i −0.233538 1.01720i
\(755\) −6.60657 −0.240438
\(756\) 0 0
\(757\) 1.35085 0.779913i 0.0490974 0.0283464i −0.475250 0.879851i \(-0.657643\pi\)
0.524348 + 0.851504i \(0.324309\pi\)
\(758\) −17.7041 + 17.2756i −0.643042 + 0.627478i
\(759\) 0 0
\(760\) −0.874246 0.548532i −0.0317122 0.0198974i
\(761\) 2.75025 + 10.2641i 0.0996966 + 0.372073i 0.997690 0.0679370i \(-0.0216417\pi\)
−0.897993 + 0.440010i \(0.854975\pi\)
\(762\) 0 0
\(763\) −6.25379 + 10.8319i −0.226402 + 0.392141i
\(764\) −1.00990 + 41.2130i −0.0365370 + 1.49103i
\(765\) 0 0
\(766\) −3.81985 + 13.5879i −0.138017 + 0.490949i
\(767\) −25.8679 + 14.1225i −0.934036 + 0.509935i
\(768\) 0 0
\(769\) −11.1442 + 41.5908i −0.401871 + 1.49980i 0.407885 + 0.913033i \(0.366267\pi\)
−0.809755 + 0.586768i \(0.800400\pi\)
\(770\) −22.3263 + 5.69012i −0.804583 + 0.205058i
\(771\) 0 0
\(772\) −2.03610 8.41861i −0.0732808 0.302993i
\(773\) −4.01263 14.9753i −0.144324 0.538626i −0.999785 0.0207572i \(-0.993392\pi\)
0.855460 0.517869i \(-0.173274\pi\)
\(774\) 0 0
\(775\) −11.9161 11.9161i −0.428037 0.428037i
\(776\) 2.93223 + 12.8085i 0.105261 + 0.459799i
\(777\) 0 0
\(778\) 0.977425 + 0.580395i 0.0350424 + 0.0208082i
\(779\) 3.39535i 0.121651i
\(780\) 0 0
\(781\) 2.59083i 0.0927070i
\(782\) −1.57270 + 2.64853i −0.0562395 + 0.0947111i
\(783\) 0 0
\(784\) −3.17238 + 64.6915i −0.113299 + 2.31041i
\(785\) 7.89721 + 7.89721i 0.281863 + 0.281863i
\(786\) 0 0
\(787\) 9.97812 + 37.2389i 0.355682 + 1.32742i 0.879624 + 0.475669i \(0.157794\pi\)
−0.523943 + 0.851753i \(0.675539\pi\)
\(788\) −4.98972 20.6309i −0.177751 0.734945i
\(789\) 0 0
\(790\) −1.43700 5.63834i −0.0511262 0.200603i
\(791\) 24.2202 90.3910i 0.861171 3.21393i
\(792\) 0 0
\(793\) 6.21982 21.1771i 0.220872 0.752021i
\(794\) −1.66176 0.467159i −0.0589738 0.0165789i
\(795\) 0 0
\(796\) −48.2270 1.18178i −1.70936 0.0418871i
\(797\) −2.47797 + 4.29197i −0.0877742 + 0.152029i −0.906570 0.422055i \(-0.861309\pi\)
0.818796 + 0.574085i \(0.194642\pi\)
\(798\) 0 0
\(799\) 2.29744 + 8.57417i 0.0812776 + 0.303332i
\(800\) 11.7943 + 23.6653i 0.416990 + 0.836694i
\(801\) 0 0
\(802\) −4.83851 4.95852i −0.170854 0.175092i
\(803\) 53.3194 30.7840i 1.88160 1.08634i
\(804\) 0 0
\(805\) −5.64920 −0.199108
\(806\) −8.61072 16.2420i −0.303300 0.572100i
\(807\) 0 0
\(808\) −10.1812 + 5.38941i −0.358174 + 0.189599i
\(809\) −24.9370 43.1921i −0.876738 1.51855i −0.854900 0.518793i \(-0.826382\pi\)
−0.0218374 0.999762i \(-0.506952\pi\)
\(810\) 0 0
\(811\) −25.0953 25.0953i −0.881216 0.881216i 0.112442 0.993658i \(-0.464133\pi\)
−0.993658 + 0.112442i \(0.964133\pi\)
\(812\) −51.9296 15.2874i −1.82237 0.536482i
\(813\) 0 0
\(814\) −51.7840 + 29.0576i −1.81503 + 1.01847i
\(815\) −3.12891 1.80648i −0.109601 0.0632782i
\(816\) 0 0
\(817\) −6.11959 1.63974i −0.214097 0.0573672i
\(818\) −19.3295 5.43396i −0.675840 0.189994i
\(819\) 0 0
\(820\) −3.15899 + 5.17449i −0.110317 + 0.180701i
\(821\) 41.6756 + 11.1669i 1.45449 + 0.389729i 0.897582 0.440847i \(-0.145322\pi\)
0.556906 + 0.830576i \(0.311988\pi\)
\(822\) 0 0
\(823\) 6.03038 10.4449i 0.210206 0.364087i −0.741573 0.670872i \(-0.765920\pi\)
0.951779 + 0.306785i \(0.0992532\pi\)
\(824\) −0.0465062 + 1.26493i −0.00162012 + 0.0440658i
\(825\) 0 0
\(826\) −0.681934 + 55.6661i −0.0237275 + 1.93687i
\(827\) 13.3380 13.3380i 0.463809 0.463809i −0.436093 0.899902i \(-0.643638\pi\)
0.899902 + 0.436093i \(0.143638\pi\)
\(828\) 0 0
\(829\) −19.5075 33.7880i −0.677524 1.17351i −0.975724 0.219002i \(-0.929720\pi\)
0.298201 0.954503i \(-0.403613\pi\)
\(830\) 7.65324 + 4.54450i 0.265648 + 0.157742i
\(831\) 0 0
\(832\) 4.72150 + 28.4554i 0.163689 + 0.986512i
\(833\) 17.1603 0.594567
\(834\) 0 0
\(835\) 1.42809 + 2.47353i 0.0494212 + 0.0856000i
\(836\) 3.62734 + 6.65403i 0.125454 + 0.230135i
\(837\) 0 0
\(838\) 0.0818036 6.67762i 0.00282586 0.230674i
\(839\) −35.6287 + 9.54667i −1.23004 + 0.329588i −0.814594 0.580031i \(-0.803040\pi\)
−0.415444 + 0.909619i \(0.636374\pi\)
\(840\) 0 0
\(841\) 1.29395 2.24118i 0.0446189 0.0772822i
\(842\) −8.48899 + 2.16352i −0.292550 + 0.0745599i
\(843\) 0 0
\(844\) 15.1141 24.7573i 0.520250 0.852182i
\(845\) −2.26028 + 7.06726i −0.0777560 + 0.243121i
\(846\) 0 0
\(847\) 112.247 + 30.0764i 3.85685 + 1.03344i
\(848\) −4.02014 2.59155i −0.138052 0.0889941i
\(849\) 0 0
\(850\) 6.10940 3.42817i 0.209551 0.117585i
\(851\) −14.0632 + 3.76824i −0.482082 + 0.129173i
\(852\) 0 0
\(853\) 30.9178 + 30.9178i 1.05861 + 1.05861i 0.998172 + 0.0604339i \(0.0192484\pi\)
0.0604339 + 0.998172i \(0.480752\pi\)
\(854\) −29.1171 29.8394i −0.996368 1.02108i
\(855\) 0 0
\(856\) −18.3818 + 9.73035i −0.628276 + 0.332576i
\(857\) 3.63834i 0.124283i 0.998067 + 0.0621417i \(0.0197931\pi\)
−0.998067 + 0.0621417i \(0.980207\pi\)
\(858\) 0 0
\(859\) −10.4247 −0.355686 −0.177843 0.984059i \(-0.556912\pi\)
−0.177843 + 0.984059i \(0.556912\pi\)
\(860\) −7.80063 8.19254i −0.265999 0.279363i
\(861\) 0 0
\(862\) 2.26260 + 2.31873i 0.0770646 + 0.0789762i
\(863\) −23.3831 + 23.3831i −0.795970 + 0.795970i −0.982457 0.186488i \(-0.940290\pi\)
0.186488 + 0.982457i \(0.440290\pi\)
\(864\) 0 0
\(865\) 1.78146 + 6.64848i 0.0605713 + 0.226055i
\(866\) −11.1504 19.8712i −0.378905 0.675252i
\(867\) 0 0
\(868\) −34.7144 0.850659i −1.17828 0.0288732i
\(869\) −11.0581 + 41.2695i −0.375122 + 1.39997i
\(870\) 0 0
\(871\) 28.8054 + 0.687774i 0.976034 + 0.0233043i
\(872\) 5.00000 + 5.38169i 0.169321 + 0.182247i
\(873\) 0 0
\(874\) 0.458911 + 1.80062i 0.0155229 + 0.0609070i
\(875\) 23.0290 + 13.2958i 0.778521 + 0.449479i
\(876\) 0 0
\(877\) 1.72948 + 6.45450i 0.0584004 + 0.217953i 0.988959 0.148190i \(-0.0473447\pi\)
−0.930559 + 0.366143i \(0.880678\pi\)
\(878\) −0.353371 + 28.8456i −0.0119257 + 0.973493i
\(879\) 0 0
\(880\) −0.662781 + 13.5155i −0.0223424 + 0.455608i
\(881\) 5.79984 3.34854i 0.195401 0.112815i −0.399107 0.916904i \(-0.630680\pi\)
0.594509 + 0.804089i \(0.297347\pi\)
\(882\) 0 0
\(883\) 6.47692i 0.217966i −0.994044 0.108983i \(-0.965241\pi\)
0.994044 0.108983i \(-0.0347594\pi\)
\(884\) 7.46877 1.61870i 0.251202 0.0544426i
\(885\) 0 0
\(886\) 5.45199 + 3.23740i 0.183163 + 0.108762i
\(887\) 24.2718 14.0133i 0.814967 0.470521i −0.0337108 0.999432i \(-0.510733\pi\)
0.848678 + 0.528910i \(0.177399\pi\)
\(888\) 0 0
\(889\) −46.7459 46.7459i −1.56781 1.56781i
\(890\) −0.591904 0.00725107i −0.0198407 0.000243056i
\(891\) 0 0
\(892\) 11.4211 + 47.2224i 0.382405 + 1.58112i
\(893\) 4.63744 + 2.67743i 0.155186 + 0.0895967i
\(894\) 0 0
\(895\) 2.59424 9.68185i 0.0867160 0.323629i
\(896\) 51.2274 + 18.5572i 1.71139 + 0.619954i
\(897\) 0 0
\(898\) −4.85118 + 17.2565i −0.161886 + 0.575855i
\(899\) 5.24438 19.5723i 0.174910 0.652772i
\(900\) 0 0
\(901\) −0.633623 + 1.09747i −0.0211090 + 0.0365619i
\(902\) 38.8225 21.7845i 1.29265 0.725345i
\(903\) 0 0
\(904\) −46.5558 29.2107i −1.54842 0.971534i
\(905\) 2.84021 2.84021i 0.0944116 0.0944116i
\(906\) 0 0
\(907\) 12.9360 7.46860i 0.429533 0.247991i −0.269615 0.962968i \(-0.586896\pi\)
0.699148 + 0.714977i \(0.253563\pi\)
\(908\) −27.8607 29.2605i −0.924591 0.971043i
\(909\) 0 0
\(910\) 9.54620 + 10.2620i 0.316454 + 0.340183i
\(911\) 47.5530i 1.57550i 0.615995 + 0.787750i \(0.288754\pi\)
−0.615995 + 0.787750i \(0.711246\pi\)
\(912\) 0 0
\(913\) −32.6790 56.6017i −1.08152 1.87324i
\(914\) −26.1576 + 25.5244i −0.865215 + 0.844273i
\(915\) 0 0
\(916\) −0.429487 + 1.45892i −0.0141907 + 0.0482042i
\(917\) 27.4622 7.35846i 0.906880 0.242998i
\(918\) 0 0
\(919\) −23.4113 13.5165i −0.772268 0.445869i 0.0614148 0.998112i \(-0.480439\pi\)
−0.833683 + 0.552243i \(0.813772\pi\)
\(920\) −0.975897 + 3.17110i −0.0321744 + 0.104548i
\(921\) 0 0
\(922\) 6.76248 24.0553i 0.222711 0.792219i
\(923\) −1.38332 + 0.755222i −0.0455326 + 0.0248584i
\(924\) 0 0
\(925\) 31.9843 + 8.57016i 1.05164 + 0.281785i
\(926\) 0.452485 + 1.77541i 0.0148696 + 0.0583436i
\(927\) 0 0
\(928\) −17.5522 + 26.5091i −0.576179 + 0.870204i
\(929\) 8.36041 2.24016i 0.274296 0.0734974i −0.119049 0.992888i \(-0.537984\pi\)
0.393345 + 0.919391i \(0.371318\pi\)
\(930\) 0 0
\(931\) 7.31995 7.31995i 0.239902 0.239902i
\(932\) −8.89140 + 4.84700i −0.291248 + 0.158769i
\(933\) 0 0
\(934\) 0.739220 1.24490i 0.0241880 0.0407343i
\(935\) 3.58517 0.117247
\(936\) 0 0
\(937\) −24.9116 −0.813826 −0.406913 0.913467i \(-0.633395\pi\)
−0.406913 + 0.913467i \(0.633395\pi\)
\(938\) 27.7888 46.7982i 0.907335 1.52801i
\(939\) 0 0
\(940\) 4.57639 + 8.39499i 0.149265 + 0.273815i
\(941\) −1.97405 + 1.97405i −0.0643522 + 0.0643522i −0.738550 0.674198i \(-0.764489\pi\)
0.674198 + 0.738550i \(0.264489\pi\)
\(942\) 0 0
\(943\) 10.5432 2.82505i 0.343335 0.0919963i
\(944\) 31.1297 + 9.99911i 1.01318 + 0.325443i
\(945\) 0 0
\(946\) 20.5144 + 80.4921i 0.666981 + 2.61702i
\(947\) 31.0163 + 8.31080i 1.00790 + 0.270065i 0.724750 0.689012i \(-0.241955\pi\)
0.283146 + 0.959077i \(0.408622\pi\)
\(948\) 0 0
\(949\) −31.9790 19.4954i −1.03808 0.632847i
\(950\) 1.14372 4.06839i 0.0371070 0.131996i
\(951\) 0 0
\(952\) 4.24596 13.7969i 0.137612 0.447161i
\(953\) −12.1425 7.01048i −0.393334 0.227092i 0.290269 0.956945i \(-0.406255\pi\)
−0.683604 + 0.729853i \(0.739588\pi\)
\(954\) 0 0
\(955\) 11.3640 3.04499i 0.367732 0.0985335i
\(956\) −54.7490 16.1174i −1.77071 0.521273i
\(957\) 0 0
\(958\) −0.200047 + 0.195205i −0.00646322 + 0.00630678i
\(959\) 41.8778 + 72.5345i 1.35230 + 2.34226i
\(960\) 0 0
\(961\) 18.0020i 0.580711i
\(962\) 30.6097 + 19.1788i 0.986897 + 0.618350i
\(963\) 0 0
\(964\) −19.6250 + 18.6862i −0.632080 + 0.601843i
\(965\) −2.14063 + 1.23589i −0.0689092 + 0.0397847i
\(966\) 0 0
\(967\) 5.06111 5.06111i 0.162754 0.162754i −0.621031 0.783786i \(-0.713286\pi\)
0.783786 + 0.621031i \(0.213286\pi\)
\(968\) 36.2736 57.8126i 1.16588 1.85817i
\(969\) 0 0
\(970\) 3.27021 1.83502i 0.105000 0.0589188i
\(971\) −1.08352 + 1.87671i −0.0347718 + 0.0602264i −0.882888 0.469584i \(-0.844404\pi\)
0.848116 + 0.529811i \(0.177737\pi\)
\(972\) 0 0
\(973\) −17.5673 + 65.5619i −0.563181 + 2.10182i
\(974\) 3.10368 11.0403i 0.0994485 0.353755i
\(975\) 0 0
\(976\) −21.7799 + 11.1898i −0.697159 + 0.358176i
\(977\) −4.67577 + 17.4502i −0.149591 + 0.558282i 0.849917 + 0.526917i \(0.176652\pi\)
−0.999508 + 0.0313649i \(0.990015\pi\)
\(978\) 0 0
\(979\) 3.76429 + 2.17331i 0.120307 + 0.0694594i
\(980\) 17.9659 4.34518i 0.573901 0.138802i
\(981\) 0 0
\(982\) 21.7001 + 0.265835i 0.692478 + 0.00848315i
\(983\) −4.75595 4.75595i −0.151691 0.151691i 0.627182 0.778873i \(-0.284208\pi\)
−0.778873 + 0.627182i \(0.784208\pi\)
\(984\) 0 0
\(985\) −5.24588 + 3.02871i −0.167148 + 0.0965027i
\(986\) 7.24278 + 4.30077i 0.230657 + 0.136964i
\(987\) 0 0
\(988\) 2.49543 3.87639i 0.0793903 0.123324i
\(989\) 20.3669i 0.647628i
\(990\) 0 0
\(991\) −13.6470 + 7.87912i −0.433512 + 0.250288i −0.700842 0.713317i \(-0.747192\pi\)
0.267330 + 0.963605i \(0.413859\pi\)
\(992\) −6.47440 + 19.3395i −0.205563 + 0.614030i
\(993\) 0 0
\(994\) −0.0364674 + 2.97683i −0.00115667 + 0.0944192i
\(995\) 3.56322 + 13.2981i 0.112962 + 0.421578i
\(996\) 0 0
\(997\) 43.1151 + 24.8925i 1.36547 + 0.788354i 0.990345 0.138621i \(-0.0442671\pi\)
0.375123 + 0.926975i \(0.377600\pi\)
\(998\) −5.23550 20.5425i −0.165727 0.650261i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 936.2.ed.e.739.3 56
3.2 odd 2 312.2.bt.d.115.12 yes 56
8.3 odd 2 inner 936.2.ed.e.739.14 56
13.6 odd 12 inner 936.2.ed.e.19.14 56
24.11 even 2 312.2.bt.d.115.1 yes 56
39.32 even 12 312.2.bt.d.19.1 56
104.19 even 12 inner 936.2.ed.e.19.3 56
312.227 odd 12 312.2.bt.d.19.12 yes 56
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
312.2.bt.d.19.1 56 39.32 even 12
312.2.bt.d.19.12 yes 56 312.227 odd 12
312.2.bt.d.115.1 yes 56 24.11 even 2
312.2.bt.d.115.12 yes 56 3.2 odd 2
936.2.ed.e.19.3 56 104.19 even 12 inner
936.2.ed.e.19.14 56 13.6 odd 12 inner
936.2.ed.e.739.3 56 1.1 even 1 trivial
936.2.ed.e.739.14 56 8.3 odd 2 inner