Properties

Label 936.2.dg.f.829.21
Level $936$
Weight $2$
Character 936.829
Analytic conductor $7.474$
Analytic rank $0$
Dimension $56$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [936,2,Mod(829,936)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(936, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 3, 0, 5])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("936.829"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 936 = 2^{3} \cdot 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 936.dg (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [56,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.47399762919\)
Analytic rank: \(0\)
Dimension: \(56\)
Relative dimension: \(28\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 829.21
Character \(\chi\) \(=\) 936.829
Dual form 936.2.dg.f.901.21

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.03161 - 0.967362i) q^{2} +(0.128423 - 1.99587i) q^{4} -1.39452 q^{5} +(2.60703 + 1.50517i) q^{7} +(-1.79825 - 2.18319i) q^{8} +(-1.43859 + 1.34900i) q^{10} +(-1.67760 - 2.90570i) q^{11} +(3.25027 - 1.56068i) q^{13} +(4.14547 - 0.969197i) q^{14} +(-3.96701 - 0.512632i) q^{16} +(1.30140 - 2.25409i) q^{17} +(1.73878 - 3.01165i) q^{19} +(-0.179088 + 2.78328i) q^{20} +(-4.54148 - 1.37468i) q^{22} +(-0.413673 - 0.716502i) q^{23} -3.05532 q^{25} +(1.84326 - 4.75420i) q^{26} +(3.33893 - 5.00999i) q^{28} +(1.52087 - 0.878073i) q^{29} -3.22258i q^{31} +(-4.58830 + 3.30870i) q^{32} +(-0.837987 - 3.58425i) q^{34} +(-3.63555 - 2.09898i) q^{35} +(-1.69186 - 2.93038i) q^{37} +(-1.11962 - 4.78887i) q^{38} +(2.50769 + 3.04449i) q^{40} +(0.270962 - 0.156440i) q^{41} +(6.10602 + 3.52531i) q^{43} +(-6.01484 + 2.97513i) q^{44} +(-1.11986 - 0.338977i) q^{46} -9.27654i q^{47} +(1.03106 + 1.78585i) q^{49} +(-3.15188 + 2.95560i) q^{50} +(-2.69751 - 6.68756i) q^{52} -0.507221i q^{53} +(2.33945 + 4.05205i) q^{55} +(-1.40202 - 8.39829i) q^{56} +(0.719522 - 2.37705i) q^{58} +(-6.95782 + 12.0513i) q^{59} +(7.47996 + 4.31856i) q^{61} +(-3.11740 - 3.32443i) q^{62} +(-1.53261 + 7.85182i) q^{64} +(-4.53257 + 2.17640i) q^{65} +(0.361505 + 0.626146i) q^{67} +(-4.33174 - 2.88690i) q^{68} +(-5.78093 + 1.35156i) q^{70} +(4.51882 + 2.60894i) q^{71} +13.8454i q^{73} +(-4.58007 - 1.38636i) q^{74} +(-5.78758 - 3.85715i) q^{76} -10.1003i q^{77} -1.78577 q^{79} +(5.53208 + 0.714876i) q^{80} +(0.128192 - 0.423503i) q^{82} -7.28881 q^{83} +(-1.81482 + 3.14337i) q^{85} +(9.70926 - 2.26999i) q^{86} +(-3.32693 + 8.88768i) q^{88} +(10.3020 - 5.94787i) q^{89} +(10.8226 + 0.823461i) q^{91} +(-1.48317 + 0.733623i) q^{92} +(-8.97377 - 9.56973i) q^{94} +(-2.42476 + 4.19981i) q^{95} +(-1.96079 - 1.13206i) q^{97} +(2.79120 + 0.844883i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 56 q - 4 q^{10} - 4 q^{16} + 64 q^{25} - 48 q^{28} - 48 q^{40} + 20 q^{49} - 12 q^{52} + 16 q^{55} + 12 q^{58} - 72 q^{64} - 84 q^{76} + 80 q^{79} - 12 q^{82} - 12 q^{88} - 24 q^{94} + 24 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/936\mathbb{Z}\right)^\times\).

\(n\) \(145\) \(209\) \(469\) \(703\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.03161 0.967362i 0.729456 0.684028i
\(3\) 0 0
\(4\) 0.128423 1.99587i 0.0642116 0.997936i
\(5\) −1.39452 −0.623648 −0.311824 0.950140i \(-0.600940\pi\)
−0.311824 + 0.950140i \(0.600940\pi\)
\(6\) 0 0
\(7\) 2.60703 + 1.50517i 0.985363 + 0.568900i 0.903885 0.427775i \(-0.140703\pi\)
0.0814783 + 0.996675i \(0.474036\pi\)
\(8\) −1.79825 2.18319i −0.635777 0.771873i
\(9\) 0 0
\(10\) −1.43859 + 1.34900i −0.454924 + 0.426593i
\(11\) −1.67760 2.90570i −0.505817 0.876100i −0.999977 0.00672953i \(-0.997858\pi\)
0.494161 0.869371i \(-0.335475\pi\)
\(12\) 0 0
\(13\) 3.25027 1.56068i 0.901463 0.432856i
\(14\) 4.14547 0.969197i 1.10792 0.259029i
\(15\) 0 0
\(16\) −3.96701 0.512632i −0.991754 0.128158i
\(17\) 1.30140 2.25409i 0.315635 0.546696i −0.663937 0.747788i \(-0.731116\pi\)
0.979572 + 0.201092i \(0.0644491\pi\)
\(18\) 0 0
\(19\) 1.73878 3.01165i 0.398903 0.690921i −0.594688 0.803957i \(-0.702724\pi\)
0.993591 + 0.113036i \(0.0360576\pi\)
\(20\) −0.179088 + 2.78328i −0.0400454 + 0.622361i
\(21\) 0 0
\(22\) −4.54148 1.37468i −0.968248 0.293084i
\(23\) −0.413673 0.716502i −0.0862568 0.149401i 0.819669 0.572837i \(-0.194157\pi\)
−0.905926 + 0.423436i \(0.860824\pi\)
\(24\) 0 0
\(25\) −3.05532 −0.611063
\(26\) 1.84326 4.75420i 0.361492 0.932375i
\(27\) 0 0
\(28\) 3.33893 5.00999i 0.630998 0.946800i
\(29\) 1.52087 0.878073i 0.282418 0.163054i −0.352100 0.935963i \(-0.614532\pi\)
0.634518 + 0.772908i \(0.281199\pi\)
\(30\) 0 0
\(31\) 3.22258i 0.578792i −0.957209 0.289396i \(-0.906546\pi\)
0.957209 0.289396i \(-0.0934545\pi\)
\(32\) −4.58830 + 3.30870i −0.811104 + 0.584902i
\(33\) 0 0
\(34\) −0.837987 3.58425i −0.143714 0.614694i
\(35\) −3.63555 2.09898i −0.614520 0.354793i
\(36\) 0 0
\(37\) −1.69186 2.93038i −0.278139 0.481751i 0.692783 0.721146i \(-0.256384\pi\)
−0.970922 + 0.239395i \(0.923051\pi\)
\(38\) −1.11962 4.78887i −0.181627 0.776857i
\(39\) 0 0
\(40\) 2.50769 + 3.04449i 0.396501 + 0.481377i
\(41\) 0.270962 0.156440i 0.0423172 0.0244318i −0.478692 0.877983i \(-0.658889\pi\)
0.521009 + 0.853551i \(0.325556\pi\)
\(42\) 0 0
\(43\) 6.10602 + 3.52531i 0.931159 + 0.537605i 0.887178 0.461427i \(-0.152662\pi\)
0.0439812 + 0.999032i \(0.485996\pi\)
\(44\) −6.01484 + 2.97513i −0.906771 + 0.448517i
\(45\) 0 0
\(46\) −1.11986 0.338977i −0.165115 0.0499795i
\(47\) 9.27654i 1.35312i −0.736387 0.676561i \(-0.763470\pi\)
0.736387 0.676561i \(-0.236530\pi\)
\(48\) 0 0
\(49\) 1.03106 + 1.78585i 0.147294 + 0.255121i
\(50\) −3.15188 + 2.95560i −0.445744 + 0.417984i
\(51\) 0 0
\(52\) −2.69751 6.68756i −0.374078 0.927397i
\(53\) 0.507221i 0.0696721i −0.999393 0.0348361i \(-0.988909\pi\)
0.999393 0.0348361i \(-0.0110909\pi\)
\(54\) 0 0
\(55\) 2.33945 + 4.05205i 0.315451 + 0.546378i
\(56\) −1.40202 8.39829i −0.187353 1.12227i
\(57\) 0 0
\(58\) 0.719522 2.37705i 0.0944779 0.312122i
\(59\) −6.95782 + 12.0513i −0.905831 + 1.56895i −0.0860327 + 0.996292i \(0.527419\pi\)
−0.819798 + 0.572653i \(0.805914\pi\)
\(60\) 0 0
\(61\) 7.47996 + 4.31856i 0.957711 + 0.552935i 0.895468 0.445126i \(-0.146841\pi\)
0.0622432 + 0.998061i \(0.480175\pi\)
\(62\) −3.11740 3.32443i −0.395910 0.422203i
\(63\) 0 0
\(64\) −1.53261 + 7.85182i −0.191576 + 0.981478i
\(65\) −4.53257 + 2.17640i −0.562196 + 0.269949i
\(66\) 0 0
\(67\) 0.361505 + 0.626146i 0.0441649 + 0.0764959i 0.887263 0.461264i \(-0.152604\pi\)
−0.843098 + 0.537760i \(0.819271\pi\)
\(68\) −4.33174 2.88690i −0.525301 0.350088i
\(69\) 0 0
\(70\) −5.78093 + 1.35156i −0.690953 + 0.161543i
\(71\) 4.51882 + 2.60894i 0.536285 + 0.309624i 0.743572 0.668656i \(-0.233130\pi\)
−0.207287 + 0.978280i \(0.566463\pi\)
\(72\) 0 0
\(73\) 13.8454i 1.62048i 0.586095 + 0.810242i \(0.300664\pi\)
−0.586095 + 0.810242i \(0.699336\pi\)
\(74\) −4.58007 1.38636i −0.532422 0.161161i
\(75\) 0 0
\(76\) −5.78758 3.85715i −0.663880 0.442445i
\(77\) 10.1003i 1.15104i
\(78\) 0 0
\(79\) −1.78577 −0.200915 −0.100458 0.994941i \(-0.532031\pi\)
−0.100458 + 0.994941i \(0.532031\pi\)
\(80\) 5.53208 + 0.714876i 0.618505 + 0.0799255i
\(81\) 0 0
\(82\) 0.128192 0.423503i 0.0141564 0.0467681i
\(83\) −7.28881 −0.800051 −0.400026 0.916504i \(-0.630999\pi\)
−0.400026 + 0.916504i \(0.630999\pi\)
\(84\) 0 0
\(85\) −1.81482 + 3.14337i −0.196845 + 0.340946i
\(86\) 9.70926 2.26999i 1.04698 0.244780i
\(87\) 0 0
\(88\) −3.32693 + 8.88768i −0.354651 + 0.947430i
\(89\) 10.3020 5.94787i 1.09201 0.630473i 0.157900 0.987455i \(-0.449527\pi\)
0.934111 + 0.356982i \(0.116194\pi\)
\(90\) 0 0
\(91\) 10.8226 + 0.823461i 1.13452 + 0.0863222i
\(92\) −1.48317 + 0.733623i −0.154631 + 0.0764855i
\(93\) 0 0
\(94\) −8.97377 9.56973i −0.925573 0.987043i
\(95\) −2.42476 + 4.19981i −0.248775 + 0.430891i
\(96\) 0 0
\(97\) −1.96079 1.13206i −0.199088 0.114944i 0.397142 0.917757i \(-0.370002\pi\)
−0.596230 + 0.802814i \(0.703335\pi\)
\(98\) 2.79120 + 0.844883i 0.281954 + 0.0853461i
\(99\) 0 0
\(100\) −0.392373 + 6.09802i −0.0392373 + 0.609802i
\(101\) 15.5789 8.99451i 1.55016 0.894987i 0.552035 0.833821i \(-0.313851\pi\)
0.998128 0.0611664i \(-0.0194820\pi\)
\(102\) 0 0
\(103\) −8.79966 −0.867056 −0.433528 0.901140i \(-0.642732\pi\)
−0.433528 + 0.901140i \(0.642732\pi\)
\(104\) −9.25206 4.28945i −0.907239 0.420616i
\(105\) 0 0
\(106\) −0.490666 0.523252i −0.0476577 0.0508227i
\(107\) −10.1957 + 5.88648i −0.985653 + 0.569067i −0.903972 0.427591i \(-0.859362\pi\)
−0.0816811 + 0.996659i \(0.526029\pi\)
\(108\) 0 0
\(109\) 14.5156 1.39034 0.695169 0.718846i \(-0.255329\pi\)
0.695169 + 0.718846i \(0.255329\pi\)
\(110\) 6.33319 + 1.91702i 0.603846 + 0.182781i
\(111\) 0 0
\(112\) −9.57052 7.30747i −0.904329 0.690491i
\(113\) −5.35991 + 9.28364i −0.504218 + 0.873331i 0.495770 + 0.868454i \(0.334886\pi\)
−0.999988 + 0.00487747i \(0.998447\pi\)
\(114\) 0 0
\(115\) 0.576875 + 0.999176i 0.0537938 + 0.0931737i
\(116\) −1.55721 3.14822i −0.144583 0.292305i
\(117\) 0 0
\(118\) 4.48023 + 19.1629i 0.412439 + 1.76409i
\(119\) 6.78556 3.91764i 0.622031 0.359130i
\(120\) 0 0
\(121\) −0.128710 + 0.222932i −0.0117009 + 0.0202666i
\(122\) 11.8940 2.78078i 1.07683 0.251760i
\(123\) 0 0
\(124\) −6.43186 0.413854i −0.577598 0.0371652i
\(125\) 11.2333 1.00474
\(126\) 0 0
\(127\) 2.69249 + 4.66353i 0.238920 + 0.413821i 0.960405 0.278609i \(-0.0898734\pi\)
−0.721485 + 0.692430i \(0.756540\pi\)
\(128\) 6.01451 + 9.58257i 0.531612 + 0.846988i
\(129\) 0 0
\(130\) −2.57046 + 6.62982i −0.225444 + 0.581474i
\(131\) 14.2718i 1.24694i 0.781849 + 0.623468i \(0.214277\pi\)
−0.781849 + 0.623468i \(0.785723\pi\)
\(132\) 0 0
\(133\) 9.06608 5.23431i 0.786129 0.453872i
\(134\) 0.978641 + 0.296230i 0.0845417 + 0.0255903i
\(135\) 0 0
\(136\) −7.26133 + 1.21221i −0.622654 + 0.103947i
\(137\) 14.3160 + 8.26537i 1.22310 + 0.706158i 0.965578 0.260114i \(-0.0837602\pi\)
0.257524 + 0.966272i \(0.417094\pi\)
\(138\) 0 0
\(139\) 3.08627 + 1.78186i 0.261774 + 0.151135i 0.625143 0.780510i \(-0.285040\pi\)
−0.363370 + 0.931645i \(0.618374\pi\)
\(140\) −4.65619 + 6.98653i −0.393520 + 0.590470i
\(141\) 0 0
\(142\) 7.18543 1.67993i 0.602988 0.140977i
\(143\) −9.98754 6.82609i −0.835200 0.570826i
\(144\) 0 0
\(145\) −2.12088 + 1.22449i −0.176129 + 0.101688i
\(146\) 13.3935 + 14.2830i 1.10846 + 1.18207i
\(147\) 0 0
\(148\) −6.06594 + 3.00040i −0.498617 + 0.246631i
\(149\) 10.1172 17.5236i 0.828836 1.43559i −0.0701151 0.997539i \(-0.522337\pi\)
0.898952 0.438048i \(-0.144330\pi\)
\(150\) 0 0
\(151\) 22.9213i 1.86531i 0.360769 + 0.932655i \(0.382514\pi\)
−0.360769 + 0.932655i \(0.617486\pi\)
\(152\) −9.70175 + 1.61962i −0.786916 + 0.131369i
\(153\) 0 0
\(154\) −9.77064 10.4195i −0.787341 0.839630i
\(155\) 4.49395i 0.360963i
\(156\) 0 0
\(157\) 6.04864i 0.482734i 0.970434 + 0.241367i \(0.0775957\pi\)
−0.970434 + 0.241367i \(0.922404\pi\)
\(158\) −1.84221 + 1.72749i −0.146559 + 0.137432i
\(159\) 0 0
\(160\) 6.39847 4.61405i 0.505843 0.364773i
\(161\) 2.49059i 0.196286i
\(162\) 0 0
\(163\) 10.2755 17.7978i 0.804843 1.39403i −0.111554 0.993758i \(-0.535583\pi\)
0.916397 0.400270i \(-0.131084\pi\)
\(164\) −0.277437 0.560896i −0.0216642 0.0437986i
\(165\) 0 0
\(166\) −7.51919 + 7.05092i −0.583602 + 0.547257i
\(167\) −16.8550 + 9.73122i −1.30428 + 0.753024i −0.981134 0.193326i \(-0.938072\pi\)
−0.323142 + 0.946351i \(0.604739\pi\)
\(168\) 0 0
\(169\) 8.12854 10.1453i 0.625272 0.780407i
\(170\) 1.16859 + 4.99831i 0.0896267 + 0.383353i
\(171\) 0 0
\(172\) 7.82023 11.7341i 0.596287 0.894717i
\(173\) 8.41311 + 4.85731i 0.639637 + 0.369295i 0.784475 0.620161i \(-0.212933\pi\)
−0.144838 + 0.989455i \(0.546266\pi\)
\(174\) 0 0
\(175\) −7.96529 4.59876i −0.602120 0.347634i
\(176\) 5.16553 + 12.3869i 0.389366 + 0.933700i
\(177\) 0 0
\(178\) 4.87388 16.1016i 0.365313 1.20687i
\(179\) −8.77002 + 5.06337i −0.655502 + 0.378454i −0.790561 0.612383i \(-0.790211\pi\)
0.135059 + 0.990838i \(0.456878\pi\)
\(180\) 0 0
\(181\) 8.20352i 0.609763i −0.952390 0.304882i \(-0.901383\pi\)
0.952390 0.304882i \(-0.0986169\pi\)
\(182\) 11.9613 9.61991i 0.886629 0.713075i
\(183\) 0 0
\(184\) −0.820372 + 2.19157i −0.0604786 + 0.161565i
\(185\) 2.35932 + 4.08647i 0.173461 + 0.300443i
\(186\) 0 0
\(187\) −8.73292 −0.638614
\(188\) −18.5148 1.19132i −1.35033 0.0868861i
\(189\) 0 0
\(190\) 1.56133 + 6.67817i 0.113271 + 0.484485i
\(191\) −1.95382 + 3.38412i −0.141374 + 0.244866i −0.928014 0.372545i \(-0.878485\pi\)
0.786640 + 0.617411i \(0.211819\pi\)
\(192\) 0 0
\(193\) 9.29572 5.36689i 0.669121 0.386317i −0.126623 0.991951i \(-0.540414\pi\)
0.795743 + 0.605634i \(0.207080\pi\)
\(194\) −3.11788 + 0.728951i −0.223851 + 0.0523356i
\(195\) 0 0
\(196\) 3.69673 1.82852i 0.264052 0.130608i
\(197\) 8.26574 + 14.3167i 0.588909 + 1.02002i 0.994376 + 0.105911i \(0.0337758\pi\)
−0.405466 + 0.914110i \(0.632891\pi\)
\(198\) 0 0
\(199\) 0.916505 1.58743i 0.0649693 0.112530i −0.831711 0.555209i \(-0.812638\pi\)
0.896680 + 0.442679i \(0.145972\pi\)
\(200\) 5.49422 + 6.67033i 0.388500 + 0.471663i
\(201\) 0 0
\(202\) 7.37040 24.3493i 0.518579 1.71321i
\(203\) 5.28659 0.371046
\(204\) 0 0
\(205\) −0.377862 + 0.218159i −0.0263910 + 0.0152369i
\(206\) −9.07779 + 8.51245i −0.632479 + 0.593091i
\(207\) 0 0
\(208\) −13.6939 + 4.52506i −0.949504 + 0.313756i
\(209\) −11.6679 −0.807087
\(210\) 0 0
\(211\) −13.6854 + 7.90126i −0.942140 + 0.543945i −0.890631 0.454728i \(-0.849737\pi\)
−0.0515097 + 0.998672i \(0.516403\pi\)
\(212\) −1.01235 0.0651389i −0.0695284 0.00447376i
\(213\) 0 0
\(214\) −4.82357 + 15.9354i −0.329733 + 1.08932i
\(215\) −8.51496 4.91611i −0.580715 0.335276i
\(216\) 0 0
\(217\) 4.85052 8.40135i 0.329275 0.570321i
\(218\) 14.9743 14.0418i 1.01419 0.951030i
\(219\) 0 0
\(220\) 8.38781 4.14887i 0.565506 0.279717i
\(221\) 0.711981 9.35746i 0.0478930 0.629451i
\(222\) 0 0
\(223\) 10.8683 6.27482i 0.727795 0.420193i −0.0898197 0.995958i \(-0.528629\pi\)
0.817615 + 0.575765i \(0.195296\pi\)
\(224\) −16.9420 + 1.71972i −1.13198 + 0.114904i
\(225\) 0 0
\(226\) 3.45132 + 14.7620i 0.229578 + 0.981956i
\(227\) 1.99719 3.45924i 0.132558 0.229598i −0.792104 0.610386i \(-0.791014\pi\)
0.924662 + 0.380789i \(0.124348\pi\)
\(228\) 0 0
\(229\) −28.4156 −1.87775 −0.938877 0.344252i \(-0.888133\pi\)
−0.938877 + 0.344252i \(0.888133\pi\)
\(230\) 1.56167 + 0.472710i 0.102974 + 0.0311696i
\(231\) 0 0
\(232\) −4.65189 1.74134i −0.305412 0.114325i
\(233\) −24.7808 −1.62344 −0.811721 0.584046i \(-0.801469\pi\)
−0.811721 + 0.584046i \(0.801469\pi\)
\(234\) 0 0
\(235\) 12.9363i 0.843872i
\(236\) 23.1593 + 15.4346i 1.50754 + 1.00471i
\(237\) 0 0
\(238\) 3.21025 10.6056i 0.208089 0.687456i
\(239\) 6.99266i 0.452317i −0.974090 0.226159i \(-0.927383\pi\)
0.974090 0.226159i \(-0.0726168\pi\)
\(240\) 0 0
\(241\) −8.67485 5.00842i −0.558796 0.322621i 0.193866 0.981028i \(-0.437897\pi\)
−0.752662 + 0.658407i \(0.771231\pi\)
\(242\) 0.0828781 + 0.354487i 0.00532760 + 0.0227873i
\(243\) 0 0
\(244\) 9.57989 14.3744i 0.613290 0.920230i
\(245\) −1.43783 2.49040i −0.0918596 0.159106i
\(246\) 0 0
\(247\) 0.951267 12.5024i 0.0605277 0.795507i
\(248\) −7.03549 + 5.79500i −0.446754 + 0.367983i
\(249\) 0 0
\(250\) 11.5883 10.8667i 0.732911 0.687268i
\(251\) −6.05507 3.49590i −0.382193 0.220659i 0.296579 0.955008i \(-0.404154\pi\)
−0.678772 + 0.734349i \(0.737488\pi\)
\(252\) 0 0
\(253\) −1.38796 + 2.40401i −0.0872602 + 0.151139i
\(254\) 7.28891 + 2.20631i 0.457347 + 0.138437i
\(255\) 0 0
\(256\) 15.4744 + 4.06724i 0.967151 + 0.254203i
\(257\) 4.97845 + 8.62293i 0.310547 + 0.537883i 0.978481 0.206337i \(-0.0661544\pi\)
−0.667934 + 0.744221i \(0.732821\pi\)
\(258\) 0 0
\(259\) 10.1861i 0.632934i
\(260\) 3.76174 + 9.32592i 0.233293 + 0.578369i
\(261\) 0 0
\(262\) 13.8060 + 14.7229i 0.852938 + 0.909584i
\(263\) 13.2725 + 22.9886i 0.818417 + 1.41754i 0.906848 + 0.421458i \(0.138481\pi\)
−0.0884309 + 0.996082i \(0.528185\pi\)
\(264\) 0 0
\(265\) 0.707329i 0.0434509i
\(266\) 4.28916 14.1699i 0.262985 0.868814i
\(267\) 0 0
\(268\) 1.29613 0.641107i 0.0791739 0.0391619i
\(269\) 7.86858 + 4.54293i 0.479756 + 0.276987i 0.720315 0.693647i \(-0.243997\pi\)
−0.240559 + 0.970635i \(0.577331\pi\)
\(270\) 0 0
\(271\) −2.90301 + 1.67605i −0.176345 + 0.101813i −0.585574 0.810619i \(-0.699131\pi\)
0.409229 + 0.912432i \(0.365798\pi\)
\(272\) −6.31818 + 8.27486i −0.383096 + 0.501737i
\(273\) 0 0
\(274\) 22.7641 5.32218i 1.37523 0.321525i
\(275\) 5.12561 + 8.87782i 0.309086 + 0.535353i
\(276\) 0 0
\(277\) −12.3436 7.12656i −0.741653 0.428193i 0.0810172 0.996713i \(-0.474183\pi\)
−0.822670 + 0.568519i \(0.807516\pi\)
\(278\) 4.90751 1.14736i 0.294333 0.0688141i
\(279\) 0 0
\(280\) 1.95514 + 11.7116i 0.116842 + 0.699900i
\(281\) 27.8007i 1.65845i 0.558913 + 0.829226i \(0.311218\pi\)
−0.558913 + 0.829226i \(0.688782\pi\)
\(282\) 0 0
\(283\) −9.56257 + 5.52095i −0.568435 + 0.328186i −0.756524 0.653966i \(-0.773104\pi\)
0.188089 + 0.982152i \(0.439771\pi\)
\(284\) 5.78744 8.68394i 0.343421 0.515297i
\(285\) 0 0
\(286\) −16.9065 + 2.61972i −0.999703 + 0.154907i
\(287\) 0.941874 0.0555970
\(288\) 0 0
\(289\) 5.11273 + 8.85551i 0.300749 + 0.520912i
\(290\) −1.00339 + 3.31485i −0.0589209 + 0.194655i
\(291\) 0 0
\(292\) 27.6337 + 1.77807i 1.61714 + 0.104054i
\(293\) −6.33493 + 10.9724i −0.370091 + 0.641016i −0.989579 0.143990i \(-0.954007\pi\)
0.619488 + 0.785006i \(0.287340\pi\)
\(294\) 0 0
\(295\) 9.70281 16.8058i 0.564919 0.978469i
\(296\) −3.35519 + 8.96319i −0.195016 + 0.520975i
\(297\) 0 0
\(298\) −6.51462 27.8645i −0.377382 1.61414i
\(299\) −2.46278 1.68322i −0.142426 0.0973429i
\(300\) 0 0
\(301\) 10.6124 + 18.3812i 0.611687 + 1.05947i
\(302\) 22.1732 + 23.6458i 1.27592 + 1.36066i
\(303\) 0 0
\(304\) −8.44163 + 11.0559i −0.484161 + 0.634100i
\(305\) −10.4309 6.02231i −0.597274 0.344837i
\(306\) 0 0
\(307\) −28.5408 −1.62891 −0.814455 0.580227i \(-0.802964\pi\)
−0.814455 + 0.580227i \(0.802964\pi\)
\(308\) −20.1589 1.29711i −1.14866 0.0739098i
\(309\) 0 0
\(310\) 4.34727 + 4.63598i 0.246908 + 0.263306i
\(311\) 28.1190 1.59448 0.797241 0.603661i \(-0.206292\pi\)
0.797241 + 0.603661i \(0.206292\pi\)
\(312\) 0 0
\(313\) −7.36544 −0.416320 −0.208160 0.978095i \(-0.566747\pi\)
−0.208160 + 0.978095i \(0.566747\pi\)
\(314\) 5.85122 + 6.23981i 0.330203 + 0.352133i
\(315\) 0 0
\(316\) −0.229335 + 3.56417i −0.0129011 + 0.200500i
\(317\) 20.5016 1.15149 0.575743 0.817630i \(-0.304713\pi\)
0.575743 + 0.817630i \(0.304713\pi\)
\(318\) 0 0
\(319\) −5.10283 2.94612i −0.285703 0.164951i
\(320\) 2.13725 10.9495i 0.119476 0.612097i
\(321\) 0 0
\(322\) −2.40930 2.56931i −0.134265 0.143182i
\(323\) −4.52568 7.83871i −0.251816 0.436158i
\(324\) 0 0
\(325\) −9.93061 + 4.76838i −0.550851 + 0.264502i
\(326\) −6.61656 28.3005i −0.366457 1.56742i
\(327\) 0 0
\(328\) −0.828795 0.310243i −0.0457625 0.0171303i
\(329\) 13.9627 24.1842i 0.769791 1.33332i
\(330\) 0 0
\(331\) 7.94086 13.7540i 0.436469 0.755987i −0.560945 0.827853i \(-0.689562\pi\)
0.997414 + 0.0718660i \(0.0228954\pi\)
\(332\) −0.936052 + 14.5475i −0.0513725 + 0.798400i
\(333\) 0 0
\(334\) −7.97408 + 26.3436i −0.436322 + 1.44146i
\(335\) −0.504126 0.873172i −0.0275434 0.0477065i
\(336\) 0 0
\(337\) −4.25797 −0.231946 −0.115973 0.993252i \(-0.536999\pi\)
−0.115973 + 0.993252i \(0.536999\pi\)
\(338\) −1.42872 18.3292i −0.0777119 0.996976i
\(339\) 0 0
\(340\) 6.04069 + 4.02584i 0.327603 + 0.218332i
\(341\) −9.36383 + 5.40621i −0.507080 + 0.292763i
\(342\) 0 0
\(343\) 14.8647i 0.802617i
\(344\) −3.28373 19.6700i −0.177047 1.06053i
\(345\) 0 0
\(346\) 13.3778 3.12769i 0.719195 0.168145i
\(347\) 3.58974 + 2.07254i 0.192708 + 0.111260i 0.593249 0.805019i \(-0.297845\pi\)
−0.400542 + 0.916278i \(0.631178\pi\)
\(348\) 0 0
\(349\) −14.1312 24.4759i −0.756425 1.31017i −0.944663 0.328043i \(-0.893611\pi\)
0.188238 0.982123i \(-0.439722\pi\)
\(350\) −12.6657 + 2.96120i −0.677011 + 0.158283i
\(351\) 0 0
\(352\) 17.3114 + 7.78150i 0.922702 + 0.414756i
\(353\) 22.2772 12.8618i 1.18570 0.684563i 0.228372 0.973574i \(-0.426660\pi\)
0.957326 + 0.289011i \(0.0933263\pi\)
\(354\) 0 0
\(355\) −6.30158 3.63822i −0.334453 0.193097i
\(356\) −10.5482 21.3254i −0.559052 1.13024i
\(357\) 0 0
\(358\) −4.14909 + 13.7072i −0.219286 + 0.724447i
\(359\) 23.8199i 1.25717i −0.777742 0.628584i \(-0.783635\pi\)
0.777742 0.628584i \(-0.216365\pi\)
\(360\) 0 0
\(361\) 3.45330 + 5.98129i 0.181753 + 0.314805i
\(362\) −7.93577 8.46281i −0.417095 0.444795i
\(363\) 0 0
\(364\) 3.03340 21.4948i 0.158993 1.12664i
\(365\) 19.3077i 1.01061i
\(366\) 0 0
\(367\) 0.240863 + 0.417186i 0.0125729 + 0.0217769i 0.872243 0.489072i \(-0.162664\pi\)
−0.859670 + 0.510849i \(0.829331\pi\)
\(368\) 1.27374 + 3.05444i 0.0663985 + 0.159224i
\(369\) 0 0
\(370\) 6.38699 + 1.93331i 0.332044 + 0.100508i
\(371\) 0.763452 1.32234i 0.0396365 0.0686524i
\(372\) 0 0
\(373\) 4.06977 + 2.34968i 0.210725 + 0.121662i 0.601648 0.798761i \(-0.294511\pi\)
−0.390923 + 0.920423i \(0.627844\pi\)
\(374\) −9.00893 + 8.44789i −0.465841 + 0.436830i
\(375\) 0 0
\(376\) −20.2524 + 16.6815i −1.04444 + 0.860284i
\(377\) 3.57284 5.22757i 0.184011 0.269233i
\(378\) 0 0
\(379\) 8.08676 + 14.0067i 0.415389 + 0.719475i 0.995469 0.0950847i \(-0.0303122\pi\)
−0.580080 + 0.814559i \(0.696979\pi\)
\(380\) 8.07088 + 5.37886i 0.414028 + 0.275930i
\(381\) 0 0
\(382\) 1.25809 + 5.38113i 0.0643696 + 0.275323i
\(383\) −16.3259 9.42576i −0.834214 0.481634i 0.0210792 0.999778i \(-0.493290\pi\)
−0.855293 + 0.518144i \(0.826623\pi\)
\(384\) 0 0
\(385\) 14.0851i 0.717841i
\(386\) 4.39781 14.5288i 0.223842 0.739499i
\(387\) 0 0
\(388\) −2.51127 + 3.76811i −0.127490 + 0.191297i
\(389\) 16.5912i 0.841205i −0.907245 0.420603i \(-0.861819\pi\)
0.907245 0.420603i \(-0.138181\pi\)
\(390\) 0 0
\(391\) −2.15341 −0.108903
\(392\) 2.04473 5.46239i 0.103275 0.275892i
\(393\) 0 0
\(394\) 22.3764 + 6.77322i 1.12731 + 0.341230i
\(395\) 2.49029 0.125300
\(396\) 0 0
\(397\) −1.91914 + 3.32405i −0.0963189 + 0.166829i −0.910158 0.414261i \(-0.864040\pi\)
0.813839 + 0.581090i \(0.197374\pi\)
\(398\) −0.590150 2.52420i −0.0295815 0.126527i
\(399\) 0 0
\(400\) 12.1205 + 1.56625i 0.606024 + 0.0783127i
\(401\) 10.0269 5.78906i 0.500721 0.289092i −0.228290 0.973593i \(-0.573313\pi\)
0.729011 + 0.684501i \(0.239980\pi\)
\(402\) 0 0
\(403\) −5.02942 10.4743i −0.250534 0.521760i
\(404\) −15.9512 32.2487i −0.793602 1.60443i
\(405\) 0 0
\(406\) 5.45368 5.11404i 0.270661 0.253806i
\(407\) −5.67653 + 9.83203i −0.281375 + 0.487356i
\(408\) 0 0
\(409\) −32.1730 18.5751i −1.59085 0.918480i −0.993161 0.116755i \(-0.962751\pi\)
−0.597693 0.801725i \(-0.703916\pi\)
\(410\) −0.178766 + 0.590583i −0.00882864 + 0.0291668i
\(411\) 0 0
\(412\) −1.13008 + 17.5630i −0.0556750 + 0.865267i
\(413\) −36.2784 + 20.9454i −1.78515 + 1.03065i
\(414\) 0 0
\(415\) 10.1644 0.498950
\(416\) −9.74938 + 17.9151i −0.478003 + 0.878358i
\(417\) 0 0
\(418\) −12.0367 + 11.2871i −0.588735 + 0.552070i
\(419\) −26.3097 + 15.1899i −1.28531 + 0.742075i −0.977814 0.209474i \(-0.932825\pi\)
−0.307497 + 0.951549i \(0.599491\pi\)
\(420\) 0 0
\(421\) 5.99236 0.292050 0.146025 0.989281i \(-0.453352\pi\)
0.146025 + 0.989281i \(0.453352\pi\)
\(422\) −6.47455 + 21.3897i −0.315176 + 1.04123i
\(423\) 0 0
\(424\) −1.10736 + 0.912109i −0.0537780 + 0.0442959i
\(425\) −3.97618 + 6.88695i −0.192873 + 0.334066i
\(426\) 0 0
\(427\) 13.0003 + 22.5172i 0.629129 + 1.08968i
\(428\) 10.4393 + 21.1052i 0.504602 + 1.02016i
\(429\) 0 0
\(430\) −13.5397 + 3.16555i −0.652945 + 0.152656i
\(431\) 25.4435 14.6898i 1.22557 0.707582i 0.259469 0.965752i \(-0.416453\pi\)
0.966100 + 0.258169i \(0.0831193\pi\)
\(432\) 0 0
\(433\) −7.83461 + 13.5699i −0.376508 + 0.652130i −0.990551 0.137142i \(-0.956208\pi\)
0.614044 + 0.789272i \(0.289542\pi\)
\(434\) −3.12331 13.3591i −0.149924 0.641257i
\(435\) 0 0
\(436\) 1.86413 28.9712i 0.0892758 1.38747i
\(437\) −2.87714 −0.137632
\(438\) 0 0
\(439\) 3.93162 + 6.80976i 0.187646 + 0.325012i 0.944465 0.328612i \(-0.106581\pi\)
−0.756819 + 0.653624i \(0.773248\pi\)
\(440\) 4.63946 12.3940i 0.221178 0.590863i
\(441\) 0 0
\(442\) −8.31757 10.3420i −0.395626 0.491917i
\(443\) 24.0190i 1.14118i −0.821236 0.570589i \(-0.806715\pi\)
0.821236 0.570589i \(-0.193285\pi\)
\(444\) 0 0
\(445\) −14.3664 + 8.29442i −0.681031 + 0.393193i
\(446\) 5.14179 16.9867i 0.243471 0.804345i
\(447\) 0 0
\(448\) −15.8139 + 18.1631i −0.747134 + 0.858125i
\(449\) 19.9175 + 11.4994i 0.939963 + 0.542688i 0.889949 0.456061i \(-0.150740\pi\)
0.0500144 + 0.998748i \(0.484073\pi\)
\(450\) 0 0
\(451\) −0.909134 0.524889i −0.0428094 0.0247160i
\(452\) 17.8406 + 11.8899i 0.839152 + 0.559255i
\(453\) 0 0
\(454\) −1.28602 5.50058i −0.0603558 0.258155i
\(455\) −15.0924 1.14833i −0.707541 0.0538346i
\(456\) 0 0
\(457\) 30.8485 17.8104i 1.44303 0.833135i 0.444981 0.895540i \(-0.353211\pi\)
0.998051 + 0.0624055i \(0.0198772\pi\)
\(458\) −29.3137 + 27.4881i −1.36974 + 1.28444i
\(459\) 0 0
\(460\) 2.06831 1.02305i 0.0964356 0.0477000i
\(461\) −0.848560 + 1.46975i −0.0395214 + 0.0684530i −0.885109 0.465383i \(-0.845917\pi\)
0.845588 + 0.533836i \(0.179250\pi\)
\(462\) 0 0
\(463\) 1.17416i 0.0545677i −0.999628 0.0272838i \(-0.991314\pi\)
0.999628 0.0272838i \(-0.00868580\pi\)
\(464\) −6.48343 + 2.70368i −0.300986 + 0.125515i
\(465\) 0 0
\(466\) −25.5640 + 23.9720i −1.18423 + 1.11048i
\(467\) 5.69837i 0.263689i −0.991270 0.131845i \(-0.957910\pi\)
0.991270 0.131845i \(-0.0420900\pi\)
\(468\) 0 0
\(469\) 2.17651i 0.100502i
\(470\) 12.5141 + 13.3452i 0.577232 + 0.615567i
\(471\) 0 0
\(472\) 38.8221 6.48101i 1.78693 0.298313i
\(473\) 23.6563i 1.08772i
\(474\) 0 0
\(475\) −5.31252 + 9.20155i −0.243755 + 0.422196i
\(476\) −6.94769 14.0462i −0.318447 0.643808i
\(477\) 0 0
\(478\) −6.76443 7.21367i −0.309398 0.329946i
\(479\) −22.0832 + 12.7498i −1.00901 + 0.582552i −0.910901 0.412624i \(-0.864612\pi\)
−0.0981078 + 0.995176i \(0.531279\pi\)
\(480\) 0 0
\(481\) −10.0724 6.88408i −0.459261 0.313887i
\(482\) −13.7940 + 3.22499i −0.628299 + 0.146894i
\(483\) 0 0
\(484\) 0.428415 + 0.285518i 0.0194734 + 0.0129781i
\(485\) 2.73436 + 1.57868i 0.124161 + 0.0716844i
\(486\) 0 0
\(487\) −22.0022 12.7030i −0.997016 0.575627i −0.0896517 0.995973i \(-0.528575\pi\)
−0.907364 + 0.420346i \(0.861909\pi\)
\(488\) −4.02261 24.0960i −0.182095 1.09077i
\(489\) 0 0
\(490\) −3.89239 1.17821i −0.175840 0.0532259i
\(491\) −10.8324 + 6.25412i −0.488861 + 0.282244i −0.724102 0.689693i \(-0.757746\pi\)
0.235241 + 0.971937i \(0.424412\pi\)
\(492\) 0 0
\(493\) 4.57089i 0.205862i
\(494\) −11.1130 13.8177i −0.499997 0.621690i
\(495\) 0 0
\(496\) −1.65200 + 12.7840i −0.0741769 + 0.574019i
\(497\) 7.85379 + 13.6032i 0.352291 + 0.610185i
\(498\) 0 0
\(499\) −34.1916 −1.53063 −0.765313 0.643658i \(-0.777416\pi\)
−0.765313 + 0.643658i \(0.777416\pi\)
\(500\) 1.44261 22.4202i 0.0645157 1.00266i
\(501\) 0 0
\(502\) −9.62825 + 2.25106i −0.429730 + 0.100470i
\(503\) −4.00439 + 6.93580i −0.178547 + 0.309252i −0.941383 0.337340i \(-0.890473\pi\)
0.762836 + 0.646592i \(0.223806\pi\)
\(504\) 0 0
\(505\) −21.7251 + 12.5430i −0.966756 + 0.558157i
\(506\) 0.893725 + 3.82265i 0.0397309 + 0.169938i
\(507\) 0 0
\(508\) 9.65359 4.77496i 0.428309 0.211855i
\(509\) −13.0201 22.5515i −0.577107 0.999579i −0.995809 0.0914551i \(-0.970848\pi\)
0.418702 0.908124i \(-0.362485\pi\)
\(510\) 0 0
\(511\) −20.8397 + 36.0954i −0.921893 + 1.59677i
\(512\) 19.8980 10.7736i 0.879376 0.476129i
\(513\) 0 0
\(514\) 13.4773 + 4.07950i 0.594458 + 0.179939i
\(515\) 12.2713 0.540738
\(516\) 0 0
\(517\) −26.9548 + 15.5624i −1.18547 + 0.684432i
\(518\) −9.85365 10.5080i −0.432944 0.461697i
\(519\) 0 0
\(520\) 12.9022 + 5.98172i 0.565798 + 0.262316i
\(521\) −40.3000 −1.76557 −0.882787 0.469773i \(-0.844336\pi\)
−0.882787 + 0.469773i \(0.844336\pi\)
\(522\) 0 0
\(523\) −2.28594 + 1.31979i −0.0999571 + 0.0577103i −0.549145 0.835727i \(-0.685047\pi\)
0.449188 + 0.893437i \(0.351713\pi\)
\(524\) 28.4847 + 1.83283i 1.24436 + 0.0800677i
\(525\) 0 0
\(526\) 35.9303 + 10.8759i 1.56664 + 0.474213i
\(527\) −7.26397 4.19386i −0.316424 0.182687i
\(528\) 0 0
\(529\) 11.1577 19.3258i 0.485120 0.840252i
\(530\) 0.684243 + 0.729685i 0.0297216 + 0.0316955i
\(531\) 0 0
\(532\) −9.28271 18.7670i −0.402457 0.813651i
\(533\) 0.636547 0.931358i 0.0275719 0.0403416i
\(534\) 0 0
\(535\) 14.2181 8.20880i 0.614701 0.354898i
\(536\) 0.716916 1.91520i 0.0309661 0.0827240i
\(537\) 0 0
\(538\) 12.5119 2.92525i 0.539428 0.126117i
\(539\) 3.45942 5.99188i 0.149008 0.258089i
\(540\) 0 0
\(541\) −3.53693 −0.152065 −0.0760324 0.997105i \(-0.524225\pi\)
−0.0760324 + 0.997105i \(0.524225\pi\)
\(542\) −1.37341 + 4.53729i −0.0589932 + 0.194893i
\(543\) 0 0
\(544\) 1.48690 + 14.6484i 0.0637504 + 0.628043i
\(545\) −20.2422 −0.867082
\(546\) 0 0
\(547\) 37.3193i 1.59566i −0.602885 0.797828i \(-0.705982\pi\)
0.602885 0.797828i \(-0.294018\pi\)
\(548\) 18.3351 27.5115i 0.783238 1.17523i
\(549\) 0 0
\(550\) 13.8757 + 4.20010i 0.591661 + 0.179093i
\(551\) 6.10710i 0.260171i
\(552\) 0 0
\(553\) −4.65556 2.68789i −0.197974 0.114301i
\(554\) −19.6277 + 4.58888i −0.833899 + 0.194963i
\(555\) 0 0
\(556\) 3.95271 5.93096i 0.167632 0.251529i
\(557\) 1.99339 + 3.45265i 0.0844626 + 0.146294i 0.905162 0.425067i \(-0.139749\pi\)
−0.820699 + 0.571360i \(0.806416\pi\)
\(558\) 0 0
\(559\) 25.3481 + 1.92866i 1.07211 + 0.0815736i
\(560\) 13.3463 + 10.1904i 0.563983 + 0.430623i
\(561\) 0 0
\(562\) 26.8933 + 28.6794i 1.13443 + 1.20977i
\(563\) 15.8682 + 9.16148i 0.668763 + 0.386110i 0.795608 0.605812i \(-0.207152\pi\)
−0.126845 + 0.991923i \(0.540485\pi\)
\(564\) 0 0
\(565\) 7.47450 12.9462i 0.314455 0.544651i
\(566\) −4.52405 + 14.9459i −0.190160 + 0.628223i
\(567\) 0 0
\(568\) −2.43015 14.5570i −0.101967 0.610796i
\(569\) −8.79566 15.2345i −0.368733 0.638665i 0.620634 0.784100i \(-0.286875\pi\)
−0.989368 + 0.145435i \(0.953542\pi\)
\(570\) 0 0
\(571\) 42.8062i 1.79139i 0.444674 + 0.895693i \(0.353320\pi\)
−0.444674 + 0.895693i \(0.646680\pi\)
\(572\) −14.9066 + 19.0572i −0.623278 + 0.796823i
\(573\) 0 0
\(574\) 0.971643 0.911132i 0.0405556 0.0380299i
\(575\) 1.26390 + 2.18914i 0.0527083 + 0.0912935i
\(576\) 0 0
\(577\) 31.7922i 1.32353i −0.749713 0.661763i \(-0.769808\pi\)
0.749713 0.661763i \(-0.230192\pi\)
\(578\) 13.8408 + 4.18954i 0.575701 + 0.174262i
\(579\) 0 0
\(580\) 2.17156 + 4.39025i 0.0901689 + 0.182295i
\(581\) −19.0021 10.9709i −0.788341 0.455149i
\(582\) 0 0
\(583\) −1.47383 + 0.850916i −0.0610398 + 0.0352413i
\(584\) 30.2271 24.8975i 1.25081 1.03027i
\(585\) 0 0
\(586\) 4.07915 + 17.4474i 0.168508 + 0.720745i
\(587\) 11.5920 + 20.0779i 0.478453 + 0.828705i 0.999695 0.0247044i \(-0.00786445\pi\)
−0.521242 + 0.853409i \(0.674531\pi\)
\(588\) 0 0
\(589\) −9.70529 5.60335i −0.399899 0.230882i
\(590\) −6.24777 26.7231i −0.257216 1.10017i
\(591\) 0 0
\(592\) 5.20941 + 12.4922i 0.214105 + 0.513425i
\(593\) 2.17000i 0.0891111i 0.999007 + 0.0445555i \(0.0141872\pi\)
−0.999007 + 0.0445555i \(0.985813\pi\)
\(594\) 0 0
\(595\) −9.46259 + 5.46323i −0.387928 + 0.223970i
\(596\) −33.6755 22.4432i −1.37940 0.919307i
\(597\) 0 0
\(598\) −4.16890 + 0.645986i −0.170479 + 0.0264163i
\(599\) 14.4334 0.589731 0.294865 0.955539i \(-0.404725\pi\)
0.294865 + 0.955539i \(0.404725\pi\)
\(600\) 0 0
\(601\) 2.98263 + 5.16607i 0.121664 + 0.210728i 0.920424 0.390922i \(-0.127844\pi\)
−0.798760 + 0.601650i \(0.794510\pi\)
\(602\) 28.7290 + 8.69613i 1.17091 + 0.354428i
\(603\) 0 0
\(604\) 45.7480 + 2.94363i 1.86146 + 0.119775i
\(605\) 0.179489 0.310883i 0.00729725 0.0126392i
\(606\) 0 0
\(607\) −0.844631 + 1.46294i −0.0342825 + 0.0593791i −0.882658 0.470017i \(-0.844248\pi\)
0.848375 + 0.529396i \(0.177581\pi\)
\(608\) 1.98663 + 19.5715i 0.0805685 + 0.793728i
\(609\) 0 0
\(610\) −16.5864 + 3.87784i −0.671563 + 0.157009i
\(611\) −14.4777 30.1513i −0.585706 1.21979i
\(612\) 0 0
\(613\) 3.26462 + 5.65449i 0.131857 + 0.228383i 0.924392 0.381443i \(-0.124573\pi\)
−0.792536 + 0.609826i \(0.791239\pi\)
\(614\) −29.4429 + 27.6093i −1.18822 + 1.11422i
\(615\) 0 0
\(616\) −22.0508 + 18.1628i −0.888454 + 0.731802i
\(617\) 3.07220 + 1.77374i 0.123682 + 0.0714079i 0.560565 0.828111i \(-0.310584\pi\)
−0.436883 + 0.899519i \(0.643917\pi\)
\(618\) 0 0
\(619\) −3.20378 −0.128771 −0.0643854 0.997925i \(-0.520509\pi\)
−0.0643854 + 0.997925i \(0.520509\pi\)
\(620\) 8.96935 + 0.577127i 0.360218 + 0.0231780i
\(621\) 0 0
\(622\) 29.0077 27.2012i 1.16310 1.09067i
\(623\) 35.8102 1.43470
\(624\) 0 0
\(625\) −0.388454 −0.0155381
\(626\) −7.59824 + 7.12505i −0.303687 + 0.284774i
\(627\) 0 0
\(628\) 12.0723 + 0.776785i 0.481738 + 0.0309971i
\(629\) −8.80711 −0.351162
\(630\) 0 0
\(631\) −24.3730 14.0718i −0.970274 0.560188i −0.0709541 0.997480i \(-0.522604\pi\)
−0.899320 + 0.437292i \(0.855938\pi\)
\(632\) 3.21126 + 3.89867i 0.127737 + 0.155081i
\(633\) 0 0
\(634\) 21.1496 19.8325i 0.839959 0.787649i
\(635\) −3.75473 6.50338i −0.149002 0.258079i
\(636\) 0 0
\(637\) 6.13836 + 4.19533i 0.243211 + 0.166225i
\(638\) −8.11407 + 1.89704i −0.321239 + 0.0751047i
\(639\) 0 0
\(640\) −8.38734 13.3631i −0.331539 0.528222i
\(641\) 17.9287 31.0534i 0.708140 1.22653i −0.257407 0.966303i \(-0.582868\pi\)
0.965546 0.260231i \(-0.0837987\pi\)
\(642\) 0 0
\(643\) 12.5211 21.6872i 0.493785 0.855261i −0.506189 0.862422i \(-0.668946\pi\)
0.999974 + 0.00716140i \(0.00227956\pi\)
\(644\) −4.97090 0.319849i −0.195881 0.0126038i
\(645\) 0 0
\(646\) −12.2516 3.70849i −0.482033 0.145909i
\(647\) 13.5526 + 23.4737i 0.532806 + 0.922847i 0.999266 + 0.0383048i \(0.0121958\pi\)
−0.466460 + 0.884542i \(0.654471\pi\)
\(648\) 0 0
\(649\) 46.6899 1.83274
\(650\) −5.63173 + 14.5256i −0.220895 + 0.569740i
\(651\) 0 0
\(652\) −34.2025 22.7943i −1.33947 0.892695i
\(653\) −35.2712 + 20.3638i −1.38027 + 0.796898i −0.992191 0.124729i \(-0.960194\pi\)
−0.388077 + 0.921627i \(0.626861\pi\)
\(654\) 0 0
\(655\) 19.9023i 0.777648i
\(656\) −1.15511 + 0.481696i −0.0450993 + 0.0188071i
\(657\) 0 0
\(658\) −8.99079 38.4556i −0.350498 1.49915i
\(659\) 2.20901 + 1.27537i 0.0860507 + 0.0496814i 0.542408 0.840115i \(-0.317513\pi\)
−0.456357 + 0.889797i \(0.650846\pi\)
\(660\) 0 0
\(661\) 16.9110 + 29.2907i 0.657761 + 1.13927i 0.981194 + 0.193024i \(0.0618295\pi\)
−0.323433 + 0.946251i \(0.604837\pi\)
\(662\) −5.11323 21.8704i −0.198731 0.850016i
\(663\) 0 0
\(664\) 13.1071 + 15.9128i 0.508654 + 0.617538i
\(665\) −12.6428 + 7.29934i −0.490268 + 0.283056i
\(666\) 0 0
\(667\) −1.25828 0.726470i −0.0487209 0.0281290i
\(668\) 17.2577 + 34.8901i 0.667721 + 1.34994i
\(669\) 0 0
\(670\) −1.36473 0.413098i −0.0527242 0.0159594i
\(671\) 28.9793i 1.11873i
\(672\) 0 0
\(673\) 17.7278 + 30.7055i 0.683358 + 1.18361i 0.973950 + 0.226764i \(0.0728145\pi\)
−0.290592 + 0.956847i \(0.593852\pi\)
\(674\) −4.39254 + 4.11899i −0.169194 + 0.158658i
\(675\) 0 0
\(676\) −19.2048 17.5264i −0.738647 0.674093i
\(677\) 9.66173i 0.371331i 0.982613 + 0.185665i \(0.0594440\pi\)
−0.982613 + 0.185665i \(0.940556\pi\)
\(678\) 0 0
\(679\) −3.40789 5.90264i −0.130783 0.226523i
\(680\) 10.1261 1.69046i 0.388317 0.0648260i
\(681\) 0 0
\(682\) −4.43003 + 14.6353i −0.169635 + 0.560414i
\(683\) 20.1053 34.8234i 0.769308 1.33248i −0.168630 0.985679i \(-0.553934\pi\)
0.937939 0.346802i \(-0.112732\pi\)
\(684\) 0 0
\(685\) −19.9640 11.5262i −0.762785 0.440394i
\(686\) −14.3795 15.3345i −0.549013 0.585474i
\(687\) 0 0
\(688\) −22.4155 17.1151i −0.854582 0.652507i
\(689\) −0.791611 1.64861i −0.0301580 0.0628069i
\(690\) 0 0
\(691\) −14.4864 25.0911i −0.551087 0.954511i −0.998196 0.0600319i \(-0.980880\pi\)
0.447109 0.894479i \(-0.352454\pi\)
\(692\) 10.7750 16.1677i 0.409605 0.614604i
\(693\) 0 0
\(694\) 5.70810 1.33454i 0.216676 0.0506583i
\(695\) −4.30386 2.48483i −0.163255 0.0942551i
\(696\) 0 0
\(697\) 0.814362i 0.0308462i
\(698\) −38.2549 11.5796i −1.44797 0.438293i
\(699\) 0 0
\(700\) −10.2015 + 15.3071i −0.385579 + 0.578555i
\(701\) 35.4685i 1.33963i 0.742529 + 0.669814i \(0.233626\pi\)
−0.742529 + 0.669814i \(0.766374\pi\)
\(702\) 0 0
\(703\) −11.7670 −0.443803
\(704\) 25.3861 8.71896i 0.956775 0.328608i
\(705\) 0 0
\(706\) 10.5394 34.8184i 0.396654 1.31041i
\(707\) 54.1530 2.03663
\(708\) 0 0
\(709\) 9.45321 16.3734i 0.355023 0.614917i −0.632099 0.774888i \(-0.717806\pi\)
0.987122 + 0.159970i \(0.0511398\pi\)
\(710\) −10.0202 + 2.34270i −0.376052 + 0.0879198i
\(711\) 0 0
\(712\) −31.5109 11.7955i −1.18092 0.442054i
\(713\) −2.30899 + 1.33309i −0.0864722 + 0.0499247i
\(714\) 0 0
\(715\) 13.9278 + 9.51911i 0.520871 + 0.355995i
\(716\) 8.97957 + 18.1541i 0.335582 + 0.678450i
\(717\) 0 0
\(718\) −23.0425 24.5728i −0.859938 0.917048i
\(719\) 8.07721 13.9901i 0.301229 0.521744i −0.675185 0.737648i \(-0.735936\pi\)
0.976415 + 0.215904i \(0.0692697\pi\)
\(720\) 0 0
\(721\) −22.9409 13.2450i −0.854366 0.493268i
\(722\) 9.34851 + 2.82975i 0.347916 + 0.105312i
\(723\) 0 0
\(724\) −16.3732 1.05352i −0.608505 0.0391538i
\(725\) −4.64673 + 2.68279i −0.172575 + 0.0996364i
\(726\) 0 0
\(727\) 39.4524 1.46321 0.731605 0.681729i \(-0.238772\pi\)
0.731605 + 0.681729i \(0.238772\pi\)
\(728\) −17.6640 25.1086i −0.654672 0.930587i
\(729\) 0 0
\(730\) −18.6775 19.9179i −0.691286 0.737196i
\(731\) 15.8927 9.17566i 0.587813 0.339374i
\(732\) 0 0
\(733\) 5.87587 0.217030 0.108515 0.994095i \(-0.465390\pi\)
0.108515 + 0.994095i \(0.465390\pi\)
\(734\) 0.652045 + 0.197371i 0.0240674 + 0.00728509i
\(735\) 0 0
\(736\) 4.26875 + 1.91881i 0.157348 + 0.0707281i
\(737\) 1.21293 2.10085i 0.0446787 0.0773858i
\(738\) 0 0
\(739\) −22.0371 38.1694i −0.810648 1.40408i −0.912411 0.409275i \(-0.865782\pi\)
0.101763 0.994809i \(-0.467552\pi\)
\(740\) 8.45907 4.18411i 0.310961 0.153811i
\(741\) 0 0
\(742\) −0.491597 2.10267i −0.0180471 0.0771913i
\(743\) 12.8577 7.42341i 0.471704 0.272338i −0.245249 0.969460i \(-0.578870\pi\)
0.716953 + 0.697122i \(0.245536\pi\)
\(744\) 0 0
\(745\) −14.1087 + 24.4370i −0.516902 + 0.895301i
\(746\) 6.47139 1.51299i 0.236935 0.0553946i
\(747\) 0 0
\(748\) −1.12151 + 17.4298i −0.0410064 + 0.637296i
\(749\) −35.4405 −1.29497
\(750\) 0 0
\(751\) 11.5133 + 19.9416i 0.420126 + 0.727680i 0.995951 0.0898929i \(-0.0286525\pi\)
−0.575825 + 0.817573i \(0.695319\pi\)
\(752\) −4.75545 + 36.8002i −0.173414 + 1.34196i
\(753\) 0 0
\(754\) −1.37119 8.84902i −0.0499357 0.322262i
\(755\) 31.9642i 1.16330i
\(756\) 0 0
\(757\) 34.5605 19.9535i 1.25612 0.725223i 0.283804 0.958882i \(-0.408403\pi\)
0.972318 + 0.233659i \(0.0750701\pi\)
\(758\) 21.8919 + 6.62656i 0.795149 + 0.240687i
\(759\) 0 0
\(760\) 13.5293 2.25859i 0.490759 0.0819278i
\(761\) 14.0376 + 8.10461i 0.508862 + 0.293792i 0.732366 0.680911i \(-0.238416\pi\)
−0.223504 + 0.974703i \(0.571749\pi\)
\(762\) 0 0
\(763\) 37.8425 + 21.8484i 1.36999 + 0.790963i
\(764\) 6.50336 + 4.33418i 0.235283 + 0.156805i
\(765\) 0 0
\(766\) −25.9600 + 6.06937i −0.937973 + 0.219295i
\(767\) −3.80655 + 50.0289i −0.137446 + 1.80644i
\(768\) 0 0
\(769\) 7.15236 4.12942i 0.257921 0.148911i −0.365465 0.930825i \(-0.619090\pi\)
0.623386 + 0.781914i \(0.285757\pi\)
\(770\) 13.6253 + 14.5302i 0.491023 + 0.523633i
\(771\) 0 0
\(772\) −9.51784 19.2423i −0.342555 0.692546i
\(773\) −22.2426 + 38.5253i −0.800010 + 1.38566i 0.119598 + 0.992822i \(0.461839\pi\)
−0.919609 + 0.392836i \(0.871494\pi\)
\(774\) 0 0
\(775\) 9.84600i 0.353679i
\(776\) 1.05449 + 6.31651i 0.0378538 + 0.226749i
\(777\) 0 0
\(778\) −16.0497 17.1155i −0.575408 0.613622i
\(779\) 1.08806i 0.0389837i
\(780\) 0 0
\(781\) 17.5071i 0.626453i
\(782\) −2.22147 + 2.08313i −0.0794397 + 0.0744925i
\(783\) 0 0
\(784\) −3.17474 7.61303i −0.113384 0.271894i
\(785\) 8.43494i 0.301056i
\(786\) 0 0
\(787\) −0.323566 + 0.560432i −0.0115339 + 0.0199772i −0.871735 0.489978i \(-0.837005\pi\)
0.860201 + 0.509955i \(0.170338\pi\)
\(788\) 29.6358 14.6588i 1.05573 0.522197i
\(789\) 0 0
\(790\) 2.56900 2.40901i 0.0914010 0.0857089i
\(791\) −27.9469 + 16.1351i −0.993676 + 0.573699i
\(792\) 0 0
\(793\) 31.0518 + 2.36264i 1.10268 + 0.0838997i
\(794\) 1.23576 + 5.28561i 0.0438555 + 0.187579i
\(795\) 0 0
\(796\) −3.05062 2.03309i −0.108126 0.0720610i
\(797\) 42.8073 + 24.7148i 1.51631 + 0.875443i 0.999817 + 0.0191525i \(0.00609680\pi\)
0.516495 + 0.856290i \(0.327237\pi\)
\(798\) 0 0
\(799\) −20.9101 12.0725i −0.739747 0.427093i
\(800\) 14.0187 10.1091i 0.495636 0.357412i
\(801\) 0 0
\(802\) 4.74374 15.6717i 0.167507 0.553387i
\(803\) 40.2306 23.2271i 1.41971 0.819668i
\(804\) 0 0
\(805\) 3.47317i 0.122413i
\(806\) −15.3208 5.94004i −0.539652 0.209229i
\(807\) 0 0
\(808\) −47.6515 17.8374i −1.67637 0.627517i
\(809\) 26.5322 + 45.9551i 0.932822 + 1.61569i 0.778473 + 0.627678i \(0.215994\pi\)
0.154348 + 0.988016i \(0.450672\pi\)
\(810\) 0 0
\(811\) 51.6547 1.81384 0.906921 0.421301i \(-0.138426\pi\)
0.906921 + 0.421301i \(0.138426\pi\)
\(812\) 0.678920 10.5514i 0.0238254 0.370280i
\(813\) 0 0
\(814\) 3.65519 + 15.6340i 0.128114 + 0.547973i
\(815\) −14.3294 + 24.8193i −0.501939 + 0.869383i
\(816\) 0 0
\(817\) 21.2340 12.2595i 0.742885 0.428905i
\(818\) −51.1587 + 11.9608i −1.78872 + 0.418198i
\(819\) 0 0
\(820\) 0.386890 + 0.782180i 0.0135108 + 0.0273149i
\(821\) 11.4785 + 19.8813i 0.400602 + 0.693864i 0.993799 0.111194i \(-0.0354675\pi\)
−0.593196 + 0.805058i \(0.702134\pi\)
\(822\) 0 0
\(823\) −20.2415 + 35.0593i −0.705574 + 1.22209i 0.260910 + 0.965363i \(0.415977\pi\)
−0.966484 + 0.256727i \(0.917356\pi\)
\(824\) 15.8240 + 19.2113i 0.551254 + 0.669257i
\(825\) 0 0
\(826\) −17.1633 + 56.7017i −0.597188 + 1.97291i
\(827\) 30.9590 1.07655 0.538275 0.842770i \(-0.319076\pi\)
0.538275 + 0.842770i \(0.319076\pi\)
\(828\) 0 0
\(829\) −23.9582 + 13.8323i −0.832103 + 0.480415i −0.854572 0.519333i \(-0.826181\pi\)
0.0224693 + 0.999748i \(0.492847\pi\)
\(830\) 10.4856 9.83264i 0.363962 0.341296i
\(831\) 0 0
\(832\) 7.27282 + 27.9125i 0.252140 + 0.967691i
\(833\) 5.36727 0.185965
\(834\) 0 0
\(835\) 23.5046 13.5704i 0.813409 0.469622i
\(836\) −1.49843 + 23.2877i −0.0518243 + 0.805422i
\(837\) 0 0
\(838\) −12.4471 + 41.1209i −0.429978 + 1.42050i
\(839\) 3.52348 + 2.03428i 0.121644 + 0.0702312i 0.559587 0.828771i \(-0.310960\pi\)
−0.437943 + 0.899003i \(0.644293\pi\)
\(840\) 0 0
\(841\) −12.9580 + 22.4439i −0.446827 + 0.773927i
\(842\) 6.18176 5.79678i 0.213038 0.199770i
\(843\) 0 0
\(844\) 14.0124 + 28.3290i 0.482326 + 0.975124i
\(845\) −11.3354 + 14.1478i −0.389950 + 0.486699i
\(846\) 0 0
\(847\) −0.671101 + 0.387460i −0.0230593 + 0.0133133i
\(848\) −0.260018 + 2.01215i −0.00892905 + 0.0690976i
\(849\) 0 0
\(850\) 2.56032 + 10.9510i 0.0878181 + 0.375617i
\(851\) −1.39975 + 2.42444i −0.0479828 + 0.0831086i
\(852\) 0 0
\(853\) 44.1481 1.51160 0.755801 0.654801i \(-0.227248\pi\)
0.755801 + 0.654801i \(0.227248\pi\)
\(854\) 35.1935 + 10.6529i 1.20430 + 0.364534i
\(855\) 0 0
\(856\) 31.1856 + 11.6737i 1.06590 + 0.398999i
\(857\) −42.2555 −1.44342 −0.721711 0.692195i \(-0.756644\pi\)
−0.721711 + 0.692195i \(0.756644\pi\)
\(858\) 0 0
\(859\) 15.8242i 0.539915i 0.962872 + 0.269957i \(0.0870096\pi\)
−0.962872 + 0.269957i \(0.912990\pi\)
\(860\) −10.9055 + 16.3634i −0.371873 + 0.557988i
\(861\) 0 0
\(862\) 12.0373 39.7671i 0.409992 1.35447i
\(863\) 27.8210i 0.947037i 0.880784 + 0.473518i \(0.157016\pi\)
−0.880784 + 0.473518i \(0.842984\pi\)
\(864\) 0 0
\(865\) −11.7322 6.77361i −0.398908 0.230310i
\(866\) 5.04481 + 21.5778i 0.171430 + 0.733242i
\(867\) 0 0
\(868\) −16.1451 10.7599i −0.548001 0.365216i
\(869\) 2.99582 + 5.18891i 0.101626 + 0.176022i
\(870\) 0 0
\(871\) 2.15221 + 1.47095i 0.0729247 + 0.0498412i
\(872\) −26.1026 31.6902i −0.883945 1.07316i
\(873\) 0 0
\(874\) −2.96808 + 2.78324i −0.100397 + 0.0941444i
\(875\) 29.2855 + 16.9080i 0.990030 + 0.571594i
\(876\) 0 0
\(877\) 18.8441 32.6389i 0.636320 1.10214i −0.349914 0.936782i \(-0.613789\pi\)
0.986234 0.165357i \(-0.0528776\pi\)
\(878\) 10.6434 + 3.22170i 0.359197 + 0.108727i
\(879\) 0 0
\(880\) −7.20342 17.2738i −0.242827 0.582300i
\(881\) −14.3408 24.8389i −0.483152 0.836844i 0.516661 0.856190i \(-0.327175\pi\)
−0.999813 + 0.0193461i \(0.993842\pi\)
\(882\) 0 0
\(883\) 22.8091i 0.767586i 0.923419 + 0.383793i \(0.125382\pi\)
−0.923419 + 0.383793i \(0.874618\pi\)
\(884\) −18.5849 2.62274i −0.625077 0.0882122i
\(885\) 0 0
\(886\) −23.2351 24.7782i −0.780597 0.832439i
\(887\) −8.49750 14.7181i −0.285318 0.494185i 0.687368 0.726309i \(-0.258766\pi\)
−0.972686 + 0.232124i \(0.925433\pi\)
\(888\) 0 0
\(889\) 16.2106i 0.543686i
\(890\) −6.79672 + 22.4540i −0.227827 + 0.752661i
\(891\) 0 0
\(892\) −11.1280 22.4976i −0.372593 0.753275i
\(893\) −27.9377 16.1298i −0.934900 0.539765i
\(894\) 0 0
\(895\) 12.2300 7.06097i 0.408802 0.236022i
\(896\) 1.25660 + 34.0349i 0.0419800 + 1.13702i
\(897\) 0 0
\(898\) 31.6710 7.40458i 1.05688 0.247094i
\(899\) −2.82966 4.90111i −0.0943744 0.163461i
\(900\) 0 0
\(901\) −1.14332 0.660096i −0.0380895 0.0219910i
\(902\) −1.44563 + 0.337983i −0.0481341 + 0.0112536i
\(903\) 0 0
\(904\) 29.9064 4.99260i 0.994671 0.166052i
\(905\) 11.4400i 0.380277i
\(906\) 0 0
\(907\) 25.2984 14.6060i 0.840019 0.484985i −0.0172519 0.999851i \(-0.505492\pi\)
0.857271 + 0.514866i \(0.172158\pi\)
\(908\) −6.64771 4.43039i −0.220612 0.147028i
\(909\) 0 0
\(910\) −16.6802 + 13.4152i −0.552944 + 0.444708i
\(911\) −27.4869 −0.910680 −0.455340 0.890318i \(-0.650482\pi\)
−0.455340 + 0.890318i \(0.650482\pi\)
\(912\) 0 0
\(913\) 12.2277 + 21.1791i 0.404679 + 0.700925i
\(914\) 14.5944 48.2150i 0.482740 1.59481i
\(915\) 0 0
\(916\) −3.64922 + 56.7139i −0.120574 + 1.87388i
\(917\) −21.4815 + 37.2070i −0.709381 + 1.22868i
\(918\) 0 0
\(919\) 1.46485 2.53719i 0.0483209 0.0836942i −0.840853 0.541263i \(-0.817946\pi\)
0.889174 + 0.457569i \(0.151280\pi\)
\(920\) 1.14402 3.05619i 0.0377174 0.100760i
\(921\) 0 0
\(922\) 0.546399 + 2.33707i 0.0179947 + 0.0769672i
\(923\) 18.7591 + 1.42732i 0.617464 + 0.0469809i
\(924\) 0 0
\(925\) 5.16915 + 8.95324i 0.169961 + 0.294381i
\(926\) −1.13583 1.21127i −0.0373258 0.0398047i
\(927\) 0 0
\(928\) −4.07291 + 9.06096i −0.133700 + 0.297441i
\(929\) 15.9378 + 9.20171i 0.522903 + 0.301898i 0.738122 0.674668i \(-0.235713\pi\)
−0.215218 + 0.976566i \(0.569046\pi\)
\(930\) 0 0
\(931\) 7.17113 0.235024
\(932\) −3.18242 + 49.4592i −0.104244 + 1.62009i
\(933\) 0 0
\(934\) −5.51239 5.87848i −0.180371 0.192350i
\(935\) 12.1782 0.398270
\(936\) 0 0
\(937\) −44.9730 −1.46921 −0.734603 0.678498i \(-0.762631\pi\)
−0.734603 + 0.678498i \(0.762631\pi\)
\(938\) 2.10547 + 2.24530i 0.0687460 + 0.0733115i
\(939\) 0 0
\(940\) 25.8192 + 1.66132i 0.842130 + 0.0541863i
\(941\) 15.4993 0.505264 0.252632 0.967562i \(-0.418704\pi\)
0.252632 + 0.967562i \(0.418704\pi\)
\(942\) 0 0
\(943\) −0.224179 0.129430i −0.00730028 0.00421482i
\(944\) 33.7797 44.2409i 1.09943 1.43992i
\(945\) 0 0
\(946\) −22.8842 24.4040i −0.744030 0.793442i
\(947\) 0.289949 + 0.502206i 0.00942207 + 0.0163195i 0.870698 0.491818i \(-0.163667\pi\)
−0.861276 + 0.508138i \(0.830334\pi\)
\(948\) 0 0
\(949\) 21.6083 + 45.0014i 0.701436 + 1.46081i
\(950\) 3.42080 + 14.6315i 0.110985 + 0.474709i
\(951\) 0 0
\(952\) −20.7551 7.76924i −0.672675 0.251802i
\(953\) 6.73143 11.6592i 0.218052 0.377678i −0.736160 0.676807i \(-0.763363\pi\)
0.954212 + 0.299130i \(0.0966963\pi\)
\(954\) 0 0
\(955\) 2.72464 4.71922i 0.0881674 0.152710i
\(956\) −13.9565 0.898019i −0.451384 0.0290440i
\(957\) 0 0
\(958\) −10.4476 + 34.5152i −0.337546 + 1.11514i
\(959\) 24.8815 + 43.0961i 0.803466 + 1.39164i
\(960\) 0 0
\(961\) 20.6150 0.665000
\(962\) −17.0501 + 2.64198i −0.549718 + 0.0851808i
\(963\) 0 0
\(964\) −11.1102 + 16.6707i −0.357836 + 0.536927i
\(965\) −12.9631 + 7.48423i −0.417296 + 0.240926i
\(966\) 0 0
\(967\) 38.3159i 1.23216i 0.787686 + 0.616078i \(0.211279\pi\)
−0.787686 + 0.616078i \(0.788721\pi\)
\(968\) 0.718155 0.119890i 0.0230824 0.00385340i
\(969\) 0 0
\(970\) 4.34794 1.01654i 0.139604 0.0326390i
\(971\) −11.6662 6.73549i −0.374386 0.216152i 0.300987 0.953628i \(-0.402684\pi\)
−0.675373 + 0.737476i \(0.736017\pi\)
\(972\) 0 0
\(973\) 5.36399 + 9.29069i 0.171961 + 0.297846i
\(974\) −34.9860 + 8.17962i −1.12102 + 0.262092i
\(975\) 0 0
\(976\) −27.4593 20.9663i −0.878950 0.671113i
\(977\) −47.5102 + 27.4300i −1.51999 + 0.877564i −0.520263 + 0.854006i \(0.674166\pi\)
−0.999722 + 0.0235584i \(0.992500\pi\)
\(978\) 0 0
\(979\) −34.5654 19.9564i −1.10472 0.637808i
\(980\) −5.15516 + 2.54990i −0.164676 + 0.0814536i
\(981\) 0 0
\(982\) −5.12483 + 16.9307i −0.163540 + 0.540280i
\(983\) 56.9126i 1.81523i −0.419803 0.907615i \(-0.637901\pi\)
0.419803 0.907615i \(-0.362099\pi\)
\(984\) 0 0
\(985\) −11.5267 19.9649i −0.367272 0.636134i
\(986\) −4.42170 4.71536i −0.140816 0.150168i
\(987\) 0 0
\(988\) −24.8310 3.50420i −0.789979 0.111484i
\(989\) 5.83330i 0.185488i
\(990\) 0 0
\(991\) 8.93539 + 15.4765i 0.283842 + 0.491629i 0.972328 0.233621i \(-0.0750576\pi\)
−0.688486 + 0.725250i \(0.741724\pi\)
\(992\) 10.6626 + 14.7862i 0.338537 + 0.469461i
\(993\) 0 0
\(994\) 21.2612 + 6.43565i 0.674364 + 0.204127i
\(995\) −1.27808 + 2.21371i −0.0405180 + 0.0701792i
\(996\) 0 0
\(997\) 5.15008 + 2.97340i 0.163105 + 0.0941686i 0.579331 0.815093i \(-0.303314\pi\)
−0.416226 + 0.909261i \(0.636647\pi\)
\(998\) −35.2723 + 33.0756i −1.11652 + 1.04699i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 936.2.dg.f.829.21 yes 56
3.2 odd 2 inner 936.2.dg.f.829.8 yes 56
8.5 even 2 inner 936.2.dg.f.829.26 yes 56
13.4 even 6 inner 936.2.dg.f.901.26 yes 56
24.5 odd 2 inner 936.2.dg.f.829.3 56
39.17 odd 6 inner 936.2.dg.f.901.3 yes 56
104.69 even 6 inner 936.2.dg.f.901.21 yes 56
312.173 odd 6 inner 936.2.dg.f.901.8 yes 56
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
936.2.dg.f.829.3 56 24.5 odd 2 inner
936.2.dg.f.829.8 yes 56 3.2 odd 2 inner
936.2.dg.f.829.21 yes 56 1.1 even 1 trivial
936.2.dg.f.829.26 yes 56 8.5 even 2 inner
936.2.dg.f.901.3 yes 56 39.17 odd 6 inner
936.2.dg.f.901.8 yes 56 312.173 odd 6 inner
936.2.dg.f.901.21 yes 56 104.69 even 6 inner
936.2.dg.f.901.26 yes 56 13.4 even 6 inner