Properties

Label 936.2.dg.f.901.12
Level $936$
Weight $2$
Character 936.901
Analytic conductor $7.474$
Analytic rank $0$
Dimension $56$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [936,2,Mod(829,936)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(936, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 3, 0, 5])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("936.829"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 936 = 2^{3} \cdot 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 936.dg (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [56,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.47399762919\)
Analytic rank: \(0\)
Dimension: \(56\)
Relative dimension: \(28\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 901.12
Character \(\chi\) \(=\) 936.901
Dual form 936.2.dg.f.829.12

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.402157 - 1.35583i) q^{2} +(-1.67654 + 1.09051i) q^{4} -0.607438 q^{5} +(-1.20493 + 0.695669i) q^{7} +(2.15278 + 1.83454i) q^{8} +(0.244286 + 0.823582i) q^{10} +(1.88561 - 3.26597i) q^{11} +(-3.60551 + 0.0168667i) q^{13} +(1.42778 + 1.35392i) q^{14} +(1.62157 - 3.65657i) q^{16} +(-0.221643 - 0.383897i) q^{17} +(0.639519 + 1.10768i) q^{19} +(1.01839 - 0.662418i) q^{20} +(-5.18641 - 1.24313i) q^{22} +(-3.77493 + 6.53836i) q^{23} -4.63102 q^{25} +(1.47285 + 4.88167i) q^{26} +(1.26148 - 2.48031i) q^{28} +(8.53815 + 4.92951i) q^{29} +7.17868i q^{31} +(-5.60981 - 0.728052i) q^{32} +(-0.431363 + 0.454897i) q^{34} +(0.731923 - 0.422576i) q^{35} +(-2.09112 + 3.62192i) q^{37} +(1.24464 - 1.31254i) q^{38} +(-1.30768 - 1.11437i) q^{40} +(8.71354 + 5.03077i) q^{41} +(-6.12848 + 3.53828i) q^{43} +(0.400282 + 7.53182i) q^{44} +(10.3830 + 2.48870i) q^{46} -0.744154i q^{47} +(-2.53209 + 4.38571i) q^{49} +(1.86240 + 6.27887i) q^{50} +(6.02639 - 3.96013i) q^{52} +1.24345i q^{53} +(-1.14539 + 1.98388i) q^{55} +(-3.87019 - 0.712881i) q^{56} +(3.24988 - 13.5587i) q^{58} +(-1.28264 - 2.22159i) q^{59} +(8.48782 - 4.90045i) q^{61} +(9.73306 - 2.88696i) q^{62} +(1.26891 + 7.89873i) q^{64} +(2.19013 - 0.0102455i) q^{65} +(5.06843 - 8.77877i) q^{67} +(0.790237 + 0.401914i) q^{68} +(-0.867288 - 0.822420i) q^{70} +(-7.40365 + 4.27450i) q^{71} +14.6006i q^{73} +(5.75166 + 1.37861i) q^{74} +(-2.28012 - 1.15966i) q^{76} +5.24705i q^{77} -12.7982 q^{79} +(-0.985003 + 2.22114i) q^{80} +(3.31664 - 13.8372i) q^{82} -6.19029 q^{83} +(0.134634 + 0.233194i) q^{85} +(7.26192 + 6.88623i) q^{86} +(10.0509 - 3.57169i) q^{88} +(-0.530897 - 0.306513i) q^{89} +(4.33267 - 2.52857i) q^{91} +(-0.801349 - 15.0784i) q^{92} +(-1.00894 + 0.299267i) q^{94} +(-0.388468 - 0.672847i) q^{95} +(-5.74744 + 3.31829i) q^{97} +(6.96456 + 1.66933i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 56 q - 4 q^{10} - 4 q^{16} + 64 q^{25} - 48 q^{28} - 48 q^{40} + 20 q^{49} - 12 q^{52} + 16 q^{55} + 12 q^{58} - 72 q^{64} - 84 q^{76} + 80 q^{79} - 12 q^{82} - 12 q^{88} - 24 q^{94} + 24 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/936\mathbb{Z}\right)^\times\).

\(n\) \(145\) \(209\) \(469\) \(703\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.402157 1.35583i −0.284368 0.958715i
\(3\) 0 0
\(4\) −1.67654 + 1.09051i −0.838270 + 0.545256i
\(5\) −0.607438 −0.271655 −0.135827 0.990733i \(-0.543369\pi\)
−0.135827 + 0.990733i \(0.543369\pi\)
\(6\) 0 0
\(7\) −1.20493 + 0.695669i −0.455422 + 0.262938i −0.710117 0.704083i \(-0.751358\pi\)
0.254695 + 0.967021i \(0.418025\pi\)
\(8\) 2.15278 + 1.83454i 0.761122 + 0.648609i
\(9\) 0 0
\(10\) 0.244286 + 0.823582i 0.0772499 + 0.260439i
\(11\) 1.88561 3.26597i 0.568533 0.984729i −0.428178 0.903694i \(-0.640844\pi\)
0.996711 0.0810341i \(-0.0258223\pi\)
\(12\) 0 0
\(13\) −3.60551 + 0.0168667i −0.999989 + 0.00467797i
\(14\) 1.42778 + 1.35392i 0.381590 + 0.361849i
\(15\) 0 0
\(16\) 1.62157 3.65657i 0.405392 0.914143i
\(17\) −0.221643 0.383897i −0.0537563 0.0931087i 0.837895 0.545831i \(-0.183786\pi\)
−0.891651 + 0.452723i \(0.850453\pi\)
\(18\) 0 0
\(19\) 0.639519 + 1.10768i 0.146716 + 0.254119i 0.930012 0.367530i \(-0.119796\pi\)
−0.783296 + 0.621649i \(0.786463\pi\)
\(20\) 1.01839 0.662418i 0.227720 0.148121i
\(21\) 0 0
\(22\) −5.18641 1.24313i −1.10575 0.265036i
\(23\) −3.77493 + 6.53836i −0.787126 + 1.36334i 0.140594 + 0.990067i \(0.455099\pi\)
−0.927721 + 0.373275i \(0.878235\pi\)
\(24\) 0 0
\(25\) −4.63102 −0.926204
\(26\) 1.47285 + 4.88167i 0.288850 + 0.957374i
\(27\) 0 0
\(28\) 1.26148 2.48031i 0.238398 0.468735i
\(29\) 8.53815 + 4.92951i 1.58550 + 0.915386i 0.994036 + 0.109051i \(0.0347812\pi\)
0.591459 + 0.806335i \(0.298552\pi\)
\(30\) 0 0
\(31\) 7.17868i 1.28933i 0.764466 + 0.644664i \(0.223003\pi\)
−0.764466 + 0.644664i \(0.776997\pi\)
\(32\) −5.60981 0.728052i −0.991683 0.128703i
\(33\) 0 0
\(34\) −0.431363 + 0.454897i −0.0739781 + 0.0780141i
\(35\) 0.731923 0.422576i 0.123718 0.0714284i
\(36\) 0 0
\(37\) −2.09112 + 3.62192i −0.343777 + 0.595440i −0.985131 0.171806i \(-0.945040\pi\)
0.641353 + 0.767246i \(0.278373\pi\)
\(38\) 1.24464 1.31254i 0.201907 0.212922i
\(39\) 0 0
\(40\) −1.30768 1.11437i −0.206762 0.176197i
\(41\) 8.71354 + 5.03077i 1.36083 + 0.785674i 0.989734 0.142922i \(-0.0456498\pi\)
0.371093 + 0.928596i \(0.378983\pi\)
\(42\) 0 0
\(43\) −6.12848 + 3.53828i −0.934585 + 0.539583i −0.888259 0.459343i \(-0.848085\pi\)
−0.0463263 + 0.998926i \(0.514751\pi\)
\(44\) 0.400282 + 7.53182i 0.0603447 + 1.13546i
\(45\) 0 0
\(46\) 10.3830 + 2.48870i 1.53089 + 0.366939i
\(47\) 0.744154i 0.108546i −0.998526 0.0542730i \(-0.982716\pi\)
0.998526 0.0542730i \(-0.0172841\pi\)
\(48\) 0 0
\(49\) −2.53209 + 4.38571i −0.361727 + 0.626530i
\(50\) 1.86240 + 6.27887i 0.263383 + 0.887966i
\(51\) 0 0
\(52\) 6.02639 3.96013i 0.835710 0.549171i
\(53\) 1.24345i 0.170801i 0.996347 + 0.0854004i \(0.0272169\pi\)
−0.996347 + 0.0854004i \(0.972783\pi\)
\(54\) 0 0
\(55\) −1.14539 + 1.98388i −0.154445 + 0.267506i
\(56\) −3.87019 0.712881i −0.517176 0.0952627i
\(57\) 0 0
\(58\) 3.24988 13.5587i 0.426731 1.78034i
\(59\) −1.28264 2.22159i −0.166985 0.289227i 0.770373 0.637593i \(-0.220070\pi\)
−0.937358 + 0.348366i \(0.886737\pi\)
\(60\) 0 0
\(61\) 8.48782 4.90045i 1.08675 0.627438i 0.154044 0.988064i \(-0.450770\pi\)
0.932711 + 0.360626i \(0.117437\pi\)
\(62\) 9.73306 2.88696i 1.23610 0.366644i
\(63\) 0 0
\(64\) 1.26891 + 7.89873i 0.158614 + 0.987341i
\(65\) 2.19013 0.0102455i 0.271652 0.00127079i
\(66\) 0 0
\(67\) 5.06843 8.77877i 0.619207 1.07250i −0.370424 0.928863i \(-0.620788\pi\)
0.989631 0.143635i \(-0.0458791\pi\)
\(68\) 0.790237 + 0.401914i 0.0958303 + 0.0487392i
\(69\) 0 0
\(70\) −0.867288 0.822420i −0.103661 0.0982980i
\(71\) −7.40365 + 4.27450i −0.878652 + 0.507290i −0.870214 0.492675i \(-0.836019\pi\)
−0.00843816 + 0.999964i \(0.502686\pi\)
\(72\) 0 0
\(73\) 14.6006i 1.70887i 0.519556 + 0.854436i \(0.326097\pi\)
−0.519556 + 0.854436i \(0.673903\pi\)
\(74\) 5.75166 + 1.37861i 0.668617 + 0.160261i
\(75\) 0 0
\(76\) −2.28012 1.15966i −0.261547 0.133023i
\(77\) 5.24705i 0.597956i
\(78\) 0 0
\(79\) −12.7982 −1.43991 −0.719957 0.694019i \(-0.755839\pi\)
−0.719957 + 0.694019i \(0.755839\pi\)
\(80\) −0.985003 + 2.22114i −0.110127 + 0.248331i
\(81\) 0 0
\(82\) 3.31664 13.8372i 0.366262 1.52807i
\(83\) −6.19029 −0.679472 −0.339736 0.940521i \(-0.610338\pi\)
−0.339736 + 0.940521i \(0.610338\pi\)
\(84\) 0 0
\(85\) 0.134634 + 0.233194i 0.0146032 + 0.0252934i
\(86\) 7.26192 + 6.88623i 0.783072 + 0.742561i
\(87\) 0 0
\(88\) 10.0509 3.57169i 1.07143 0.380743i
\(89\) −0.530897 0.306513i −0.0562749 0.0324903i 0.471599 0.881813i \(-0.343677\pi\)
−0.527873 + 0.849323i \(0.677010\pi\)
\(90\) 0 0
\(91\) 4.33267 2.52857i 0.454187 0.265066i
\(92\) −0.801349 15.0784i −0.0835465 1.57203i
\(93\) 0 0
\(94\) −1.00894 + 0.299267i −0.104065 + 0.0308670i
\(95\) −0.388468 0.672847i −0.0398560 0.0690326i
\(96\) 0 0
\(97\) −5.74744 + 3.31829i −0.583564 + 0.336921i −0.762548 0.646931i \(-0.776052\pi\)
0.178985 + 0.983852i \(0.442719\pi\)
\(98\) 6.96456 + 1.66933i 0.703527 + 0.168628i
\(99\) 0 0
\(100\) 7.76409 5.05018i 0.776409 0.505018i
\(101\) 2.00337 + 1.15665i 0.199343 + 0.115091i 0.596349 0.802725i \(-0.296617\pi\)
−0.397006 + 0.917816i \(0.629951\pi\)
\(102\) 0 0
\(103\) 10.1914 1.00419 0.502093 0.864813i \(-0.332563\pi\)
0.502093 + 0.864813i \(0.332563\pi\)
\(104\) −7.79281 6.57815i −0.764148 0.645041i
\(105\) 0 0
\(106\) 1.68590 0.500062i 0.163749 0.0485703i
\(107\) −4.89156 2.82414i −0.472885 0.273020i 0.244562 0.969634i \(-0.421356\pi\)
−0.717447 + 0.696614i \(0.754689\pi\)
\(108\) 0 0
\(109\) 2.83631 0.271670 0.135835 0.990731i \(-0.456628\pi\)
0.135835 + 0.990731i \(0.456628\pi\)
\(110\) 3.15042 + 0.755125i 0.300381 + 0.0719983i
\(111\) 0 0
\(112\) 0.589880 + 5.53400i 0.0557384 + 0.522914i
\(113\) −5.35973 9.28332i −0.504201 0.873301i −0.999988 0.00485717i \(-0.998454\pi\)
0.495788 0.868444i \(-0.334879\pi\)
\(114\) 0 0
\(115\) 2.29303 3.97165i 0.213826 0.370358i
\(116\) −19.6902 + 1.04645i −1.82819 + 0.0971601i
\(117\) 0 0
\(118\) −2.49628 + 2.63246i −0.229801 + 0.242338i
\(119\) 0.534130 + 0.308380i 0.0489636 + 0.0282692i
\(120\) 0 0
\(121\) −1.61106 2.79044i −0.146460 0.253676i
\(122\) −10.0576 9.53728i −0.910573 0.863465i
\(123\) 0 0
\(124\) −7.82843 12.0353i −0.703014 1.08081i
\(125\) 5.85025 0.523262
\(126\) 0 0
\(127\) −6.18684 + 10.7159i −0.548993 + 0.950884i 0.449351 + 0.893355i \(0.351655\pi\)
−0.998344 + 0.0575284i \(0.981678\pi\)
\(128\) 10.1990 4.89695i 0.901474 0.432834i
\(129\) 0 0
\(130\) −0.894665 2.96531i −0.0784673 0.260075i
\(131\) 16.1582i 1.41175i −0.708338 0.705873i \(-0.750555\pi\)
0.708338 0.705873i \(-0.249445\pi\)
\(132\) 0 0
\(133\) −1.54116 0.889787i −0.133635 0.0771543i
\(134\) −13.9408 3.34147i −1.20430 0.288659i
\(135\) 0 0
\(136\) 0.227127 1.23306i 0.0194760 0.105734i
\(137\) 15.8390 9.14467i 1.35322 0.781282i 0.364520 0.931195i \(-0.381233\pi\)
0.988699 + 0.149914i \(0.0478996\pi\)
\(138\) 0 0
\(139\) −9.71715 + 5.61020i −0.824198 + 0.475851i −0.851862 0.523766i \(-0.824526\pi\)
0.0276641 + 0.999617i \(0.491193\pi\)
\(140\) −0.766274 + 1.50664i −0.0647619 + 0.127334i
\(141\) 0 0
\(142\) 8.77292 + 8.31906i 0.736207 + 0.698120i
\(143\) −6.74351 + 11.8073i −0.563921 + 0.987377i
\(144\) 0 0
\(145\) −5.18640 2.99437i −0.430707 0.248669i
\(146\) 19.7959 5.87174i 1.63832 0.485949i
\(147\) 0 0
\(148\) −0.443907 8.35268i −0.0364889 0.686586i
\(149\) 4.36154 + 7.55442i 0.357312 + 0.618882i 0.987511 0.157552i \(-0.0503601\pi\)
−0.630199 + 0.776434i \(0.717027\pi\)
\(150\) 0 0
\(151\) 6.78085i 0.551818i 0.961184 + 0.275909i \(0.0889788\pi\)
−0.961184 + 0.275909i \(0.911021\pi\)
\(152\) −0.655342 + 3.55781i −0.0531552 + 0.288577i
\(153\) 0 0
\(154\) 7.11409 2.11014i 0.573270 0.170040i
\(155\) 4.36060i 0.350252i
\(156\) 0 0
\(157\) 6.32660i 0.504917i 0.967608 + 0.252459i \(0.0812392\pi\)
−0.967608 + 0.252459i \(0.918761\pi\)
\(158\) 5.14690 + 17.3522i 0.409466 + 1.38047i
\(159\) 0 0
\(160\) 3.40761 + 0.442247i 0.269395 + 0.0349627i
\(161\) 10.5044i 0.827862i
\(162\) 0 0
\(163\) 7.96740 + 13.7999i 0.624055 + 1.08089i 0.988723 + 0.149757i \(0.0478491\pi\)
−0.364668 + 0.931138i \(0.618818\pi\)
\(164\) −20.0947 + 1.06794i −1.56913 + 0.0833923i
\(165\) 0 0
\(166\) 2.48947 + 8.39297i 0.193220 + 0.651421i
\(167\) −8.45328 4.88050i −0.654134 0.377665i 0.135904 0.990722i \(-0.456606\pi\)
−0.790038 + 0.613057i \(0.789939\pi\)
\(168\) 0 0
\(169\) 12.9994 0.121626i 0.999956 0.00935584i
\(170\) 0.262026 0.276322i 0.0200965 0.0211929i
\(171\) 0 0
\(172\) 6.41611 12.6153i 0.489224 0.961904i
\(173\) −11.1480 + 6.43628i −0.847564 + 0.489342i −0.859828 0.510583i \(-0.829429\pi\)
0.0122640 + 0.999925i \(0.496096\pi\)
\(174\) 0 0
\(175\) 5.58007 3.22166i 0.421814 0.243534i
\(176\) −8.88462 12.1909i −0.669704 0.918922i
\(177\) 0 0
\(178\) −0.202075 + 0.843071i −0.0151462 + 0.0631908i
\(179\) 5.63716 + 3.25461i 0.421341 + 0.243261i 0.695651 0.718380i \(-0.255116\pi\)
−0.274310 + 0.961641i \(0.588449\pi\)
\(180\) 0 0
\(181\) 16.7439i 1.24457i −0.782793 0.622283i \(-0.786205\pi\)
0.782793 0.622283i \(-0.213795\pi\)
\(182\) −5.17071 4.85748i −0.383279 0.360060i
\(183\) 0 0
\(184\) −20.1215 + 7.15039i −1.48338 + 0.527133i
\(185\) 1.27022 2.20009i 0.0933887 0.161754i
\(186\) 0 0
\(187\) −1.67173 −0.122249
\(188\) 0.811508 + 1.24760i 0.0591853 + 0.0909908i
\(189\) 0 0
\(190\) −0.756039 + 0.797286i −0.0548488 + 0.0578412i
\(191\) −7.38796 12.7963i −0.534574 0.925910i −0.999184 0.0403942i \(-0.987139\pi\)
0.464609 0.885516i \(-0.346195\pi\)
\(192\) 0 0
\(193\) 8.52397 + 4.92132i 0.613569 + 0.354244i 0.774361 0.632744i \(-0.218072\pi\)
−0.160792 + 0.986988i \(0.551405\pi\)
\(194\) 6.81040 + 6.45807i 0.488958 + 0.463662i
\(195\) 0 0
\(196\) −0.537518 10.1141i −0.0383941 0.722435i
\(197\) −4.97689 + 8.62022i −0.354588 + 0.614165i −0.987047 0.160429i \(-0.948712\pi\)
0.632459 + 0.774594i \(0.282046\pi\)
\(198\) 0 0
\(199\) −3.12577 5.41400i −0.221580 0.383788i 0.733708 0.679465i \(-0.237788\pi\)
−0.955288 + 0.295677i \(0.904455\pi\)
\(200\) −9.96956 8.49580i −0.704954 0.600744i
\(201\) 0 0
\(202\) 0.762545 3.18138i 0.0536524 0.223841i
\(203\) −13.7172 −0.962760
\(204\) 0 0
\(205\) −5.29294 3.05588i −0.369675 0.213432i
\(206\) −4.09854 13.8178i −0.285559 0.962729i
\(207\) 0 0
\(208\) −5.78491 + 13.2112i −0.401111 + 0.916029i
\(209\) 4.82354 0.333651
\(210\) 0 0
\(211\) −3.63050 2.09607i −0.249934 0.144299i 0.369800 0.929111i \(-0.379426\pi\)
−0.619734 + 0.784812i \(0.712759\pi\)
\(212\) −1.35600 2.08469i −0.0931301 0.143177i
\(213\) 0 0
\(214\) −1.86188 + 7.76786i −0.127275 + 0.531000i
\(215\) 3.72267 2.14929i 0.253884 0.146580i
\(216\) 0 0
\(217\) −4.99398 8.64984i −0.339014 0.587189i
\(218\) −1.14064 3.84555i −0.0772542 0.260454i
\(219\) 0 0
\(220\) −0.243146 4.57511i −0.0163929 0.308454i
\(221\) 0.805611 + 1.38041i 0.0541913 + 0.0928562i
\(222\) 0 0
\(223\) −12.3436 7.12658i −0.826588 0.477231i 0.0260950 0.999659i \(-0.491693\pi\)
−0.852683 + 0.522429i \(0.825026\pi\)
\(224\) 7.26593 3.02531i 0.485475 0.202137i
\(225\) 0 0
\(226\) −10.4311 + 11.0002i −0.693868 + 0.731724i
\(227\) −13.3737 23.1640i −0.887645 1.53745i −0.842651 0.538459i \(-0.819006\pi\)
−0.0449939 0.998987i \(-0.514327\pi\)
\(228\) 0 0
\(229\) −12.3227 −0.814307 −0.407153 0.913360i \(-0.633479\pi\)
−0.407153 + 0.913360i \(0.633479\pi\)
\(230\) −6.30703 1.51173i −0.415874 0.0996806i
\(231\) 0 0
\(232\) 9.33737 + 26.2757i 0.613028 + 1.72509i
\(233\) 15.9484 1.04482 0.522408 0.852696i \(-0.325034\pi\)
0.522408 + 0.852696i \(0.325034\pi\)
\(234\) 0 0
\(235\) 0.452027i 0.0294870i
\(236\) 4.57306 + 2.32586i 0.297681 + 0.151400i
\(237\) 0 0
\(238\) 0.203306 0.848206i 0.0131784 0.0549810i
\(239\) 14.8036i 0.957562i 0.877934 + 0.478781i \(0.158921\pi\)
−0.877934 + 0.478781i \(0.841079\pi\)
\(240\) 0 0
\(241\) −4.83757 + 2.79297i −0.311615 + 0.179911i −0.647649 0.761939i \(-0.724248\pi\)
0.336034 + 0.941850i \(0.390914\pi\)
\(242\) −3.13546 + 3.30652i −0.201555 + 0.212551i
\(243\) 0 0
\(244\) −8.88618 + 17.4719i −0.568879 + 1.11852i
\(245\) 1.53809 2.66405i 0.0982648 0.170200i
\(246\) 0 0
\(247\) −2.32448 3.98296i −0.147903 0.253430i
\(248\) −13.1696 + 15.4541i −0.836270 + 0.981337i
\(249\) 0 0
\(250\) −2.35272 7.93193i −0.148799 0.501659i
\(251\) −18.6990 + 10.7959i −1.18027 + 0.681429i −0.956077 0.293116i \(-0.905308\pi\)
−0.224193 + 0.974545i \(0.571974\pi\)
\(252\) 0 0
\(253\) 14.2361 + 24.6576i 0.895015 + 1.55021i
\(254\) 17.0170 + 4.07881i 1.06774 + 0.255927i
\(255\) 0 0
\(256\) −10.7410 11.8588i −0.671314 0.741173i
\(257\) 6.46366 11.1954i 0.403192 0.698349i −0.590917 0.806732i \(-0.701234\pi\)
0.994109 + 0.108383i \(0.0345673\pi\)
\(258\) 0 0
\(259\) 5.81890i 0.361569i
\(260\) −3.66066 + 2.40553i −0.227024 + 0.149185i
\(261\) 0 0
\(262\) −21.9077 + 6.49812i −1.35346 + 0.401455i
\(263\) 8.54722 14.8042i 0.527044 0.912868i −0.472459 0.881353i \(-0.656633\pi\)
0.999503 0.0315150i \(-0.0100332\pi\)
\(264\) 0 0
\(265\) 0.755318i 0.0463988i
\(266\) −0.586611 + 2.44738i −0.0359674 + 0.150058i
\(267\) 0 0
\(268\) 1.07594 + 20.2451i 0.0657233 + 1.23667i
\(269\) 2.39036 1.38007i 0.145743 0.0841446i −0.425355 0.905026i \(-0.639851\pi\)
0.571098 + 0.820882i \(0.306518\pi\)
\(270\) 0 0
\(271\) 6.76352 + 3.90492i 0.410854 + 0.237207i 0.691157 0.722705i \(-0.257101\pi\)
−0.280302 + 0.959912i \(0.590435\pi\)
\(272\) −1.76316 + 0.187938i −0.106907 + 0.0113954i
\(273\) 0 0
\(274\) −18.7684 17.7974i −1.13384 1.07518i
\(275\) −8.73230 + 15.1248i −0.526578 + 0.912059i
\(276\) 0 0
\(277\) −24.0189 + 13.8673i −1.44315 + 0.833205i −0.998059 0.0622790i \(-0.980163\pi\)
−0.445094 + 0.895484i \(0.646830\pi\)
\(278\) 11.5143 + 10.9186i 0.690581 + 0.654854i
\(279\) 0 0
\(280\) 2.35090 + 0.433031i 0.140493 + 0.0258786i
\(281\) 2.44676i 0.145961i 0.997333 + 0.0729806i \(0.0232511\pi\)
−0.997333 + 0.0729806i \(0.976749\pi\)
\(282\) 0 0
\(283\) −22.1821 12.8069i −1.31859 0.761289i −0.335090 0.942186i \(-0.608767\pi\)
−0.983502 + 0.180897i \(0.942100\pi\)
\(284\) 7.75112 15.2401i 0.459944 0.904336i
\(285\) 0 0
\(286\) 18.7206 + 4.39464i 1.10697 + 0.259861i
\(287\) −13.9990 −0.826334
\(288\) 0 0
\(289\) 8.40175 14.5523i 0.494221 0.856015i
\(290\) −1.97410 + 8.23607i −0.115923 + 0.483639i
\(291\) 0 0
\(292\) −15.9221 24.4785i −0.931773 1.43250i
\(293\) 10.8730 + 18.8325i 0.635205 + 1.10021i 0.986472 + 0.163932i \(0.0524177\pi\)
−0.351267 + 0.936275i \(0.614249\pi\)
\(294\) 0 0
\(295\) 0.779123 + 1.34948i 0.0453623 + 0.0785698i
\(296\) −11.1463 + 3.96095i −0.647864 + 0.230226i
\(297\) 0 0
\(298\) 8.48846 8.95157i 0.491724 0.518550i
\(299\) 13.5003 23.6378i 0.780740 1.36701i
\(300\) 0 0
\(301\) 4.92295 8.52679i 0.283754 0.491476i
\(302\) 9.19366 2.72697i 0.529036 0.156919i
\(303\) 0 0
\(304\) 5.08733 0.542269i 0.291778 0.0311012i
\(305\) −5.15583 + 2.97672i −0.295222 + 0.170446i
\(306\) 0 0
\(307\) 0.632102 0.0360760 0.0180380 0.999837i \(-0.494258\pi\)
0.0180380 + 0.999837i \(0.494258\pi\)
\(308\) −5.72196 8.79688i −0.326039 0.501249i
\(309\) 0 0
\(310\) −5.91223 + 1.75365i −0.335792 + 0.0996005i
\(311\) −29.0266 −1.64595 −0.822975 0.568078i \(-0.807687\pi\)
−0.822975 + 0.568078i \(0.807687\pi\)
\(312\) 0 0
\(313\) −22.4588 −1.26945 −0.634723 0.772740i \(-0.718886\pi\)
−0.634723 + 0.772740i \(0.718886\pi\)
\(314\) 8.57777 2.54428i 0.484072 0.143582i
\(315\) 0 0
\(316\) 21.4567 13.9566i 1.20704 0.785122i
\(317\) −17.1312 −0.962182 −0.481091 0.876671i \(-0.659759\pi\)
−0.481091 + 0.876671i \(0.659759\pi\)
\(318\) 0 0
\(319\) 32.1993 18.5903i 1.80281 1.04085i
\(320\) −0.770784 4.79799i −0.0430882 0.268216i
\(321\) 0 0
\(322\) −14.2422 + 4.22442i −0.793684 + 0.235418i
\(323\) 0.283490 0.491019i 0.0157738 0.0273210i
\(324\) 0 0
\(325\) 16.6972 0.0781098i 0.926194 0.00433275i
\(326\) 15.5062 16.3522i 0.858809 0.905662i
\(327\) 0 0
\(328\) 9.52917 + 26.8155i 0.526161 + 1.48064i
\(329\) 0.517685 + 0.896656i 0.0285409 + 0.0494342i
\(330\) 0 0
\(331\) 14.8274 + 25.6818i 0.814988 + 1.41160i 0.909336 + 0.416061i \(0.136590\pi\)
−0.0943484 + 0.995539i \(0.530077\pi\)
\(332\) 10.3783 6.75058i 0.569581 0.370486i
\(333\) 0 0
\(334\) −3.21758 + 13.4239i −0.176058 + 0.734524i
\(335\) −3.07876 + 5.33256i −0.168210 + 0.291349i
\(336\) 0 0
\(337\) 15.9922 0.871151 0.435576 0.900152i \(-0.356545\pi\)
0.435576 + 0.900152i \(0.356545\pi\)
\(338\) −5.39272 17.5761i −0.293325 0.956013i
\(339\) 0 0
\(340\) −0.480020 0.244138i −0.0260328 0.0132402i
\(341\) 23.4454 + 13.5362i 1.26964 + 0.733026i
\(342\) 0 0
\(343\) 16.7854i 0.906324i
\(344\) −19.6844 3.62583i −1.06131 0.195491i
\(345\) 0 0
\(346\) 13.2097 + 12.5263i 0.710159 + 0.673420i
\(347\) 19.6305 11.3337i 1.05382 0.608425i 0.130106 0.991500i \(-0.458468\pi\)
0.923717 + 0.383075i \(0.125135\pi\)
\(348\) 0 0
\(349\) 5.28130 9.14748i 0.282702 0.489654i −0.689348 0.724431i \(-0.742103\pi\)
0.972049 + 0.234777i \(0.0754360\pi\)
\(350\) −6.61208 6.27001i −0.353430 0.335146i
\(351\) 0 0
\(352\) −12.9557 + 16.9487i −0.690542 + 0.903367i
\(353\) 15.7134 + 9.07213i 0.836339 + 0.482861i 0.856018 0.516946i \(-0.172931\pi\)
−0.0196788 + 0.999806i \(0.506264\pi\)
\(354\) 0 0
\(355\) 4.49726 2.59649i 0.238690 0.137808i
\(356\) 1.22433 0.0650673i 0.0648891 0.00344856i
\(357\) 0 0
\(358\) 2.14568 8.95188i 0.113402 0.473122i
\(359\) 11.4614i 0.604908i 0.953164 + 0.302454i \(0.0978059\pi\)
−0.953164 + 0.302454i \(0.902194\pi\)
\(360\) 0 0
\(361\) 8.68203 15.0377i 0.456949 0.791459i
\(362\) −22.7019 + 6.73368i −1.19318 + 0.353915i
\(363\) 0 0
\(364\) −4.50646 + 8.96407i −0.236203 + 0.469845i
\(365\) 8.86897i 0.464223i
\(366\) 0 0
\(367\) 7.93899 13.7507i 0.414412 0.717783i −0.580954 0.813936i \(-0.697321\pi\)
0.995367 + 0.0961533i \(0.0306539\pi\)
\(368\) 17.7867 + 24.4057i 0.927195 + 1.27223i
\(369\) 0 0
\(370\) −3.49378 0.837423i −0.181633 0.0435355i
\(371\) −0.865029 1.49827i −0.0449100 0.0777865i
\(372\) 0 0
\(373\) 5.40748 3.12201i 0.279989 0.161652i −0.353430 0.935461i \(-0.614985\pi\)
0.633418 + 0.773810i \(0.281651\pi\)
\(374\) 0.672298 + 2.26658i 0.0347637 + 0.117202i
\(375\) 0 0
\(376\) 1.36518 1.60200i 0.0704038 0.0826167i
\(377\) −30.8676 17.6294i −1.58976 0.907959i
\(378\) 0 0
\(379\) −4.01932 + 6.96166i −0.206459 + 0.357597i −0.950596 0.310429i \(-0.899527\pi\)
0.744138 + 0.668026i \(0.232861\pi\)
\(380\) 1.38503 + 0.704425i 0.0710505 + 0.0361362i
\(381\) 0 0
\(382\) −14.3785 + 15.1629i −0.735668 + 0.775804i
\(383\) 22.7884 13.1569i 1.16443 0.672285i 0.212070 0.977254i \(-0.431979\pi\)
0.952362 + 0.304969i \(0.0986461\pi\)
\(384\) 0 0
\(385\) 3.18726i 0.162438i
\(386\) 3.24448 13.5362i 0.165140 0.688973i
\(387\) 0 0
\(388\) 6.01718 11.8309i 0.305476 0.600622i
\(389\) 25.3042i 1.28297i −0.767135 0.641486i \(-0.778318\pi\)
0.767135 0.641486i \(-0.221682\pi\)
\(390\) 0 0
\(391\) 3.34674 0.169252
\(392\) −13.4968 + 4.79623i −0.681691 + 0.242246i
\(393\) 0 0
\(394\) 13.6890 + 3.28112i 0.689643 + 0.165300i
\(395\) 7.77414 0.391159
\(396\) 0 0
\(397\) −6.97567 12.0822i −0.350099 0.606389i 0.636168 0.771551i \(-0.280519\pi\)
−0.986266 + 0.165162i \(0.947185\pi\)
\(398\) −6.08340 + 6.41529i −0.304933 + 0.321569i
\(399\) 0 0
\(400\) −7.50952 + 16.9337i −0.375476 + 0.846683i
\(401\) 16.3156 + 9.41984i 0.814764 + 0.470404i 0.848608 0.529023i \(-0.177441\pi\)
−0.0338433 + 0.999427i \(0.510775\pi\)
\(402\) 0 0
\(403\) −0.121080 25.8828i −0.00603144 1.28931i
\(404\) −4.62007 + 0.245536i −0.229857 + 0.0122159i
\(405\) 0 0
\(406\) 5.51648 + 18.5982i 0.273778 + 0.923012i
\(407\) 7.88607 + 13.6591i 0.390898 + 0.677055i
\(408\) 0 0
\(409\) 26.4746 15.2851i 1.30909 0.755802i 0.327143 0.944975i \(-0.393914\pi\)
0.981944 + 0.189173i \(0.0605808\pi\)
\(410\) −2.01465 + 8.40526i −0.0994967 + 0.415106i
\(411\) 0 0
\(412\) −17.0863 + 11.1138i −0.841779 + 0.547539i
\(413\) 3.09099 + 1.78458i 0.152097 + 0.0878135i
\(414\) 0 0
\(415\) 3.76022 0.184582
\(416\) 20.2385 + 2.53038i 0.992274 + 0.124062i
\(417\) 0 0
\(418\) −1.93982 6.53989i −0.0948797 0.319876i
\(419\) 15.6360 + 9.02746i 0.763870 + 0.441020i 0.830683 0.556745i \(-0.187950\pi\)
−0.0668136 + 0.997765i \(0.521283\pi\)
\(420\) 0 0
\(421\) 14.1711 0.690659 0.345330 0.938481i \(-0.387767\pi\)
0.345330 + 0.938481i \(0.387767\pi\)
\(422\) −1.38188 + 5.76528i −0.0672688 + 0.280649i
\(423\) 0 0
\(424\) −2.28116 + 2.67687i −0.110783 + 0.130000i
\(425\) 1.02643 + 1.77783i 0.0497893 + 0.0862376i
\(426\) 0 0
\(427\) −6.81818 + 11.8094i −0.329955 + 0.571498i
\(428\) 11.2807 0.599515i 0.545271 0.0289787i
\(429\) 0 0
\(430\) −4.41116 4.18296i −0.212725 0.201720i
\(431\) 11.4213 + 6.59410i 0.550146 + 0.317627i 0.749181 0.662366i \(-0.230447\pi\)
−0.199035 + 0.979992i \(0.563781\pi\)
\(432\) 0 0
\(433\) −1.91654 3.31955i −0.0921032 0.159527i 0.816293 0.577638i \(-0.196026\pi\)
−0.908396 + 0.418111i \(0.862692\pi\)
\(434\) −9.71932 + 10.2496i −0.466542 + 0.491995i
\(435\) 0 0
\(436\) −4.75519 + 3.09303i −0.227732 + 0.148129i
\(437\) −9.65654 −0.461935
\(438\) 0 0
\(439\) 3.86604 6.69617i 0.184516 0.319591i −0.758897 0.651210i \(-0.774262\pi\)
0.943413 + 0.331619i \(0.107595\pi\)
\(440\) −6.10528 + 2.16958i −0.291058 + 0.103431i
\(441\) 0 0
\(442\) 1.54761 1.64741i 0.0736124 0.0783593i
\(443\) 14.6984i 0.698341i 0.937059 + 0.349171i \(0.113537\pi\)
−0.937059 + 0.349171i \(0.886463\pi\)
\(444\) 0 0
\(445\) 0.322487 + 0.186188i 0.0152873 + 0.00882615i
\(446\) −4.69835 + 19.6018i −0.222473 + 0.928172i
\(447\) 0 0
\(448\) −7.02385 8.63470i −0.331846 0.407951i
\(449\) −24.9869 + 14.4262i −1.17921 + 0.680815i −0.955831 0.293918i \(-0.905041\pi\)
−0.223375 + 0.974733i \(0.571707\pi\)
\(450\) 0 0
\(451\) 32.8607 18.9721i 1.54735 0.893363i
\(452\) 19.1094 + 9.71900i 0.898828 + 0.457143i
\(453\) 0 0
\(454\) −26.0280 + 27.4480i −1.22156 + 1.28820i
\(455\) −2.63183 + 1.53595i −0.123382 + 0.0720063i
\(456\) 0 0
\(457\) 1.56292 + 0.902350i 0.0731101 + 0.0422101i 0.536109 0.844148i \(-0.319893\pi\)
−0.462999 + 0.886359i \(0.653227\pi\)
\(458\) 4.95566 + 16.7075i 0.231563 + 0.780688i
\(459\) 0 0
\(460\) 0.486770 + 9.15921i 0.0226958 + 0.427050i
\(461\) 4.96927 + 8.60703i 0.231442 + 0.400869i 0.958233 0.285990i \(-0.0923223\pi\)
−0.726791 + 0.686859i \(0.758989\pi\)
\(462\) 0 0
\(463\) 13.9156i 0.646713i 0.946277 + 0.323357i \(0.104811\pi\)
−0.946277 + 0.323357i \(0.895189\pi\)
\(464\) 31.8703 23.2268i 1.47954 1.07828i
\(465\) 0 0
\(466\) −6.41377 21.6233i −0.297112 1.00168i
\(467\) 24.8188i 1.14848i 0.818688 + 0.574238i \(0.194702\pi\)
−0.818688 + 0.574238i \(0.805298\pi\)
\(468\) 0 0
\(469\) 14.1038i 0.651252i
\(470\) 0.612871 0.181786i 0.0282696 0.00838516i
\(471\) 0 0
\(472\) 1.31437 7.13565i 0.0604989 0.328445i
\(473\) 26.6873i 1.22708i
\(474\) 0 0
\(475\) −2.96162 5.12968i −0.135889 0.235366i
\(476\) −1.23178 + 0.0654637i −0.0564587 + 0.00300052i
\(477\) 0 0
\(478\) 20.0711 5.95335i 0.918029 0.272300i
\(479\) 2.86620 + 1.65480i 0.130960 + 0.0756098i 0.564049 0.825742i \(-0.309243\pi\)
−0.433089 + 0.901351i \(0.642576\pi\)
\(480\) 0 0
\(481\) 7.47846 13.0941i 0.340988 0.597042i
\(482\) 5.73225 + 5.43570i 0.261097 + 0.247589i
\(483\) 0 0
\(484\) 5.74402 + 2.92140i 0.261092 + 0.132791i
\(485\) 3.49121 2.01565i 0.158528 0.0915261i
\(486\) 0 0
\(487\) −15.2421 + 8.80006i −0.690688 + 0.398769i −0.803870 0.594806i \(-0.797229\pi\)
0.113182 + 0.993574i \(0.463896\pi\)
\(488\) 27.2625 + 5.02169i 1.23411 + 0.227321i
\(489\) 0 0
\(490\) −4.23054 1.01402i −0.191116 0.0458086i
\(491\) −2.71307 1.56639i −0.122439 0.0706902i 0.437530 0.899204i \(-0.355854\pi\)
−0.559969 + 0.828514i \(0.689187\pi\)
\(492\) 0 0
\(493\) 4.37036i 0.196831i
\(494\) −4.46541 + 4.75337i −0.200908 + 0.213864i
\(495\) 0 0
\(496\) 26.2494 + 11.6407i 1.17863 + 0.522684i
\(497\) 5.94727 10.3010i 0.266772 0.462062i
\(498\) 0 0
\(499\) 41.9672 1.87871 0.939354 0.342948i \(-0.111425\pi\)
0.939354 + 0.342948i \(0.111425\pi\)
\(500\) −9.80817 + 6.37976i −0.438635 + 0.285312i
\(501\) 0 0
\(502\) 22.1573 + 21.0110i 0.988927 + 0.937766i
\(503\) 14.4037 + 24.9479i 0.642229 + 1.11237i 0.984934 + 0.172930i \(0.0553233\pi\)
−0.342706 + 0.939443i \(0.611343\pi\)
\(504\) 0 0
\(505\) −1.21692 0.702591i −0.0541524 0.0312649i
\(506\) 27.7064 29.2179i 1.23170 1.29890i
\(507\) 0 0
\(508\) −1.31336 24.7125i −0.0582707 1.09644i
\(509\) 0.876217 1.51765i 0.0388376 0.0672688i −0.845953 0.533257i \(-0.820968\pi\)
0.884791 + 0.465988i \(0.154301\pi\)
\(510\) 0 0
\(511\) −10.1572 17.5928i −0.449328 0.778258i
\(512\) −11.7589 + 19.3321i −0.519673 + 0.854365i
\(513\) 0 0
\(514\) −17.7784 4.26131i −0.784173 0.187958i
\(515\) −6.19063 −0.272792
\(516\) 0 0
\(517\) −2.43039 1.40318i −0.106888 0.0617120i
\(518\) −7.88943 + 2.34011i −0.346642 + 0.102819i
\(519\) 0 0
\(520\) 4.73365 + 3.99582i 0.207584 + 0.175228i
\(521\) −26.8545 −1.17652 −0.588259 0.808673i \(-0.700186\pi\)
−0.588259 + 0.808673i \(0.700186\pi\)
\(522\) 0 0
\(523\) −16.1132 9.30294i −0.704580 0.406789i 0.104471 0.994528i \(-0.466685\pi\)
−0.809051 + 0.587739i \(0.800018\pi\)
\(524\) 17.6207 + 27.0898i 0.769763 + 1.18342i
\(525\) 0 0
\(526\) −23.5093 5.63494i −1.02505 0.245695i
\(527\) 2.75587 1.59110i 0.120048 0.0693096i
\(528\) 0 0
\(529\) −17.0001 29.4451i −0.739136 1.28022i
\(530\) −1.02408 + 0.303756i −0.0444832 + 0.0131943i
\(531\) 0 0
\(532\) 3.55413 0.188886i 0.154091 0.00818924i
\(533\) −31.5016 17.9915i −1.36449 0.779299i
\(534\) 0 0
\(535\) 2.97132 + 1.71549i 0.128461 + 0.0741672i
\(536\) 27.0162 9.60051i 1.16692 0.414679i
\(537\) 0 0
\(538\) −2.83244 2.68591i −0.122115 0.115798i
\(539\) 9.54907 + 16.5395i 0.411308 + 0.712406i
\(540\) 0 0
\(541\) −27.0675 −1.16372 −0.581862 0.813287i \(-0.697676\pi\)
−0.581862 + 0.813287i \(0.697676\pi\)
\(542\) 2.57440 10.7406i 0.110580 0.461346i
\(543\) 0 0
\(544\) 0.963877 + 2.31496i 0.0413259 + 0.0992529i
\(545\) −1.72289 −0.0738003
\(546\) 0 0
\(547\) 17.2928i 0.739386i 0.929154 + 0.369693i \(0.120537\pi\)
−0.929154 + 0.369693i \(0.879463\pi\)
\(548\) −16.5824 + 32.6040i −0.708365 + 1.39278i
\(549\) 0 0
\(550\) 24.0184 + 5.75696i 1.02415 + 0.245478i
\(551\) 12.6100i 0.537206i
\(552\) 0 0
\(553\) 15.4210 8.90334i 0.655769 0.378608i
\(554\) 28.4610 + 26.9886i 1.20919 + 1.14664i
\(555\) 0 0
\(556\) 10.1732 20.0024i 0.431440 0.848290i
\(557\) 14.2320 24.6506i 0.603031 1.04448i −0.389328 0.921099i \(-0.627293\pi\)
0.992359 0.123382i \(-0.0393739\pi\)
\(558\) 0 0
\(559\) 22.0366 12.8607i 0.932051 0.543949i
\(560\) −0.358316 3.36156i −0.0151416 0.142052i
\(561\) 0 0
\(562\) 3.31738 0.983981i 0.139935 0.0415067i
\(563\) 30.7791 17.7703i 1.29719 0.748931i 0.317269 0.948336i \(-0.397234\pi\)
0.979917 + 0.199405i \(0.0639009\pi\)
\(564\) 0 0
\(565\) 3.25570 + 5.63904i 0.136968 + 0.237236i
\(566\) −8.44320 + 35.2256i −0.354894 + 1.48064i
\(567\) 0 0
\(568\) −23.7802 4.38026i −0.997794 0.183792i
\(569\) 8.05172 13.9460i 0.337546 0.584646i −0.646425 0.762978i \(-0.723737\pi\)
0.983970 + 0.178332i \(0.0570700\pi\)
\(570\) 0 0
\(571\) 12.5382i 0.524709i 0.964972 + 0.262354i \(0.0844989\pi\)
−0.964972 + 0.262354i \(0.915501\pi\)
\(572\) −1.57026 27.1493i −0.0656558 1.13517i
\(573\) 0 0
\(574\) 5.62979 + 18.9802i 0.234983 + 0.792219i
\(575\) 17.4818 30.2793i 0.729039 1.26273i
\(576\) 0 0
\(577\) 21.9913i 0.915508i 0.889079 + 0.457754i \(0.151346\pi\)
−0.889079 + 0.457754i \(0.848654\pi\)
\(578\) −23.1092 5.53903i −0.961215 0.230393i
\(579\) 0 0
\(580\) 11.9606 0.635651i 0.496637 0.0263940i
\(581\) 7.45889 4.30639i 0.309447 0.178659i
\(582\) 0 0
\(583\) 4.06107 + 2.34466i 0.168192 + 0.0971059i
\(584\) −26.7854 + 31.4319i −1.10839 + 1.30066i
\(585\) 0 0
\(586\) 21.1610 22.3155i 0.874153 0.921844i
\(587\) −10.2081 + 17.6809i −0.421332 + 0.729768i −0.996070 0.0885691i \(-0.971771\pi\)
0.574738 + 0.818337i \(0.305104\pi\)
\(588\) 0 0
\(589\) −7.95167 + 4.59090i −0.327643 + 0.189165i
\(590\) 1.51633 1.59906i 0.0624264 0.0658322i
\(591\) 0 0
\(592\) 9.85292 + 13.5195i 0.404953 + 0.555648i
\(593\) 47.9756i 1.97012i 0.172205 + 0.985061i \(0.444911\pi\)
−0.172205 + 0.985061i \(0.555089\pi\)
\(594\) 0 0
\(595\) −0.324451 0.187322i −0.0133012 0.00767945i
\(596\) −15.5505 7.90896i −0.636973 0.323964i
\(597\) 0 0
\(598\) −37.4780 8.79791i −1.53259 0.359773i
\(599\) −8.54606 −0.349182 −0.174591 0.984641i \(-0.555860\pi\)
−0.174591 + 0.984641i \(0.555860\pi\)
\(600\) 0 0
\(601\) −9.73052 + 16.8538i −0.396916 + 0.687479i −0.993344 0.115188i \(-0.963253\pi\)
0.596427 + 0.802667i \(0.296586\pi\)
\(602\) −13.5407 3.24556i −0.551876 0.132279i
\(603\) 0 0
\(604\) −7.39459 11.3684i −0.300882 0.462572i
\(605\) 0.978620 + 1.69502i 0.0397866 + 0.0689124i
\(606\) 0 0
\(607\) 0.0399237 + 0.0691499i 0.00162045 + 0.00280671i 0.866834 0.498596i \(-0.166151\pi\)
−0.865214 + 0.501403i \(0.832818\pi\)
\(608\) −2.78113 6.67947i −0.112790 0.270888i
\(609\) 0 0
\(610\) 6.10937 + 5.79331i 0.247361 + 0.234564i
\(611\) 0.0125514 + 2.68305i 0.000507775 + 0.108545i
\(612\) 0 0
\(613\) 7.45333 12.9095i 0.301037 0.521411i −0.675334 0.737512i \(-0.736001\pi\)
0.976371 + 0.216101i \(0.0693339\pi\)
\(614\) −0.254204 0.857022i −0.0102589 0.0345866i
\(615\) 0 0
\(616\) −9.62593 + 11.2957i −0.387840 + 0.455118i
\(617\) −15.4574 + 8.92435i −0.622293 + 0.359281i −0.777761 0.628560i \(-0.783645\pi\)
0.155468 + 0.987841i \(0.450311\pi\)
\(618\) 0 0
\(619\) −49.5023 −1.98967 −0.994834 0.101519i \(-0.967630\pi\)
−0.994834 + 0.101519i \(0.967630\pi\)
\(620\) 4.75529 + 7.31072i 0.190977 + 0.293606i
\(621\) 0 0
\(622\) 11.6733 + 39.3551i 0.468055 + 1.57800i
\(623\) 0.852927 0.0341718
\(624\) 0 0
\(625\) 19.6014 0.784057
\(626\) 9.03196 + 30.4502i 0.360990 + 1.21704i
\(627\) 0 0
\(628\) −6.89923 10.6068i −0.275309 0.423257i
\(629\) 1.85393 0.0739209
\(630\) 0 0
\(631\) −21.6858 + 12.5203i −0.863297 + 0.498425i −0.865115 0.501573i \(-0.832755\pi\)
0.00181769 + 0.999998i \(0.499421\pi\)
\(632\) −27.5518 23.4789i −1.09595 0.933941i
\(633\) 0 0
\(634\) 6.88942 + 23.2269i 0.273614 + 0.922458i
\(635\) 3.75812 6.50926i 0.149136 0.258312i
\(636\) 0 0
\(637\) 9.05551 15.8554i 0.358792 0.628215i
\(638\) −38.1544 36.1805i −1.51055 1.43240i
\(639\) 0 0
\(640\) −6.19527 + 2.97460i −0.244890 + 0.117581i
\(641\) 12.7666 + 22.1124i 0.504251 + 0.873388i 0.999988 + 0.00491538i \(0.00156462\pi\)
−0.495737 + 0.868473i \(0.665102\pi\)
\(642\) 0 0
\(643\) 15.1058 + 26.1640i 0.595715 + 1.03181i 0.993446 + 0.114306i \(0.0364644\pi\)
−0.397731 + 0.917502i \(0.630202\pi\)
\(644\) 11.4552 + 17.6110i 0.451397 + 0.693972i
\(645\) 0 0
\(646\) −0.779744 0.186897i −0.0306786 0.00735335i
\(647\) 15.2316 26.3820i 0.598818 1.03718i −0.394178 0.919034i \(-0.628971\pi\)
0.992996 0.118149i \(-0.0376960\pi\)
\(648\) 0 0
\(649\) −9.67422 −0.379746
\(650\) −6.82080 22.6071i −0.267534 0.886724i
\(651\) 0 0
\(652\) −28.4066 14.4476i −1.11249 0.565812i
\(653\) 25.5052 + 14.7254i 0.998096 + 0.576251i 0.907684 0.419654i \(-0.137848\pi\)
0.0904115 + 0.995904i \(0.471182\pi\)
\(654\) 0 0
\(655\) 9.81509i 0.383507i
\(656\) 32.5250 23.7040i 1.26989 0.925484i
\(657\) 0 0
\(658\) 1.00752 1.06249i 0.0392772 0.0414201i
\(659\) −5.43988 + 3.14071i −0.211907 + 0.122345i −0.602198 0.798347i \(-0.705708\pi\)
0.390290 + 0.920692i \(0.372375\pi\)
\(660\) 0 0
\(661\) 6.19056 10.7224i 0.240785 0.417052i −0.720153 0.693815i \(-0.755928\pi\)
0.960938 + 0.276763i \(0.0892618\pi\)
\(662\) 28.8572 30.4315i 1.12157 1.18276i
\(663\) 0 0
\(664\) −13.3263 11.3563i −0.517162 0.440712i
\(665\) 0.936157 + 0.540490i 0.0363026 + 0.0209593i
\(666\) 0 0
\(667\) −64.4618 + 37.2170i −2.49597 + 1.44105i
\(668\) 19.4945 1.03604i 0.754265 0.0400857i
\(669\) 0 0
\(670\) 8.46818 + 2.02974i 0.327154 + 0.0784155i
\(671\) 36.9614i 1.42688i
\(672\) 0 0
\(673\) −14.3913 + 24.9264i −0.554743 + 0.960843i 0.443180 + 0.896432i \(0.353850\pi\)
−0.997923 + 0.0644107i \(0.979483\pi\)
\(674\) −6.43138 21.6827i −0.247728 0.835186i
\(675\) 0 0
\(676\) −21.6614 + 14.3799i −0.833132 + 0.553075i
\(677\) 10.6400i 0.408928i −0.978874 0.204464i \(-0.934455\pi\)
0.978874 0.204464i \(-0.0655451\pi\)
\(678\) 0 0
\(679\) 4.61686 7.99663i 0.177179 0.306882i
\(680\) −0.137965 + 0.749007i −0.00529073 + 0.0287231i
\(681\) 0 0
\(682\) 8.92403 37.2316i 0.341719 1.42567i
\(683\) 16.2301 + 28.1113i 0.621027 + 1.07565i 0.989295 + 0.145930i \(0.0466174\pi\)
−0.368268 + 0.929720i \(0.620049\pi\)
\(684\) 0 0
\(685\) −9.62123 + 5.55482i −0.367608 + 0.212239i
\(686\) −22.7580 + 6.75035i −0.868906 + 0.257729i
\(687\) 0 0
\(688\) 3.00022 + 28.1468i 0.114382 + 1.07309i
\(689\) −0.0209728 4.48327i −0.000799001 0.170799i
\(690\) 0 0
\(691\) 23.3686 40.4757i 0.888985 1.53977i 0.0479072 0.998852i \(-0.484745\pi\)
0.841077 0.540915i \(-0.181922\pi\)
\(692\) 11.6712 22.9477i 0.443671 0.872340i
\(693\) 0 0
\(694\) −23.2611 22.0577i −0.882980 0.837299i
\(695\) 5.90257 3.40785i 0.223897 0.129267i
\(696\) 0 0
\(697\) 4.46014i 0.168940i
\(698\) −14.5263 3.48181i −0.549830 0.131789i
\(699\) 0 0
\(700\) −5.84196 + 11.4864i −0.220805 + 0.434144i
\(701\) 33.6184i 1.26975i −0.772615 0.634875i \(-0.781051\pi\)
0.772615 0.634875i \(-0.218949\pi\)
\(702\) 0 0
\(703\) −5.34923 −0.201750
\(704\) 28.1897 + 10.7497i 1.06244 + 0.405145i
\(705\) 0 0
\(706\) 5.98100 24.9531i 0.225098 0.939122i
\(707\) −3.21857 −0.121047
\(708\) 0 0
\(709\) 22.0869 + 38.2556i 0.829490 + 1.43672i 0.898439 + 0.439099i \(0.144702\pi\)
−0.0689481 + 0.997620i \(0.521964\pi\)
\(710\) −5.32900 5.05331i −0.199994 0.189647i
\(711\) 0 0
\(712\) −0.580591 1.63381i −0.0217586 0.0612295i
\(713\) −46.9368 27.0990i −1.75780 1.01486i
\(714\) 0 0
\(715\) 4.09626 7.17221i 0.153192 0.268226i
\(716\) −13.0001 + 0.690897i −0.485837 + 0.0258200i
\(717\) 0 0
\(718\) 15.5397 4.60927i 0.579935 0.172017i
\(719\) 13.3551 + 23.1317i 0.498060 + 0.862666i 0.999997 0.00223845i \(-0.000712522\pi\)
−0.501937 + 0.864904i \(0.667379\pi\)
\(720\) 0 0
\(721\) −12.2799 + 7.08983i −0.457329 + 0.264039i
\(722\) −23.8801 5.72382i −0.888725 0.213018i
\(723\) 0 0
\(724\) 18.2594 + 28.0718i 0.678607 + 1.04328i
\(725\) −39.5404 22.8286i −1.46849 0.847834i
\(726\) 0 0
\(727\) −14.4767 −0.536913 −0.268456 0.963292i \(-0.586514\pi\)
−0.268456 + 0.963292i \(0.586514\pi\)
\(728\) 13.9660 + 2.50502i 0.517616 + 0.0928424i
\(729\) 0 0
\(730\) −12.0248 + 3.56672i −0.445058 + 0.132010i
\(731\) 2.71667 + 1.56847i 0.100480 + 0.0580120i
\(732\) 0 0
\(733\) 11.4614 0.423335 0.211668 0.977342i \(-0.432111\pi\)
0.211668 + 0.977342i \(0.432111\pi\)
\(734\) −21.8364 5.23395i −0.805995 0.193189i
\(735\) 0 0
\(736\) 25.9369 33.9306i 0.956046 1.25070i
\(737\) −19.1142 33.1067i −0.704079 1.21950i
\(738\) 0 0
\(739\) 14.6329 25.3449i 0.538279 0.932327i −0.460717 0.887547i \(-0.652408\pi\)
0.998997 0.0447805i \(-0.0142589\pi\)
\(740\) 0.269646 + 5.07374i 0.00991238 + 0.186514i
\(741\) 0 0
\(742\) −1.68352 + 1.77537i −0.0618041 + 0.0651759i
\(743\) −23.6443 13.6511i −0.867426 0.500809i −0.000934125 1.00000i \(-0.500297\pi\)
−0.866492 + 0.499191i \(0.833631\pi\)
\(744\) 0 0
\(745\) −2.64937 4.58884i −0.0970654 0.168122i
\(746\) −6.40757 6.07608i −0.234598 0.222461i
\(747\) 0 0
\(748\) 2.80272 1.82304i 0.102478 0.0666570i
\(749\) 7.85868 0.287150
\(750\) 0 0
\(751\) 2.80553 4.85932i 0.102375 0.177319i −0.810288 0.586033i \(-0.800689\pi\)
0.912663 + 0.408713i \(0.134022\pi\)
\(752\) −2.72105 1.20670i −0.0992265 0.0440037i
\(753\) 0 0
\(754\) −11.4888 + 48.9409i −0.418397 + 1.78232i
\(755\) 4.11895i 0.149904i
\(756\) 0 0
\(757\) −30.4433 17.5765i −1.10648 0.638827i −0.168565 0.985690i \(-0.553913\pi\)
−0.937916 + 0.346863i \(0.887247\pi\)
\(758\) 11.0552 + 2.64982i 0.401544 + 0.0962459i
\(759\) 0 0
\(760\) 0.398080 2.16115i 0.0144399 0.0783932i
\(761\) 3.41599 1.97222i 0.123830 0.0714931i −0.436806 0.899556i \(-0.643890\pi\)
0.560635 + 0.828063i \(0.310557\pi\)
\(762\) 0 0
\(763\) −3.41757 + 1.97314i −0.123724 + 0.0714323i
\(764\) 26.3408 + 13.3969i 0.952975 + 0.484682i
\(765\) 0 0
\(766\) −27.0030 25.6060i −0.975658 0.925183i
\(767\) 4.66203 + 7.98834i 0.168336 + 0.288442i
\(768\) 0 0
\(769\) 7.64135 + 4.41174i 0.275554 + 0.159091i 0.631409 0.775450i \(-0.282477\pi\)
−0.355855 + 0.934541i \(0.615810\pi\)
\(770\) −4.32137 + 1.28178i −0.155731 + 0.0461920i
\(771\) 0 0
\(772\) −19.6575 + 1.04471i −0.707490 + 0.0375999i
\(773\) −23.4570 40.6288i −0.843691 1.46132i −0.886753 0.462243i \(-0.847045\pi\)
0.0430627 0.999072i \(-0.486288\pi\)
\(774\) 0 0
\(775\) 33.2446i 1.19418i
\(776\) −18.4605 3.40039i −0.662693 0.122067i
\(777\) 0 0
\(778\) −34.3081 + 10.1762i −1.23000 + 0.364836i
\(779\) 12.8691i 0.461083i
\(780\) 0 0
\(781\) 32.2402i 1.15364i
\(782\) −1.34592 4.53761i −0.0481299 0.162265i
\(783\) 0 0
\(784\) 11.9307 + 16.3705i 0.426096 + 0.584660i
\(785\) 3.84301i 0.137163i
\(786\) 0 0
\(787\) −5.38025 9.31886i −0.191785 0.332182i 0.754057 0.656809i \(-0.228094\pi\)
−0.945842 + 0.324628i \(0.894761\pi\)
\(788\) −1.05650 19.8795i −0.0376364 0.708177i
\(789\) 0 0
\(790\) −3.12642 10.5404i −0.111233 0.375010i
\(791\) 12.9162 + 7.45719i 0.459248 + 0.265147i
\(792\) 0 0
\(793\) −30.5203 + 17.8118i −1.08381 + 0.632515i
\(794\) −13.5761 + 14.3167i −0.481797 + 0.508082i
\(795\) 0 0
\(796\) 11.1445 + 5.66809i 0.395007 + 0.200900i
\(797\) −46.6440 + 26.9299i −1.65222 + 0.953908i −0.676058 + 0.736848i \(0.736313\pi\)
−0.976158 + 0.217060i \(0.930353\pi\)
\(798\) 0 0
\(799\) −0.285678 + 0.164936i −0.0101066 + 0.00583503i
\(800\) 25.9791 + 3.37162i 0.918501 + 0.119205i
\(801\) 0 0
\(802\) 6.21023 25.9095i 0.219291 0.914895i
\(803\) 47.6852 + 27.5311i 1.68278 + 0.971551i
\(804\) 0 0
\(805\) 6.38077i 0.224893i
\(806\) −35.0440 + 10.5731i −1.23437 + 0.372422i
\(807\) 0 0
\(808\) 2.19090 + 6.16527i 0.0770755 + 0.216894i
\(809\) −18.9278 + 32.7838i −0.665465 + 1.15262i 0.313694 + 0.949524i \(0.398433\pi\)
−0.979159 + 0.203095i \(0.934900\pi\)
\(810\) 0 0
\(811\) −8.84124 −0.310458 −0.155229 0.987879i \(-0.549612\pi\)
−0.155229 + 0.987879i \(0.549612\pi\)
\(812\) 22.9975 14.9588i 0.807052 0.524950i
\(813\) 0 0
\(814\) 15.3479 16.1852i 0.537944 0.567293i
\(815\) −4.83970 8.38261i −0.169527 0.293630i
\(816\) 0 0
\(817\) −7.83856 4.52560i −0.274237 0.158331i
\(818\) −31.3710 29.7480i −1.09686 1.04012i
\(819\) 0 0
\(820\) 12.2063 0.648709i 0.426262 0.0226539i
\(821\) 0.351948 0.609591i 0.0122831 0.0212749i −0.859819 0.510600i \(-0.829423\pi\)
0.872102 + 0.489325i \(0.162757\pi\)
\(822\) 0 0
\(823\) 24.5405 + 42.5054i 0.855429 + 1.48165i 0.876247 + 0.481863i \(0.160040\pi\)
−0.0208180 + 0.999783i \(0.506627\pi\)
\(824\) 21.9398 + 18.6965i 0.764309 + 0.651324i
\(825\) 0 0
\(826\) 1.17652 4.90853i 0.0409365 0.170790i
\(827\) −46.7086 −1.62422 −0.812109 0.583506i \(-0.801681\pi\)
−0.812109 + 0.583506i \(0.801681\pi\)
\(828\) 0 0
\(829\) −21.8762 12.6302i −0.759792 0.438666i 0.0694293 0.997587i \(-0.477882\pi\)
−0.829221 + 0.558921i \(0.811216\pi\)
\(830\) −1.51220 5.09821i −0.0524892 0.176961i
\(831\) 0 0
\(832\) −4.70830 28.4575i −0.163231 0.986588i
\(833\) 2.24488 0.0777805
\(834\) 0 0
\(835\) 5.13484 + 2.96460i 0.177699 + 0.102594i
\(836\) −8.08685 + 5.26012i −0.279690 + 0.181925i
\(837\) 0 0
\(838\) 5.95155 24.8302i 0.205593 0.857746i
\(839\) 38.8853 22.4504i 1.34247 0.775075i 0.355301 0.934752i \(-0.384378\pi\)
0.987169 + 0.159677i \(0.0510451\pi\)
\(840\) 0 0
\(841\) 34.1000 + 59.0630i 1.17586 + 2.03666i
\(842\) −5.69903 19.2136i −0.196401 0.662146i
\(843\) 0 0
\(844\) 8.37246 0.444958i 0.288192 0.0153161i
\(845\) −7.89635 + 0.0738802i −0.271643 + 0.00254156i
\(846\) 0 0
\(847\) 3.88245 + 2.24153i 0.133402 + 0.0770199i
\(848\) 4.54676 + 2.01634i 0.156136 + 0.0692413i
\(849\) 0 0
\(850\) 1.99765 2.10663i 0.0685188 0.0722570i
\(851\) −15.7876 27.3450i −0.541193 0.937373i
\(852\) 0 0
\(853\) −11.4426 −0.391786 −0.195893 0.980625i \(-0.562761\pi\)
−0.195893 + 0.980625i \(0.562761\pi\)
\(854\) 18.7535 + 4.49503i 0.641733 + 0.153817i
\(855\) 0 0
\(856\) −5.34943 15.0535i −0.182840 0.514519i
\(857\) 26.9979 0.922229 0.461115 0.887341i \(-0.347450\pi\)
0.461115 + 0.887341i \(0.347450\pi\)
\(858\) 0 0
\(859\) 37.9349i 1.29432i 0.762353 + 0.647162i \(0.224044\pi\)
−0.762353 + 0.647162i \(0.775956\pi\)
\(860\) −3.89739 + 7.66299i −0.132900 + 0.261306i
\(861\) 0 0
\(862\) 4.34731 18.1372i 0.148070 0.617756i
\(863\) 6.51581i 0.221801i 0.993832 + 0.110900i \(0.0353735\pi\)
−0.993832 + 0.110900i \(0.964627\pi\)
\(864\) 0 0
\(865\) 6.77170 3.90964i 0.230245 0.132932i
\(866\) −3.72999 + 3.93348i −0.126750 + 0.133665i
\(867\) 0 0
\(868\) 17.8054 + 9.05579i 0.604353 + 0.307374i
\(869\) −24.1325 + 41.7987i −0.818639 + 1.41792i
\(870\) 0 0
\(871\) −18.1262 + 31.7375i −0.614183 + 1.07538i
\(872\) 6.10596 + 5.20334i 0.206774 + 0.176207i
\(873\) 0 0
\(874\) 3.88345 + 13.0926i 0.131360 + 0.442864i
\(875\) −7.04916 + 4.06984i −0.238305 + 0.137586i
\(876\) 0 0
\(877\) 16.8078 + 29.1120i 0.567560 + 0.983043i 0.996806 + 0.0798554i \(0.0254459\pi\)
−0.429246 + 0.903187i \(0.641221\pi\)
\(878\) −10.6336 2.54877i −0.358867 0.0860167i
\(879\) 0 0
\(880\) 5.39686 + 7.40520i 0.181928 + 0.249629i
\(881\) 16.0271 27.7598i 0.539967 0.935250i −0.458938 0.888468i \(-0.651770\pi\)
0.998905 0.0467821i \(-0.0148966\pi\)
\(882\) 0 0
\(883\) 29.4544i 0.991220i −0.868545 0.495610i \(-0.834945\pi\)
0.868545 0.495610i \(-0.165055\pi\)
\(884\) −2.85599 1.43578i −0.0960573 0.0482904i
\(885\) 0 0
\(886\) 19.9285 5.91106i 0.669511 0.198586i
\(887\) 28.1761 48.8024i 0.946061 1.63863i 0.192447 0.981307i \(-0.438358\pi\)
0.753613 0.657318i \(-0.228309\pi\)
\(888\) 0 0
\(889\) 17.2160i 0.577405i
\(890\) 0.122748 0.512113i 0.00411453 0.0171661i
\(891\) 0 0
\(892\) 28.4661 1.51285i 0.953116 0.0506538i
\(893\) 0.824283 0.475900i 0.0275836 0.0159254i
\(894\) 0 0
\(895\) −3.42422 1.97698i −0.114459 0.0660831i
\(896\) −8.88248 + 12.9956i −0.296743 + 0.434154i
\(897\) 0 0
\(898\) 29.6081 + 28.0764i 0.988036 + 0.936921i
\(899\) −35.3873 + 61.2927i −1.18023 + 2.04423i
\(900\) 0 0
\(901\) 0.477356 0.275602i 0.0159030 0.00918162i
\(902\) −38.9381 36.9237i −1.29650 1.22942i
\(903\) 0 0
\(904\) 5.49233 29.8176i 0.182672 0.991717i
\(905\) 10.1709i 0.338092i
\(906\) 0 0
\(907\) 11.2076 + 6.47069i 0.372141 + 0.214856i 0.674393 0.738372i \(-0.264405\pi\)
−0.302252 + 0.953228i \(0.597739\pi\)
\(908\) 47.6822 + 24.2511i 1.58239 + 0.804801i
\(909\) 0 0
\(910\) 3.14089 + 2.95062i 0.104119 + 0.0978120i
\(911\) −3.09546 −0.102557 −0.0512785 0.998684i \(-0.516330\pi\)
−0.0512785 + 0.998684i \(0.516330\pi\)
\(912\) 0 0
\(913\) −11.6725 + 20.2173i −0.386303 + 0.669096i
\(914\) 0.594893 2.48193i 0.0196773 0.0820950i
\(915\) 0 0
\(916\) 20.6595 13.4380i 0.682609 0.444006i
\(917\) 11.2407 + 19.4695i 0.371202 + 0.642941i
\(918\) 0 0
\(919\) 2.11908 + 3.67036i 0.0699021 + 0.121074i 0.898858 0.438240i \(-0.144398\pi\)
−0.828956 + 0.559314i \(0.811065\pi\)
\(920\) 12.2226 4.34342i 0.402966 0.143198i
\(921\) 0 0
\(922\) 9.67122 10.1989i 0.318505 0.335881i
\(923\) 26.6219 15.5366i 0.876269 0.511395i
\(924\) 0 0
\(925\) 9.68400 16.7732i 0.318408 0.551499i
\(926\) 18.8672 5.59626i 0.620014 0.183905i
\(927\) 0 0
\(928\) −44.3085 33.8698i −1.45450 1.11183i
\(929\) −39.4013 + 22.7484i −1.29272 + 0.746350i −0.979135 0.203211i \(-0.934862\pi\)
−0.313581 + 0.949561i \(0.601529\pi\)
\(930\) 0 0
\(931\) −6.47728 −0.212284
\(932\) −26.7382 + 17.3919i −0.875838 + 0.569692i
\(933\) 0 0
\(934\) 33.6500 9.98105i 1.10106 0.326590i
\(935\) 1.01547 0.0332095
\(936\) 0 0
\(937\) −4.22328 −0.137968 −0.0689842 0.997618i \(-0.521976\pi\)
−0.0689842 + 0.997618i \(0.521976\pi\)
\(938\) 19.1223 5.67194i 0.624366 0.185195i
\(939\) 0 0
\(940\) −0.492941 0.757841i −0.0160780 0.0247181i
\(941\) −41.6566 −1.35797 −0.678984 0.734153i \(-0.737579\pi\)
−0.678984 + 0.734153i \(0.737579\pi\)
\(942\) 0 0
\(943\) −65.7859 + 37.9815i −2.14229 + 1.23685i
\(944\) −10.2033 + 1.08759i −0.332089 + 0.0353980i
\(945\) 0 0
\(946\) 36.1834 10.7325i 1.17642 0.348943i
\(947\) 5.60915 9.71533i 0.182273 0.315706i −0.760381 0.649477i \(-0.774988\pi\)
0.942654 + 0.333771i \(0.108321\pi\)
\(948\) 0 0
\(949\) −0.246264 52.6427i −0.00799406 1.70885i
\(950\) −5.76393 + 6.07839i −0.187007 + 0.197209i
\(951\) 0 0
\(952\) 0.584128 + 1.64376i 0.0189317 + 0.0532745i
\(953\) −19.4509 33.6900i −0.630077 1.09133i −0.987535 0.157397i \(-0.949690\pi\)
0.357458 0.933929i \(-0.383643\pi\)
\(954\) 0 0
\(955\) 4.48773 + 7.77298i 0.145220 + 0.251528i
\(956\) −16.1434 24.8187i −0.522116 0.802695i
\(957\) 0 0
\(958\) 1.09096 4.55156i 0.0352474 0.147054i
\(959\) −12.7233 + 22.0374i −0.410858 + 0.711626i
\(960\) 0 0
\(961\) −20.5334 −0.662369
\(962\) −20.7609 4.87360i −0.669359 0.157131i
\(963\) 0 0
\(964\) 5.06461 9.95796i 0.163120 0.320724i
\(965\) −5.17778 2.98940i −0.166679 0.0962320i
\(966\) 0 0
\(967\) 1.85906i 0.0597833i −0.999553 0.0298916i \(-0.990484\pi\)
0.999553 0.0298916i \(-0.00951622\pi\)
\(968\) 1.65092 8.96276i 0.0530627 0.288074i
\(969\) 0 0
\(970\) −4.13689 3.92288i −0.132828 0.125956i
\(971\) 14.7354 8.50748i 0.472881 0.273018i −0.244564 0.969633i \(-0.578645\pi\)
0.717445 + 0.696615i \(0.245311\pi\)
\(972\) 0 0
\(973\) 7.80568 13.5198i 0.250239 0.433426i
\(974\) 18.0611 + 17.1267i 0.578715 + 0.548776i
\(975\) 0 0
\(976\) −4.15525 38.9827i −0.133006 1.24781i
\(977\) 24.8030 + 14.3200i 0.793518 + 0.458138i 0.841199 0.540725i \(-0.181850\pi\)
−0.0476817 + 0.998863i \(0.515183\pi\)
\(978\) 0 0
\(979\) −2.00213 + 1.15593i −0.0639883 + 0.0369437i
\(980\) 0.326509 + 6.14368i 0.0104299 + 0.196253i
\(981\) 0 0
\(982\) −1.03268 + 4.30839i −0.0329541 + 0.137486i
\(983\) 44.7649i 1.42778i −0.700259 0.713889i \(-0.746932\pi\)
0.700259 0.713889i \(-0.253068\pi\)
\(984\) 0 0
\(985\) 3.02315 5.23625i 0.0963256 0.166841i
\(986\) −5.92546 + 1.75757i −0.188705 + 0.0559725i
\(987\) 0 0
\(988\) 8.24054 + 4.14273i 0.262167 + 0.131798i
\(989\) 53.4270i 1.69888i
\(990\) 0 0
\(991\) −21.4553 + 37.1617i −0.681550 + 1.18048i 0.292958 + 0.956125i \(0.405360\pi\)
−0.974508 + 0.224354i \(0.927973\pi\)
\(992\) 5.22645 40.2710i 0.165940 1.27861i
\(993\) 0 0
\(994\) −16.3581 3.92087i −0.518847 0.124362i
\(995\) 1.89871 + 3.28867i 0.0601933 + 0.104258i
\(996\) 0 0
\(997\) 40.4603 23.3598i 1.28139 0.739811i 0.304288 0.952580i \(-0.401582\pi\)
0.977102 + 0.212769i \(0.0682483\pi\)
\(998\) −16.8774 56.9003i −0.534245 1.80115i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 936.2.dg.f.901.12 yes 56
3.2 odd 2 inner 936.2.dg.f.901.17 yes 56
8.5 even 2 inner 936.2.dg.f.901.2 yes 56
13.10 even 6 inner 936.2.dg.f.829.2 56
24.5 odd 2 inner 936.2.dg.f.901.27 yes 56
39.23 odd 6 inner 936.2.dg.f.829.27 yes 56
104.101 even 6 inner 936.2.dg.f.829.12 yes 56
312.101 odd 6 inner 936.2.dg.f.829.17 yes 56
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
936.2.dg.f.829.2 56 13.10 even 6 inner
936.2.dg.f.829.12 yes 56 104.101 even 6 inner
936.2.dg.f.829.17 yes 56 312.101 odd 6 inner
936.2.dg.f.829.27 yes 56 39.23 odd 6 inner
936.2.dg.f.901.2 yes 56 8.5 even 2 inner
936.2.dg.f.901.12 yes 56 1.1 even 1 trivial
936.2.dg.f.901.17 yes 56 3.2 odd 2 inner
936.2.dg.f.901.27 yes 56 24.5 odd 2 inner