Properties

Label 936.2.dg.e.829.18
Level $936$
Weight $2$
Character 936.829
Analytic conductor $7.474$
Analytic rank $0$
Dimension $48$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [936,2,Mod(829,936)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("936.829"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(936, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 3, 0, 5])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 936 = 2^{3} \cdot 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 936.dg (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [48,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.47399762919\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(24\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 312)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 829.18
Character \(\chi\) \(=\) 936.829
Dual form 936.2.dg.e.901.18

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.939983 - 1.05661i) q^{2} +(-0.232865 - 1.98640i) q^{4} +4.32865 q^{5} +(1.87318 + 1.08148i) q^{7} +(-2.31774 - 1.62113i) q^{8} +(4.06885 - 4.57371i) q^{10} +(-2.57249 - 4.45568i) q^{11} +(-2.72749 + 2.35814i) q^{13} +(2.90347 - 0.962655i) q^{14} +(-3.89155 + 0.925127i) q^{16} +(2.79961 - 4.84906i) q^{17} +(-0.963361 + 1.66859i) q^{19} +(-1.00799 - 8.59842i) q^{20} +(-7.12602 - 1.47013i) q^{22} +(1.01290 + 1.75439i) q^{23} +13.7372 q^{25} +(-0.0721467 + 5.09851i) q^{26} +(1.71205 - 3.97272i) q^{28} +(0.171090 - 0.0987787i) q^{29} +7.11414i q^{31} +(-2.68049 + 4.98147i) q^{32} +(-2.49200 - 7.51614i) q^{34} +(8.10834 + 4.68135i) q^{35} +(0.231065 + 0.400217i) q^{37} +(0.857513 + 2.58635i) q^{38} +(-10.0327 - 7.01730i) q^{40} +(1.21570 - 0.701886i) q^{41} +(-2.55733 - 1.47647i) q^{43} +(-8.25170 + 6.14755i) q^{44} +(2.80582 + 0.578856i) q^{46} +2.20506i q^{47} +(-1.16080 - 2.01056i) q^{49} +(12.9127 - 14.5149i) q^{50} +(5.31934 + 4.86874i) q^{52} +2.10538i q^{53} +(-11.1354 - 19.2871i) q^{55} +(-2.58833 - 5.54327i) q^{56} +(0.0564504 - 0.273626i) q^{58} +(-2.18299 + 3.78104i) q^{59} +(10.6432 + 6.14485i) q^{61} +(7.51690 + 6.68717i) q^{62} +(2.74388 + 7.51473i) q^{64} +(-11.8063 + 10.2076i) q^{65} +(-5.50969 - 9.54306i) q^{67} +(-10.2841 - 4.43195i) q^{68} +(12.5681 - 4.16700i) q^{70} +(-5.01087 - 2.89303i) q^{71} +10.1096i q^{73} +(0.640072 + 0.132050i) q^{74} +(3.53882 + 1.52506i) q^{76} -11.1284i q^{77} -7.37163 q^{79} +(-16.8451 + 4.00455i) q^{80} +(0.401116 - 1.94429i) q^{82} -2.04171 q^{83} +(12.1185 - 20.9899i) q^{85} +(-3.96390 + 1.31425i) q^{86} +(-1.26087 + 14.4975i) q^{88} +(4.34987 - 2.51140i) q^{89} +(-7.65936 + 1.46750i) q^{91} +(3.24905 - 2.42056i) q^{92} +(2.32990 + 2.07272i) q^{94} +(-4.17005 + 7.22274i) q^{95} +(-7.41183 - 4.27922i) q^{97} +(-3.21551 - 0.663376i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q - 2 q^{4} - 12 q^{7} - 4 q^{10} + 36 q^{14} - 2 q^{16} - 12 q^{17} - 54 q^{20} - 14 q^{22} - 20 q^{23} + 48 q^{25} + 42 q^{26} + 6 q^{28} + 28 q^{38} - 8 q^{40} + 12 q^{41} - 30 q^{46} + 16 q^{49}+ \cdots - 24 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/936\mathbb{Z}\right)^\times\).

\(n\) \(145\) \(209\) \(469\) \(703\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.939983 1.05661i 0.664668 0.747139i
\(3\) 0 0
\(4\) −0.232865 1.98640i −0.116433 0.993199i
\(5\) 4.32865 1.93583 0.967915 0.251276i \(-0.0808503\pi\)
0.967915 + 0.251276i \(0.0808503\pi\)
\(6\) 0 0
\(7\) 1.87318 + 1.08148i 0.707996 + 0.408762i 0.810319 0.585990i \(-0.199294\pi\)
−0.102323 + 0.994751i \(0.532627\pi\)
\(8\) −2.31774 1.62113i −0.819446 0.573156i
\(9\) 0 0
\(10\) 4.06885 4.57371i 1.28668 1.44633i
\(11\) −2.57249 4.45568i −0.775634 1.34344i −0.934438 0.356127i \(-0.884097\pi\)
0.158804 0.987310i \(-0.449236\pi\)
\(12\) 0 0
\(13\) −2.72749 + 2.35814i −0.756468 + 0.654030i
\(14\) 2.90347 0.962655i 0.775984 0.257280i
\(15\) 0 0
\(16\) −3.89155 + 0.925127i −0.972887 + 0.231282i
\(17\) 2.79961 4.84906i 0.679005 1.17607i −0.296276 0.955102i \(-0.595745\pi\)
0.975281 0.220968i \(-0.0709217\pi\)
\(18\) 0 0
\(19\) −0.963361 + 1.66859i −0.221010 + 0.382801i −0.955115 0.296235i \(-0.904269\pi\)
0.734105 + 0.679036i \(0.237602\pi\)
\(20\) −1.00799 8.59842i −0.225394 1.92266i
\(21\) 0 0
\(22\) −7.12602 1.47013i −1.51927 0.313434i
\(23\) 1.01290 + 1.75439i 0.211204 + 0.365816i 0.952092 0.305813i \(-0.0989282\pi\)
−0.740887 + 0.671629i \(0.765595\pi\)
\(24\) 0 0
\(25\) 13.7372 2.74744
\(26\) −0.0721467 + 5.09851i −0.0141491 + 0.999900i
\(27\) 0 0
\(28\) 1.71205 3.97272i 0.323548 0.750774i
\(29\) 0.171090 0.0987787i 0.0317706 0.0183427i −0.484031 0.875051i \(-0.660828\pi\)
0.515801 + 0.856708i \(0.327494\pi\)
\(30\) 0 0
\(31\) 7.11414i 1.27774i 0.769316 + 0.638869i \(0.220597\pi\)
−0.769316 + 0.638869i \(0.779403\pi\)
\(32\) −2.68049 + 4.98147i −0.473847 + 0.880607i
\(33\) 0 0
\(34\) −2.49200 7.51614i −0.427375 1.28901i
\(35\) 8.10834 + 4.68135i 1.37056 + 0.791293i
\(36\) 0 0
\(37\) 0.231065 + 0.400217i 0.0379869 + 0.0657952i 0.884394 0.466742i \(-0.154572\pi\)
−0.846407 + 0.532537i \(0.821239\pi\)
\(38\) 0.857513 + 2.58635i 0.139107 + 0.419561i
\(39\) 0 0
\(40\) −10.0327 7.01730i −1.58631 1.10953i
\(41\) 1.21570 0.701886i 0.189861 0.109616i −0.402057 0.915615i \(-0.631705\pi\)
0.591917 + 0.805999i \(0.298371\pi\)
\(42\) 0 0
\(43\) −2.55733 1.47647i −0.389989 0.225160i 0.292167 0.956367i \(-0.405624\pi\)
−0.682155 + 0.731207i \(0.738957\pi\)
\(44\) −8.25170 + 6.14755i −1.24399 + 0.926778i
\(45\) 0 0
\(46\) 2.80582 + 0.578856i 0.413696 + 0.0853476i
\(47\) 2.20506i 0.321641i 0.986984 + 0.160821i \(0.0514141\pi\)
−0.986984 + 0.160821i \(0.948586\pi\)
\(48\) 0 0
\(49\) −1.16080 2.01056i −0.165828 0.287222i
\(50\) 12.9127 14.5149i 1.82614 2.05272i
\(51\) 0 0
\(52\) 5.31934 + 4.86874i 0.737660 + 0.675173i
\(53\) 2.10538i 0.289196i 0.989490 + 0.144598i \(0.0461890\pi\)
−0.989490 + 0.144598i \(0.953811\pi\)
\(54\) 0 0
\(55\) −11.1354 19.2871i −1.50150 2.60067i
\(56\) −2.58833 5.54327i −0.345880 0.740750i
\(57\) 0 0
\(58\) 0.0564504 0.273626i 0.00741230 0.0359288i
\(59\) −2.18299 + 3.78104i −0.284200 + 0.492250i −0.972415 0.233258i \(-0.925061\pi\)
0.688215 + 0.725507i \(0.258395\pi\)
\(60\) 0 0
\(61\) 10.6432 + 6.14485i 1.36272 + 0.786767i 0.989985 0.141171i \(-0.0450867\pi\)
0.372735 + 0.927938i \(0.378420\pi\)
\(62\) 7.51690 + 6.68717i 0.954647 + 0.849271i
\(63\) 0 0
\(64\) 2.74388 + 7.51473i 0.342984 + 0.939341i
\(65\) −11.8063 + 10.2076i −1.46439 + 1.26609i
\(66\) 0 0
\(67\) −5.50969 9.54306i −0.673115 1.16587i −0.977016 0.213166i \(-0.931622\pi\)
0.303901 0.952704i \(-0.401711\pi\)
\(68\) −10.2841 4.43195i −1.24713 0.537453i
\(69\) 0 0
\(70\) 12.5681 4.16700i 1.50217 0.498051i
\(71\) −5.01087 2.89303i −0.594680 0.343339i 0.172266 0.985051i \(-0.444891\pi\)
−0.766946 + 0.641712i \(0.778225\pi\)
\(72\) 0 0
\(73\) 10.1096i 1.18324i 0.806217 + 0.591619i \(0.201511\pi\)
−0.806217 + 0.591619i \(0.798489\pi\)
\(74\) 0.640072 + 0.132050i 0.0744068 + 0.0153505i
\(75\) 0 0
\(76\) 3.53882 + 1.52506i 0.405930 + 0.174936i
\(77\) 11.1284i 1.26820i
\(78\) 0 0
\(79\) −7.37163 −0.829373 −0.414687 0.909964i \(-0.636109\pi\)
−0.414687 + 0.909964i \(0.636109\pi\)
\(80\) −16.8451 + 4.00455i −1.88334 + 0.447722i
\(81\) 0 0
\(82\) 0.401116 1.94429i 0.0442959 0.214711i
\(83\) −2.04171 −0.224106 −0.112053 0.993702i \(-0.535743\pi\)
−0.112053 + 0.993702i \(0.535743\pi\)
\(84\) 0 0
\(85\) 12.1185 20.9899i 1.31444 2.27667i
\(86\) −3.96390 + 1.31425i −0.427439 + 0.141719i
\(87\) 0 0
\(88\) −1.26087 + 14.4975i −0.134409 + 1.54543i
\(89\) 4.34987 2.51140i 0.461085 0.266208i −0.251415 0.967879i \(-0.580896\pi\)
0.712501 + 0.701672i \(0.247563\pi\)
\(90\) 0 0
\(91\) −7.65936 + 1.46750i −0.802919 + 0.153835i
\(92\) 3.24905 2.42056i 0.338737 0.252361i
\(93\) 0 0
\(94\) 2.32990 + 2.07272i 0.240311 + 0.213785i
\(95\) −4.17005 + 7.22274i −0.427838 + 0.741038i
\(96\) 0 0
\(97\) −7.41183 4.27922i −0.752557 0.434489i 0.0740599 0.997254i \(-0.476404\pi\)
−0.826617 + 0.562765i \(0.809738\pi\)
\(98\) −3.21551 0.663376i −0.324816 0.0670111i
\(99\) 0 0
\(100\) −3.19892 27.2875i −0.319892 2.72875i
\(101\) −3.09840 + 1.78886i −0.308303 + 0.177999i −0.646167 0.763196i \(-0.723629\pi\)
0.337864 + 0.941195i \(0.390296\pi\)
\(102\) 0 0
\(103\) −4.69498 −0.462610 −0.231305 0.972881i \(-0.574300\pi\)
−0.231305 + 0.972881i \(0.574300\pi\)
\(104\) 10.1445 1.04395i 0.994747 0.102368i
\(105\) 0 0
\(106\) 2.22458 + 1.97902i 0.216070 + 0.192220i
\(107\) −1.85628 + 1.07172i −0.179453 + 0.103607i −0.587036 0.809561i \(-0.699705\pi\)
0.407583 + 0.913168i \(0.366372\pi\)
\(108\) 0 0
\(109\) 9.31589 0.892300 0.446150 0.894958i \(-0.352795\pi\)
0.446150 + 0.894958i \(0.352795\pi\)
\(110\) −30.8460 6.36369i −2.94105 0.606754i
\(111\) 0 0
\(112\) −8.29008 2.47571i −0.783339 0.233932i
\(113\) −9.68859 + 16.7811i −0.911426 + 1.57864i −0.0993747 + 0.995050i \(0.531684\pi\)
−0.812051 + 0.583586i \(0.801649\pi\)
\(114\) 0 0
\(115\) 4.38449 + 7.59415i 0.408856 + 0.708159i
\(116\) −0.236055 0.316850i −0.0219171 0.0294188i
\(117\) 0 0
\(118\) 1.94313 + 5.86068i 0.178880 + 0.539520i
\(119\) 10.4883 6.05545i 0.961465 0.555102i
\(120\) 0 0
\(121\) −7.73537 + 13.3980i −0.703215 + 1.21800i
\(122\) 16.4971 5.46969i 1.49358 0.495202i
\(123\) 0 0
\(124\) 14.1315 1.65664i 1.26905 0.148771i
\(125\) 37.8203 3.38275
\(126\) 0 0
\(127\) 3.32924 + 5.76642i 0.295423 + 0.511687i 0.975083 0.221840i \(-0.0712062\pi\)
−0.679661 + 0.733527i \(0.737873\pi\)
\(128\) 10.5194 + 4.16450i 0.929789 + 0.368093i
\(129\) 0 0
\(130\) −0.312298 + 22.0697i −0.0273903 + 1.93564i
\(131\) 10.3800i 0.906905i −0.891280 0.453453i \(-0.850192\pi\)
0.891280 0.453453i \(-0.149808\pi\)
\(132\) 0 0
\(133\) −3.60910 + 2.08371i −0.312949 + 0.180681i
\(134\) −15.2623 3.14870i −1.31846 0.272006i
\(135\) 0 0
\(136\) −14.3497 + 6.70036i −1.23048 + 0.574551i
\(137\) −2.55242 1.47364i −0.218068 0.125902i 0.386987 0.922085i \(-0.373516\pi\)
−0.605056 + 0.796183i \(0.706849\pi\)
\(138\) 0 0
\(139\) 17.1010 + 9.87324i 1.45048 + 0.837437i 0.998509 0.0545929i \(-0.0173861\pi\)
0.451976 + 0.892030i \(0.350719\pi\)
\(140\) 7.41087 17.1965i 0.626333 1.45337i
\(141\) 0 0
\(142\) −7.76694 + 2.57516i −0.651787 + 0.216102i
\(143\) 17.5235 + 6.08651i 1.46539 + 0.508980i
\(144\) 0 0
\(145\) 0.740587 0.427578i 0.0615024 0.0355084i
\(146\) 10.6819 + 9.50285i 0.884044 + 0.786461i
\(147\) 0 0
\(148\) 0.741182 0.552184i 0.0609248 0.0453892i
\(149\) −3.78459 + 6.55509i −0.310045 + 0.537014i −0.978372 0.206854i \(-0.933678\pi\)
0.668327 + 0.743868i \(0.267011\pi\)
\(150\) 0 0
\(151\) 2.09922i 0.170832i 0.996345 + 0.0854161i \(0.0272220\pi\)
−0.996345 + 0.0854161i \(0.972778\pi\)
\(152\) 4.93783 2.30563i 0.400511 0.187011i
\(153\) 0 0
\(154\) −11.7584 10.4605i −0.947519 0.842930i
\(155\) 30.7946i 2.47348i
\(156\) 0 0
\(157\) 8.35087i 0.666472i 0.942843 + 0.333236i \(0.108141\pi\)
−0.942843 + 0.333236i \(0.891859\pi\)
\(158\) −6.92921 + 7.78897i −0.551258 + 0.619657i
\(159\) 0 0
\(160\) −11.6029 + 21.5630i −0.917288 + 1.70471i
\(161\) 4.38173i 0.345329i
\(162\) 0 0
\(163\) −3.81101 + 6.60086i −0.298501 + 0.517019i −0.975793 0.218695i \(-0.929820\pi\)
0.677292 + 0.735714i \(0.263153\pi\)
\(164\) −1.67732 2.25142i −0.130977 0.175807i
\(165\) 0 0
\(166\) −1.91917 + 2.15729i −0.148956 + 0.167438i
\(167\) 10.4948 6.05915i 0.812109 0.468871i −0.0355788 0.999367i \(-0.511327\pi\)
0.847688 + 0.530496i \(0.177994\pi\)
\(168\) 0 0
\(169\) 1.87836 12.8636i 0.144489 0.989506i
\(170\) −10.7870 32.5347i −0.827326 2.49530i
\(171\) 0 0
\(172\) −2.33735 + 5.42368i −0.178221 + 0.413552i
\(173\) −4.95047 2.85815i −0.376377 0.217301i 0.299864 0.953982i \(-0.403059\pi\)
−0.676241 + 0.736681i \(0.736392\pi\)
\(174\) 0 0
\(175\) 25.7323 + 14.8565i 1.94518 + 1.12305i
\(176\) 14.1330 + 14.9596i 1.06532 + 1.12762i
\(177\) 0 0
\(178\) 1.43522 6.95680i 0.107575 0.521435i
\(179\) −6.10323 + 3.52370i −0.456177 + 0.263374i −0.710435 0.703762i \(-0.751502\pi\)
0.254258 + 0.967136i \(0.418169\pi\)
\(180\) 0 0
\(181\) 7.85231i 0.583658i −0.956471 0.291829i \(-0.905736\pi\)
0.956471 0.291829i \(-0.0942638\pi\)
\(182\) −5.64909 + 9.47240i −0.418738 + 0.702141i
\(183\) 0 0
\(184\) 0.496458 5.70828i 0.0365993 0.420820i
\(185\) 1.00020 + 1.73240i 0.0735362 + 0.127368i
\(186\) 0 0
\(187\) −28.8078 −2.10664
\(188\) 4.38013 0.513483i 0.319454 0.0374496i
\(189\) 0 0
\(190\) 3.71187 + 11.1954i 0.269288 + 0.812199i
\(191\) −10.1668 + 17.6094i −0.735644 + 1.27417i 0.218796 + 0.975771i \(0.429787\pi\)
−0.954440 + 0.298403i \(0.903546\pi\)
\(192\) 0 0
\(193\) −6.49899 + 3.75219i −0.467808 + 0.270089i −0.715322 0.698795i \(-0.753720\pi\)
0.247514 + 0.968884i \(0.420386\pi\)
\(194\) −11.4885 + 3.80905i −0.824824 + 0.273474i
\(195\) 0 0
\(196\) −3.72346 + 2.77399i −0.265961 + 0.198142i
\(197\) −2.25982 3.91412i −0.161005 0.278869i 0.774224 0.632911i \(-0.218140\pi\)
−0.935229 + 0.354042i \(0.884807\pi\)
\(198\) 0 0
\(199\) 12.5909 21.8080i 0.892543 1.54593i 0.0557276 0.998446i \(-0.482252\pi\)
0.836816 0.547484i \(-0.184414\pi\)
\(200\) −31.8393 22.2698i −2.25138 1.57471i
\(201\) 0 0
\(202\) −1.02231 + 4.95532i −0.0719292 + 0.348655i
\(203\) 0.427309 0.0299912
\(204\) 0 0
\(205\) 5.26235 3.03822i 0.367538 0.212198i
\(206\) −4.41320 + 4.96078i −0.307482 + 0.345634i
\(207\) 0 0
\(208\) 8.43256 11.7001i 0.584693 0.811255i
\(209\) 9.91293 0.685692
\(210\) 0 0
\(211\) −13.5839 + 7.84264i −0.935151 + 0.539910i −0.888437 0.458999i \(-0.848208\pi\)
−0.0467141 + 0.998908i \(0.514875\pi\)
\(212\) 4.18213 0.490271i 0.287230 0.0336719i
\(213\) 0 0
\(214\) −0.612472 + 2.96877i −0.0418678 + 0.202941i
\(215\) −11.0698 6.39113i −0.754952 0.435872i
\(216\) 0 0
\(217\) −7.69381 + 13.3261i −0.522290 + 0.904633i
\(218\) 8.75677 9.84329i 0.593083 0.666672i
\(219\) 0 0
\(220\) −35.7187 + 26.6106i −2.40816 + 1.79409i
\(221\) 3.79887 + 19.8276i 0.255540 + 1.33375i
\(222\) 0 0
\(223\) −19.7231 + 11.3871i −1.32076 + 0.762540i −0.983849 0.178998i \(-0.942715\pi\)
−0.336908 + 0.941538i \(0.609381\pi\)
\(224\) −10.4084 + 6.43229i −0.695440 + 0.429776i
\(225\) 0 0
\(226\) 8.62407 + 26.0111i 0.573665 + 1.73023i
\(227\) 2.14767 3.71988i 0.142546 0.246897i −0.785909 0.618343i \(-0.787804\pi\)
0.928455 + 0.371446i \(0.121138\pi\)
\(228\) 0 0
\(229\) 20.0355 1.32398 0.661991 0.749512i \(-0.269712\pi\)
0.661991 + 0.749512i \(0.269712\pi\)
\(230\) 12.1454 + 2.50566i 0.800846 + 0.165219i
\(231\) 0 0
\(232\) −0.556675 0.0484149i −0.0365475 0.00317859i
\(233\) 7.21901 0.472933 0.236467 0.971640i \(-0.424011\pi\)
0.236467 + 0.971640i \(0.424011\pi\)
\(234\) 0 0
\(235\) 9.54494i 0.622643i
\(236\) 8.01899 + 3.45580i 0.521992 + 0.224954i
\(237\) 0 0
\(238\) 3.46059 16.7741i 0.224317 1.08731i
\(239\) 1.40644i 0.0909750i −0.998965 0.0454875i \(-0.985516\pi\)
0.998965 0.0454875i \(-0.0144841\pi\)
\(240\) 0 0
\(241\) 4.79595 + 2.76894i 0.308934 + 0.178363i 0.646449 0.762957i \(-0.276253\pi\)
−0.337515 + 0.941320i \(0.609586\pi\)
\(242\) 6.88545 + 20.7672i 0.442614 + 1.33497i
\(243\) 0 0
\(244\) 9.72767 22.5725i 0.622751 1.44506i
\(245\) −5.02468 8.70300i −0.321015 0.556014i
\(246\) 0 0
\(247\) −1.30721 6.82280i −0.0831761 0.434124i
\(248\) 11.5329 16.4888i 0.732343 1.04704i
\(249\) 0 0
\(250\) 35.5504 39.9614i 2.24841 2.52738i
\(251\) 19.6157 + 11.3251i 1.23813 + 0.714836i 0.968712 0.248187i \(-0.0798346\pi\)
0.269420 + 0.963023i \(0.413168\pi\)
\(252\) 0 0
\(253\) 5.21134 9.02631i 0.327634 0.567479i
\(254\) 9.22231 + 1.90261i 0.578659 + 0.119380i
\(255\) 0 0
\(256\) 14.2883 7.20035i 0.893018 0.450022i
\(257\) −9.24512 16.0130i −0.576695 0.998865i −0.995855 0.0909525i \(-0.971009\pi\)
0.419160 0.907912i \(-0.362324\pi\)
\(258\) 0 0
\(259\) 0.999571i 0.0621103i
\(260\) 23.0255 + 21.0751i 1.42798 + 1.30702i
\(261\) 0 0
\(262\) −10.9677 9.75702i −0.677584 0.602791i
\(263\) −13.1764 22.8222i −0.812493 1.40728i −0.911114 0.412154i \(-0.864776\pi\)
0.0986208 0.995125i \(-0.468557\pi\)
\(264\) 0 0
\(265\) 9.11346i 0.559835i
\(266\) −1.19081 + 5.77208i −0.0730132 + 0.353909i
\(267\) 0 0
\(268\) −17.6733 + 13.1667i −1.07957 + 0.804283i
\(269\) −27.2381 15.7259i −1.66073 0.958825i −0.972365 0.233464i \(-0.924994\pi\)
−0.688369 0.725361i \(-0.741673\pi\)
\(270\) 0 0
\(271\) 17.1939 9.92693i 1.04446 0.603018i 0.123365 0.992361i \(-0.460631\pi\)
0.921093 + 0.389343i \(0.127298\pi\)
\(272\) −6.40881 + 21.4603i −0.388591 + 1.30122i
\(273\) 0 0
\(274\) −3.95631 + 1.31173i −0.239009 + 0.0792444i
\(275\) −35.3388 61.2085i −2.13101 3.69101i
\(276\) 0 0
\(277\) 11.0151 + 6.35956i 0.661832 + 0.382109i 0.792975 0.609254i \(-0.208531\pi\)
−0.131142 + 0.991364i \(0.541865\pi\)
\(278\) 26.5068 8.78843i 1.58977 0.527095i
\(279\) 0 0
\(280\) −11.2040 23.9949i −0.669566 1.43397i
\(281\) 20.9908i 1.25221i −0.779740 0.626103i \(-0.784649\pi\)
0.779740 0.626103i \(-0.215351\pi\)
\(282\) 0 0
\(283\) 20.0094 11.5524i 1.18944 0.686721i 0.231257 0.972893i \(-0.425716\pi\)
0.958178 + 0.286172i \(0.0923828\pi\)
\(284\) −4.57984 + 10.6273i −0.271763 + 0.630612i
\(285\) 0 0
\(286\) 22.9029 12.7944i 1.35428 0.756548i
\(287\) 3.03631 0.179227
\(288\) 0 0
\(289\) −7.17561 12.4285i −0.422094 0.731089i
\(290\) 0.244354 1.18443i 0.0143490 0.0695522i
\(291\) 0 0
\(292\) 20.0817 2.35418i 1.17519 0.137768i
\(293\) −5.32829 + 9.22886i −0.311282 + 0.539156i −0.978640 0.205581i \(-0.934092\pi\)
0.667358 + 0.744737i \(0.267425\pi\)
\(294\) 0 0
\(295\) −9.44938 + 16.3668i −0.550164 + 0.952912i
\(296\) 0.113253 1.30219i 0.00658270 0.0756880i
\(297\) 0 0
\(298\) 3.36876 + 10.1605i 0.195147 + 0.588583i
\(299\) −6.89977 2.39653i −0.399024 0.138595i
\(300\) 0 0
\(301\) −3.19356 5.53140i −0.184073 0.318825i
\(302\) 2.21807 + 1.97323i 0.127635 + 0.113547i
\(303\) 0 0
\(304\) 2.20531 7.38463i 0.126483 0.423538i
\(305\) 46.0706 + 26.5989i 2.63800 + 1.52305i
\(306\) 0 0
\(307\) 7.50490 0.428327 0.214164 0.976798i \(-0.431297\pi\)
0.214164 + 0.976798i \(0.431297\pi\)
\(308\) −22.1054 + 2.59142i −1.25957 + 0.147660i
\(309\) 0 0
\(310\) 32.5380 + 28.9464i 1.84804 + 1.64405i
\(311\) −23.1457 −1.31247 −0.656237 0.754555i \(-0.727853\pi\)
−0.656237 + 0.754555i \(0.727853\pi\)
\(312\) 0 0
\(313\) −20.9965 −1.18679 −0.593397 0.804910i \(-0.702213\pi\)
−0.593397 + 0.804910i \(0.702213\pi\)
\(314\) 8.82365 + 7.84967i 0.497947 + 0.442983i
\(315\) 0 0
\(316\) 1.71660 + 14.6430i 0.0965662 + 0.823733i
\(317\) 1.12069 0.0629444 0.0314722 0.999505i \(-0.489980\pi\)
0.0314722 + 0.999505i \(0.489980\pi\)
\(318\) 0 0
\(319\) −0.880252 0.508213i −0.0492846 0.0284545i
\(320\) 11.8773 + 32.5286i 0.663960 + 1.81841i
\(321\) 0 0
\(322\) 4.62979 + 4.11875i 0.258008 + 0.229529i
\(323\) 5.39407 + 9.34280i 0.300134 + 0.519847i
\(324\) 0 0
\(325\) −37.4680 + 32.3942i −2.07835 + 1.79691i
\(326\) 3.39228 + 10.2315i 0.187881 + 0.566668i
\(327\) 0 0
\(328\) −3.95553 0.344019i −0.218408 0.0189953i
\(329\) −2.38473 + 4.13048i −0.131475 + 0.227721i
\(330\) 0 0
\(331\) −0.633917 + 1.09798i −0.0348432 + 0.0603503i −0.882921 0.469521i \(-0.844427\pi\)
0.848078 + 0.529872i \(0.177760\pi\)
\(332\) 0.475443 + 4.05564i 0.0260933 + 0.222582i
\(333\) 0 0
\(334\) 3.46271 16.7844i 0.189471 0.918402i
\(335\) −23.8495 41.3085i −1.30304 2.25693i
\(336\) 0 0
\(337\) 10.2889 0.560475 0.280237 0.959931i \(-0.409587\pi\)
0.280237 + 0.959931i \(0.409587\pi\)
\(338\) −11.8262 14.0762i −0.643261 0.765647i
\(339\) 0 0
\(340\) −44.5162 19.1844i −2.41423 1.04042i
\(341\) 31.6983 18.3010i 1.71656 0.991056i
\(342\) 0 0
\(343\) 20.1623i 1.08866i
\(344\) 3.53367 + 7.56784i 0.190523 + 0.408031i
\(345\) 0 0
\(346\) −7.67332 + 2.54412i −0.412520 + 0.136773i
\(347\) 10.8544 + 6.26678i 0.582694 + 0.336418i 0.762203 0.647338i \(-0.224118\pi\)
−0.179509 + 0.983756i \(0.557451\pi\)
\(348\) 0 0
\(349\) −12.8044 22.1779i −0.685404 1.18715i −0.973310 0.229496i \(-0.926292\pi\)
0.287906 0.957659i \(-0.407041\pi\)
\(350\) 39.8855 13.2242i 2.13197 0.706863i
\(351\) 0 0
\(352\) 29.0913 0.871376i 1.55057 0.0464445i
\(353\) −14.9054 + 8.60561i −0.793332 + 0.458031i −0.841134 0.540826i \(-0.818112\pi\)
0.0478020 + 0.998857i \(0.484778\pi\)
\(354\) 0 0
\(355\) −21.6903 12.5229i −1.15120 0.664646i
\(356\) −6.00157 8.05575i −0.318083 0.426954i
\(357\) 0 0
\(358\) −2.01374 + 9.76098i −0.106429 + 0.515884i
\(359\) 15.0466i 0.794128i 0.917791 + 0.397064i \(0.129971\pi\)
−0.917791 + 0.397064i \(0.870029\pi\)
\(360\) 0 0
\(361\) 7.64387 + 13.2396i 0.402309 + 0.696820i
\(362\) −8.29686 7.38103i −0.436073 0.387939i
\(363\) 0 0
\(364\) 4.69863 + 14.8728i 0.246275 + 0.779546i
\(365\) 43.7609i 2.29055i
\(366\) 0 0
\(367\) 10.3822 + 17.9826i 0.541949 + 0.938683i 0.998792 + 0.0491356i \(0.0156466\pi\)
−0.456843 + 0.889547i \(0.651020\pi\)
\(368\) −5.56478 5.89025i −0.290084 0.307050i
\(369\) 0 0
\(370\) 2.77064 + 0.571598i 0.144039 + 0.0297160i
\(371\) −2.27693 + 3.94376i −0.118212 + 0.204750i
\(372\) 0 0
\(373\) −0.716227 0.413514i −0.0370848 0.0214109i 0.481343 0.876532i \(-0.340149\pi\)
−0.518428 + 0.855121i \(0.673483\pi\)
\(374\) −27.0788 + 30.4387i −1.40021 + 1.57395i
\(375\) 0 0
\(376\) 3.57469 5.11077i 0.184351 0.263568i
\(377\) −0.233711 + 0.672871i −0.0120367 + 0.0346546i
\(378\) 0 0
\(379\) −4.60242 7.97163i −0.236410 0.409475i 0.723271 0.690564i \(-0.242638\pi\)
−0.959682 + 0.281089i \(0.909304\pi\)
\(380\) 15.3183 + 6.60145i 0.785812 + 0.338647i
\(381\) 0 0
\(382\) 9.04974 + 27.2949i 0.463025 + 1.39653i
\(383\) 18.2780 + 10.5528i 0.933964 + 0.539225i 0.888063 0.459721i \(-0.152051\pi\)
0.0459012 + 0.998946i \(0.485384\pi\)
\(384\) 0 0
\(385\) 48.1709i 2.45501i
\(386\) −2.14432 + 10.3939i −0.109143 + 0.529037i
\(387\) 0 0
\(388\) −6.77427 + 15.7193i −0.343912 + 0.798028i
\(389\) 23.7270i 1.20301i −0.798871 0.601503i \(-0.794569\pi\)
0.798871 0.601503i \(-0.205431\pi\)
\(390\) 0 0
\(391\) 11.3429 0.573634
\(392\) −0.568947 + 6.54176i −0.0287362 + 0.330409i
\(393\) 0 0
\(394\) −6.25990 1.29145i −0.315369 0.0650622i
\(395\) −31.9092 −1.60553
\(396\) 0 0
\(397\) −3.36607 + 5.83020i −0.168938 + 0.292609i −0.938047 0.346509i \(-0.887367\pi\)
0.769109 + 0.639118i \(0.220700\pi\)
\(398\) −11.2075 33.8029i −0.561780 1.69438i
\(399\) 0 0
\(400\) −53.4590 + 12.7087i −2.67295 + 0.635433i
\(401\) −3.32956 + 1.92232i −0.166270 + 0.0959962i −0.580826 0.814028i \(-0.697270\pi\)
0.414556 + 0.910024i \(0.363937\pi\)
\(402\) 0 0
\(403\) −16.7761 19.4037i −0.835679 0.966568i
\(404\) 4.27490 + 5.73809i 0.212684 + 0.285481i
\(405\) 0 0
\(406\) 0.401663 0.451501i 0.0199342 0.0224076i
\(407\) 1.18882 2.05910i 0.0589278 0.102066i
\(408\) 0 0
\(409\) 28.4778 + 16.4417i 1.40814 + 0.812988i 0.995208 0.0977760i \(-0.0311729\pi\)
0.412928 + 0.910764i \(0.364506\pi\)
\(410\) 1.73629 8.41614i 0.0857494 0.415644i
\(411\) 0 0
\(412\) 1.09330 + 9.32610i 0.0538630 + 0.459464i
\(413\) −8.17825 + 4.72172i −0.402425 + 0.232340i
\(414\) 0 0
\(415\) −8.83783 −0.433832
\(416\) −4.43600 19.9078i −0.217493 0.976062i
\(417\) 0 0
\(418\) 9.31798 10.4741i 0.455758 0.512307i
\(419\) 2.46615 1.42383i 0.120480 0.0695589i −0.438549 0.898707i \(-0.644507\pi\)
0.559029 + 0.829148i \(0.311174\pi\)
\(420\) 0 0
\(421\) −1.04860 −0.0511058 −0.0255529 0.999673i \(-0.508135\pi\)
−0.0255529 + 0.999673i \(0.508135\pi\)
\(422\) −4.48194 + 21.7248i −0.218178 + 1.05755i
\(423\) 0 0
\(424\) 3.41310 4.87974i 0.165755 0.236981i
\(425\) 38.4588 66.6126i 1.86552 3.23118i
\(426\) 0 0
\(427\) 13.2911 + 23.0208i 0.643200 + 1.11406i
\(428\) 2.56113 + 3.43774i 0.123797 + 0.166169i
\(429\) 0 0
\(430\) −17.1583 + 5.68891i −0.827449 + 0.274344i
\(431\) −19.1618 + 11.0631i −0.922994 + 0.532891i −0.884589 0.466372i \(-0.845561\pi\)
−0.0384048 + 0.999262i \(0.512228\pi\)
\(432\) 0 0
\(433\) 8.37706 14.5095i 0.402576 0.697281i −0.591460 0.806334i \(-0.701448\pi\)
0.994036 + 0.109053i \(0.0347817\pi\)
\(434\) 6.84847 + 20.6557i 0.328737 + 0.991504i
\(435\) 0 0
\(436\) −2.16935 18.5050i −0.103893 0.886231i
\(437\) −3.90315 −0.186713
\(438\) 0 0
\(439\) −3.46657 6.00428i −0.165451 0.286569i 0.771365 0.636393i \(-0.219574\pi\)
−0.936815 + 0.349825i \(0.886241\pi\)
\(440\) −5.45785 + 62.7544i −0.260193 + 2.99170i
\(441\) 0 0
\(442\) 24.5210 + 14.6237i 1.16635 + 0.695577i
\(443\) 22.9404i 1.08993i −0.838458 0.544966i \(-0.816543\pi\)
0.838458 0.544966i \(-0.183457\pi\)
\(444\) 0 0
\(445\) 18.8291 10.8710i 0.892583 0.515333i
\(446\) −6.50757 + 31.5434i −0.308142 + 1.49363i
\(447\) 0 0
\(448\) −2.98726 + 17.0439i −0.141135 + 0.805248i
\(449\) −25.8804 14.9420i −1.22137 0.705159i −0.256161 0.966634i \(-0.582458\pi\)
−0.965210 + 0.261475i \(0.915791\pi\)
\(450\) 0 0
\(451\) −6.25475 3.61118i −0.294525 0.170044i
\(452\) 35.5901 + 15.3376i 1.67402 + 0.721422i
\(453\) 0 0
\(454\) −1.91170 5.76588i −0.0897205 0.270606i
\(455\) −33.1547 + 6.35227i −1.55432 + 0.297799i
\(456\) 0 0
\(457\) −3.45008 + 1.99190i −0.161388 + 0.0931773i −0.578519 0.815669i \(-0.696369\pi\)
0.417131 + 0.908846i \(0.363036\pi\)
\(458\) 18.8330 21.1698i 0.880009 0.989198i
\(459\) 0 0
\(460\) 14.0640 10.4777i 0.655738 0.488528i
\(461\) −0.328552 + 0.569069i −0.0153022 + 0.0265042i −0.873575 0.486689i \(-0.838204\pi\)
0.858273 + 0.513194i \(0.171538\pi\)
\(462\) 0 0
\(463\) 8.60871i 0.400081i −0.979788 0.200040i \(-0.935893\pi\)
0.979788 0.200040i \(-0.0641073\pi\)
\(464\) −0.574421 + 0.542681i −0.0266668 + 0.0251934i
\(465\) 0 0
\(466\) 6.78575 7.62771i 0.314344 0.353347i
\(467\) 19.4449i 0.899804i 0.893078 + 0.449902i \(0.148541\pi\)
−0.893078 + 0.449902i \(0.851459\pi\)
\(468\) 0 0
\(469\) 23.8345i 1.10057i
\(470\) 10.0853 + 8.97208i 0.465201 + 0.413851i
\(471\) 0 0
\(472\) 11.1892 5.22458i 0.515023 0.240481i
\(473\) 15.1928i 0.698567i
\(474\) 0 0
\(475\) −13.2339 + 22.9218i −0.607212 + 1.05172i
\(476\) −14.4709 19.4239i −0.663272 0.890293i
\(477\) 0 0
\(478\) −1.48606 1.32203i −0.0679710 0.0604682i
\(479\) 1.92596 1.11196i 0.0879995 0.0508066i −0.455354 0.890310i \(-0.650487\pi\)
0.543354 + 0.839504i \(0.317154\pi\)
\(480\) 0 0
\(481\) −1.57399 0.546701i −0.0717679 0.0249274i
\(482\) 7.43381 2.46471i 0.338601 0.112264i
\(483\) 0 0
\(484\) 28.4151 + 12.2456i 1.29160 + 0.556617i
\(485\) −32.0832 18.5232i −1.45682 0.841097i
\(486\) 0 0
\(487\) −18.3856 10.6149i −0.833129 0.481007i 0.0217938 0.999762i \(-0.493062\pi\)
−0.854923 + 0.518755i \(0.826396\pi\)
\(488\) −14.7066 31.4962i −0.665736 1.42576i
\(489\) 0 0
\(490\) −13.9188 2.87152i −0.628788 0.129722i
\(491\) 10.8716 6.27672i 0.490628 0.283264i −0.234207 0.972187i \(-0.575249\pi\)
0.724835 + 0.688922i \(0.241916\pi\)
\(492\) 0 0
\(493\) 1.10617i 0.0498192i
\(494\) −8.43782 5.03209i −0.379636 0.226404i
\(495\) 0 0
\(496\) −6.58148 27.6850i −0.295517 1.24309i
\(497\) −6.25751 10.8383i −0.280688 0.486165i
\(498\) 0 0
\(499\) −21.0316 −0.941506 −0.470753 0.882265i \(-0.656018\pi\)
−0.470753 + 0.882265i \(0.656018\pi\)
\(500\) −8.80704 75.1261i −0.393863 3.35974i
\(501\) 0 0
\(502\) 30.4047 10.0808i 1.35703 0.449928i
\(503\) 13.5799 23.5210i 0.605496 1.04875i −0.386477 0.922299i \(-0.626308\pi\)
0.991973 0.126450i \(-0.0403584\pi\)
\(504\) 0 0
\(505\) −13.4119 + 7.74336i −0.596822 + 0.344575i
\(506\) −4.63875 13.9909i −0.206218 0.621973i
\(507\) 0 0
\(508\) 10.6791 7.95600i 0.473810 0.352990i
\(509\) −9.37387 16.2360i −0.415489 0.719649i 0.579990 0.814623i \(-0.303056\pi\)
−0.995480 + 0.0949746i \(0.969723\pi\)
\(510\) 0 0
\(511\) −10.9333 + 18.9371i −0.483663 + 0.837728i
\(512\) 5.82275 21.8654i 0.257332 0.966323i
\(513\) 0 0
\(514\) −25.6098 5.28344i −1.12960 0.233042i
\(515\) −20.3229 −0.895536
\(516\) 0 0
\(517\) 9.82504 5.67249i 0.432105 0.249476i
\(518\) 1.05616 + 0.939579i 0.0464050 + 0.0412827i
\(519\) 0 0
\(520\) 43.9118 4.51891i 1.92566 0.198167i
\(521\) −22.1856 −0.971969 −0.485985 0.873967i \(-0.661539\pi\)
−0.485985 + 0.873967i \(0.661539\pi\)
\(522\) 0 0
\(523\) 19.8524 11.4618i 0.868084 0.501188i 0.00137276 0.999999i \(-0.499563\pi\)
0.866711 + 0.498811i \(0.166230\pi\)
\(524\) −20.6188 + 2.41714i −0.900737 + 0.105593i
\(525\) 0 0
\(526\) −36.4999 7.53011i −1.59147 0.328329i
\(527\) 34.4969 + 19.9168i 1.50271 + 0.867590i
\(528\) 0 0
\(529\) 9.44807 16.3645i 0.410786 0.711502i
\(530\) 9.62941 + 8.56649i 0.418275 + 0.372105i
\(531\) 0 0
\(532\) 4.97952 + 6.68388i 0.215890 + 0.289783i
\(533\) −1.66067 + 4.78118i −0.0719314 + 0.207096i
\(534\) 0 0
\(535\) −8.03518 + 4.63911i −0.347391 + 0.200566i
\(536\) −2.70049 + 31.0503i −0.116643 + 1.34117i
\(537\) 0 0
\(538\) −42.2195 + 13.9980i −1.82021 + 0.603498i
\(539\) −5.97226 + 10.3443i −0.257244 + 0.445559i
\(540\) 0 0
\(541\) −14.3408 −0.616560 −0.308280 0.951296i \(-0.599753\pi\)
−0.308280 + 0.951296i \(0.599753\pi\)
\(542\) 5.67308 27.4985i 0.243680 1.18116i
\(543\) 0 0
\(544\) 16.6511 + 26.9440i 0.713911 + 1.15521i
\(545\) 40.3252 1.72734
\(546\) 0 0
\(547\) 22.9812i 0.982605i 0.870989 + 0.491302i \(0.163479\pi\)
−0.870989 + 0.491302i \(0.836521\pi\)
\(548\) −2.33287 + 5.41329i −0.0996552 + 0.231244i
\(549\) 0 0
\(550\) −97.8916 20.1955i −4.17411 0.861140i
\(551\) 0.380638i 0.0162157i
\(552\) 0 0
\(553\) −13.8084 7.97228i −0.587193 0.339016i
\(554\) 17.0736 5.66081i 0.725387 0.240505i
\(555\) 0 0
\(556\) 15.6300 36.2684i 0.662858 1.53812i
\(557\) −1.79684 3.11221i −0.0761344 0.131869i 0.825445 0.564483i \(-0.190924\pi\)
−0.901579 + 0.432614i \(0.857591\pi\)
\(558\) 0 0
\(559\) 10.4568 2.00347i 0.442275 0.0847378i
\(560\) −35.8848 10.7165i −1.51641 0.452853i
\(561\) 0 0
\(562\) −22.1792 19.7310i −0.935572 0.832301i
\(563\) 37.1235 + 21.4332i 1.56457 + 0.903303i 0.996785 + 0.0801243i \(0.0255317\pi\)
0.567782 + 0.823179i \(0.307802\pi\)
\(564\) 0 0
\(565\) −41.9385 + 72.6396i −1.76437 + 3.05597i
\(566\) 6.60203 32.0013i 0.277504 1.34512i
\(567\) 0 0
\(568\) 6.92394 + 14.8286i 0.290522 + 0.622192i
\(569\) 1.88614 + 3.26690i 0.0790712 + 0.136955i 0.902849 0.429957i \(-0.141471\pi\)
−0.823778 + 0.566912i \(0.808138\pi\)
\(570\) 0 0
\(571\) 33.2710i 1.39235i −0.717872 0.696175i \(-0.754884\pi\)
0.717872 0.696175i \(-0.245116\pi\)
\(572\) 8.00961 36.2260i 0.334899 1.51469i
\(573\) 0 0
\(574\) 2.85407 3.20820i 0.119127 0.133908i
\(575\) 13.9144 + 24.1005i 0.580271 + 1.00506i
\(576\) 0 0
\(577\) 35.1086i 1.46159i 0.682596 + 0.730796i \(0.260851\pi\)
−0.682596 + 0.730796i \(0.739149\pi\)
\(578\) −19.8771 4.10074i −0.826778 0.170568i
\(579\) 0 0
\(580\) −1.02180 1.37153i −0.0424278 0.0569498i
\(581\) −3.82448 2.20807i −0.158666 0.0916060i
\(582\) 0 0
\(583\) 9.38090 5.41607i 0.388517 0.224311i
\(584\) 16.3890 23.4315i 0.678180 0.969601i
\(585\) 0 0
\(586\) 4.74285 + 14.3049i 0.195925 + 0.590930i
\(587\) −0.0738353 0.127887i −0.00304751 0.00527844i 0.864498 0.502637i \(-0.167637\pi\)
−0.867545 + 0.497358i \(0.834303\pi\)
\(588\) 0 0
\(589\) −11.8706 6.85349i −0.489119 0.282393i
\(590\) 8.41114 + 25.3688i 0.346281 + 1.04442i
\(591\) 0 0
\(592\) −1.26945 1.34370i −0.0521741 0.0552256i
\(593\) 17.5025i 0.718742i 0.933195 + 0.359371i \(0.117009\pi\)
−0.933195 + 0.359371i \(0.882991\pi\)
\(594\) 0 0
\(595\) 45.4004 26.2119i 1.86123 1.07458i
\(596\) 13.9023 + 5.99123i 0.569461 + 0.245411i
\(597\) 0 0
\(598\) −9.01787 + 5.03770i −0.368768 + 0.206007i
\(599\) 41.9746 1.71504 0.857518 0.514454i \(-0.172005\pi\)
0.857518 + 0.514454i \(0.172005\pi\)
\(600\) 0 0
\(601\) −20.7461 35.9333i −0.846250 1.46575i −0.884531 0.466481i \(-0.845521\pi\)
0.0382808 0.999267i \(-0.487812\pi\)
\(602\) −8.84644 1.82507i −0.360554 0.0743841i
\(603\) 0 0
\(604\) 4.16989 0.488836i 0.169670 0.0198905i
\(605\) −33.4837 + 57.9955i −1.36131 + 2.35785i
\(606\) 0 0
\(607\) 4.37951 7.58553i 0.177759 0.307887i −0.763354 0.645981i \(-0.776449\pi\)
0.941113 + 0.338094i \(0.109782\pi\)
\(608\) −5.72975 9.27158i −0.232372 0.376012i
\(609\) 0 0
\(610\) 71.4103 23.6764i 2.89132 0.958628i
\(611\) −5.19984 6.01427i −0.210363 0.243311i
\(612\) 0 0
\(613\) −3.97286 6.88119i −0.160462 0.277929i 0.774572 0.632485i \(-0.217965\pi\)
−0.935035 + 0.354557i \(0.884632\pi\)
\(614\) 7.05447 7.92978i 0.284695 0.320020i
\(615\) 0 0
\(616\) −18.0406 + 25.7927i −0.726875 + 1.03922i
\(617\) −29.8107 17.2112i −1.20013 0.692898i −0.239550 0.970884i \(-0.577000\pi\)
−0.960585 + 0.277986i \(0.910333\pi\)
\(618\) 0 0
\(619\) −31.7543 −1.27631 −0.638157 0.769906i \(-0.720303\pi\)
−0.638157 + 0.769906i \(0.720303\pi\)
\(620\) 61.1704 7.17101i 2.45666 0.287995i
\(621\) 0 0
\(622\) −21.7566 + 24.4561i −0.872360 + 0.980600i
\(623\) 10.8641 0.435262
\(624\) 0 0
\(625\) 95.0247 3.80099
\(626\) −19.7364 + 22.1852i −0.788823 + 0.886699i
\(627\) 0 0
\(628\) 16.5881 1.94463i 0.661939 0.0775992i
\(629\) 2.58757 0.103173
\(630\) 0 0
\(631\) −1.82187 1.05185i −0.0725273 0.0418737i 0.463298 0.886203i \(-0.346666\pi\)
−0.535825 + 0.844329i \(0.679999\pi\)
\(632\) 17.0856 + 11.9504i 0.679627 + 0.475360i
\(633\) 0 0
\(634\) 1.05343 1.18414i 0.0418371 0.0470282i
\(635\) 14.4111 + 24.9608i 0.571888 + 0.990539i
\(636\) 0 0
\(637\) 7.90723 + 2.74645i 0.313296 + 0.108818i
\(638\) −1.36441 + 0.452374i −0.0540174 + 0.0179097i
\(639\) 0 0
\(640\) 45.5346 + 18.0266i 1.79991 + 0.712566i
\(641\) −4.71373 + 8.16441i −0.186181 + 0.322475i −0.943974 0.330020i \(-0.892944\pi\)
0.757793 + 0.652495i \(0.226278\pi\)
\(642\) 0 0
\(643\) 21.6550 37.5076i 0.853991 1.47916i −0.0235861 0.999722i \(-0.507508\pi\)
0.877578 0.479435i \(-0.159158\pi\)
\(644\) 8.70385 1.02035i 0.342980 0.0402076i
\(645\) 0 0
\(646\) 14.9421 + 3.08262i 0.587887 + 0.121284i
\(647\) 6.58305 + 11.4022i 0.258807 + 0.448266i 0.965922 0.258832i \(-0.0833375\pi\)
−0.707116 + 0.707098i \(0.750004\pi\)
\(648\) 0 0
\(649\) 22.4628 0.881742
\(650\) −0.991094 + 70.0393i −0.0388739 + 2.74717i
\(651\) 0 0
\(652\) 13.9994 + 6.03307i 0.548258 + 0.236273i
\(653\) 31.8783 18.4049i 1.24749 0.720240i 0.276884 0.960903i \(-0.410698\pi\)
0.970609 + 0.240663i \(0.0773649\pi\)
\(654\) 0 0
\(655\) 44.9314i 1.75562i
\(656\) −4.08163 + 3.85610i −0.159361 + 0.150555i
\(657\) 0 0
\(658\) 2.12271 + 6.40232i 0.0827520 + 0.249588i
\(659\) −36.8969 21.3024i −1.43730 0.829824i −0.439636 0.898176i \(-0.644893\pi\)
−0.997661 + 0.0683515i \(0.978226\pi\)
\(660\) 0 0
\(661\) −4.76553 8.25413i −0.185357 0.321049i 0.758339 0.651860i \(-0.226011\pi\)
−0.943697 + 0.330811i \(0.892678\pi\)
\(662\) 0.564266 + 1.70188i 0.0219308 + 0.0661456i
\(663\) 0 0
\(664\) 4.73215 + 3.30987i 0.183643 + 0.128448i
\(665\) −15.6225 + 9.01967i −0.605816 + 0.349768i
\(666\) 0 0
\(667\) 0.346593 + 0.200106i 0.0134201 + 0.00774813i
\(668\) −14.4798 19.4358i −0.560238 0.751993i
\(669\) 0 0
\(670\) −66.0653 13.6296i −2.55232 0.526557i
\(671\) 63.2301i 2.44097i
\(672\) 0 0
\(673\) −11.8396 20.5068i −0.456383 0.790478i 0.542384 0.840131i \(-0.317522\pi\)
−0.998767 + 0.0496527i \(0.984189\pi\)
\(674\) 9.67143 10.8714i 0.372530 0.418752i
\(675\) 0 0
\(676\) −25.9896 0.735681i −0.999600 0.0282954i
\(677\) 21.0758i 0.810007i 0.914315 + 0.405004i \(0.132730\pi\)
−0.914315 + 0.405004i \(0.867270\pi\)
\(678\) 0 0
\(679\) −9.25580 16.0315i −0.355205 0.615233i
\(680\) −62.1150 + 29.0035i −2.38200 + 1.11223i
\(681\) 0 0
\(682\) 10.4587 50.6955i 0.400486 1.94123i
\(683\) 5.53695 9.59027i 0.211865 0.366962i −0.740433 0.672130i \(-0.765379\pi\)
0.952298 + 0.305169i \(0.0987128\pi\)
\(684\) 0 0
\(685\) −11.0486 6.37888i −0.422143 0.243725i
\(686\) −21.3037 18.9522i −0.813380 0.723597i
\(687\) 0 0
\(688\) 11.3179 + 3.37991i 0.431490 + 0.128858i
\(689\) −4.96478 5.74240i −0.189143 0.218768i
\(690\) 0 0
\(691\) 17.4252 + 30.1813i 0.662885 + 1.14815i 0.979854 + 0.199714i \(0.0640013\pi\)
−0.316970 + 0.948436i \(0.602665\pi\)
\(692\) −4.52464 + 10.4992i −0.172001 + 0.399118i
\(693\) 0 0
\(694\) 16.8245 5.57823i 0.638649 0.211747i
\(695\) 74.0240 + 42.7378i 2.80789 + 1.62114i
\(696\) 0 0
\(697\) 7.86002i 0.297719i
\(698\) −35.4694 7.31751i −1.34254 0.276972i
\(699\) 0 0
\(700\) 23.5188 54.5741i 0.888928 2.06271i
\(701\) 35.7266i 1.34937i −0.738104 0.674687i \(-0.764279\pi\)
0.738104 0.674687i \(-0.235721\pi\)
\(702\) 0 0
\(703\) −0.890397 −0.0335819
\(704\) 26.4246 31.5574i 0.995915 1.18936i
\(705\) 0 0
\(706\) −4.91797 + 23.8383i −0.185090 + 0.897168i
\(707\) −7.73849 −0.291036
\(708\) 0 0
\(709\) 11.0711 19.1758i 0.415785 0.720160i −0.579726 0.814812i \(-0.696840\pi\)
0.995510 + 0.0946513i \(0.0301736\pi\)
\(710\) −33.6203 + 11.1470i −1.26175 + 0.418338i
\(711\) 0 0
\(712\) −14.1532 1.23092i −0.530413 0.0461309i
\(713\) −12.4810 + 7.20591i −0.467417 + 0.269864i
\(714\) 0 0
\(715\) 75.8532 + 26.3464i 2.83675 + 0.985299i
\(716\) 8.42070 + 11.3029i 0.314697 + 0.422409i
\(717\) 0 0
\(718\) 15.8984 + 14.1435i 0.593324 + 0.527832i
\(719\) 20.9483 36.2834i 0.781238 1.35314i −0.149983 0.988689i \(-0.547922\pi\)
0.931221 0.364455i \(-0.118745\pi\)
\(720\) 0 0
\(721\) −8.79455 5.07754i −0.327526 0.189097i
\(722\) 21.1742 + 4.36835i 0.788023 + 0.162573i
\(723\) 0 0
\(724\) −15.5978 + 1.82853i −0.579688 + 0.0679569i
\(725\) 2.35029 1.35694i 0.0872877 0.0503956i
\(726\) 0 0
\(727\) −26.1552 −0.970042 −0.485021 0.874503i \(-0.661188\pi\)
−0.485021 + 0.874503i \(0.661188\pi\)
\(728\) 20.1314 + 9.01553i 0.746121 + 0.334138i
\(729\) 0 0
\(730\) 46.2384 + 41.1345i 1.71136 + 1.52246i
\(731\) −14.3190 + 8.26709i −0.529608 + 0.305769i
\(732\) 0 0
\(733\) −23.0609 −0.851774 −0.425887 0.904776i \(-0.640038\pi\)
−0.425887 + 0.904776i \(0.640038\pi\)
\(734\) 28.7598 + 5.93328i 1.06154 + 0.219002i
\(735\) 0 0
\(736\) −11.4545 + 0.343099i −0.422219 + 0.0126468i
\(737\) −28.3472 + 49.0988i −1.04418 + 1.80858i
\(738\) 0 0
\(739\) 6.46731 + 11.2017i 0.237904 + 0.412061i 0.960113 0.279614i \(-0.0902064\pi\)
−0.722209 + 0.691675i \(0.756873\pi\)
\(740\) 3.20832 2.39021i 0.117940 0.0878659i
\(741\) 0 0
\(742\) 2.02676 + 6.11290i 0.0744046 + 0.224412i
\(743\) 19.2118 11.0919i 0.704813 0.406924i −0.104324 0.994543i \(-0.533268\pi\)
0.809138 + 0.587619i \(0.199935\pi\)
\(744\) 0 0
\(745\) −16.3821 + 28.3747i −0.600195 + 1.03957i
\(746\) −1.11017 + 0.368080i −0.0406460 + 0.0134763i
\(747\) 0 0
\(748\) 6.70834 + 57.2237i 0.245281 + 2.09231i
\(749\) −4.63619 −0.169403
\(750\) 0 0
\(751\) 5.27970 + 9.14471i 0.192659 + 0.333695i 0.946131 0.323785i \(-0.104956\pi\)
−0.753472 + 0.657480i \(0.771622\pi\)
\(752\) −2.03996 8.58110i −0.0743897 0.312921i
\(753\) 0 0
\(754\) 0.491280 + 0.879429i 0.0178914 + 0.0320269i
\(755\) 9.08679i 0.330702i
\(756\) 0 0
\(757\) 31.1972 18.0117i 1.13388 0.654647i 0.188973 0.981982i \(-0.439484\pi\)
0.944908 + 0.327336i \(0.106151\pi\)
\(758\) −12.7491 2.63021i −0.463069 0.0955335i
\(759\) 0 0
\(760\) 21.3741 9.98027i 0.775321 0.362023i
\(761\) −6.84148 3.94993i −0.248004 0.143185i 0.370846 0.928694i \(-0.379068\pi\)
−0.618850 + 0.785509i \(0.712401\pi\)
\(762\) 0 0
\(763\) 17.4503 + 10.0750i 0.631745 + 0.364738i
\(764\) 37.3468 + 16.0947i 1.35116 + 0.582286i
\(765\) 0 0
\(766\) 28.3313 9.39335i 1.02365 0.339396i
\(767\) −2.96216 15.4605i −0.106957 0.558247i
\(768\) 0 0
\(769\) −38.3137 + 22.1204i −1.38163 + 0.797682i −0.992352 0.123440i \(-0.960607\pi\)
−0.389274 + 0.921122i \(0.627274\pi\)
\(770\) −50.8980 45.2798i −1.83424 1.63177i
\(771\) 0 0
\(772\) 8.96674 + 12.0358i 0.322720 + 0.433179i
\(773\) −0.173392 + 0.300323i −0.00623647 + 0.0108019i −0.869127 0.494589i \(-0.835318\pi\)
0.862890 + 0.505391i \(0.168652\pi\)
\(774\) 0 0
\(775\) 97.7284i 3.51051i
\(776\) 10.2416 + 21.9337i 0.367650 + 0.787373i
\(777\) 0 0
\(778\) −25.0703 22.3030i −0.898812 0.799600i
\(779\) 2.70468i 0.0969052i
\(780\) 0 0
\(781\) 29.7691i 1.06522i
\(782\) 10.6621 11.9850i 0.381276 0.428584i
\(783\) 0 0
\(784\) 6.37731 + 6.75030i 0.227761 + 0.241082i
\(785\) 36.1480i 1.29018i
\(786\) 0 0
\(787\) 19.9378 34.5333i 0.710706 1.23098i −0.253887 0.967234i \(-0.581709\pi\)
0.964593 0.263744i \(-0.0849576\pi\)
\(788\) −7.24875 + 5.40035i −0.258226 + 0.192380i
\(789\) 0 0
\(790\) −29.9941 + 33.7157i −1.06714 + 1.19955i
\(791\) −36.2970 + 20.9561i −1.29057 + 0.745112i
\(792\) 0 0
\(793\) −43.5195 + 8.33813i −1.54542 + 0.296096i
\(794\) 2.99622 + 9.03691i 0.106332 + 0.320708i
\(795\) 0 0
\(796\) −46.2514 19.9321i −1.63934 0.706476i
\(797\) −29.9292 17.2796i −1.06015 0.612076i −0.134674 0.990890i \(-0.542999\pi\)
−0.925473 + 0.378814i \(0.876332\pi\)
\(798\) 0 0
\(799\) 10.6925 + 6.17331i 0.378273 + 0.218396i
\(800\) −36.8224 + 68.4314i −1.30187 + 2.41942i
\(801\) 0 0
\(802\) −1.09858 + 5.32501i −0.0387921 + 0.188033i
\(803\) 45.0451 26.0068i 1.58961 0.917760i
\(804\) 0 0
\(805\) 18.9670i 0.668498i
\(806\) −36.2715 0.513262i −1.27761 0.0180789i
\(807\) 0 0
\(808\) 10.0813 + 0.876785i 0.354658 + 0.0308452i
\(809\) 2.06348 + 3.57406i 0.0725483 + 0.125657i 0.900017 0.435854i \(-0.143554\pi\)
−0.827469 + 0.561511i \(0.810220\pi\)
\(810\) 0 0
\(811\) −29.5522 −1.03772 −0.518859 0.854860i \(-0.673643\pi\)
−0.518859 + 0.854860i \(0.673643\pi\)
\(812\) −0.0995056 0.848806i −0.00349196 0.0297872i
\(813\) 0 0
\(814\) −1.05820 3.19165i −0.0370900 0.111867i
\(815\) −16.4965 + 28.5728i −0.577848 + 1.00086i
\(816\) 0 0
\(817\) 4.92726 2.84475i 0.172383 0.0995253i
\(818\) 44.1411 14.6352i 1.54336 0.511706i
\(819\) 0 0
\(820\) −7.26053 9.74562i −0.253549 0.340332i
\(821\) 20.9185 + 36.2319i 0.730061 + 1.26450i 0.956857 + 0.290560i \(0.0938416\pi\)
−0.226796 + 0.973942i \(0.572825\pi\)
\(822\) 0 0
\(823\) 13.3260 23.0813i 0.464515 0.804563i −0.534665 0.845064i \(-0.679562\pi\)
0.999179 + 0.0405014i \(0.0128955\pi\)
\(824\) 10.8818 + 7.61118i 0.379084 + 0.265148i
\(825\) 0 0
\(826\) −2.69838 + 13.0796i −0.0938888 + 0.455097i
\(827\) 45.2843 1.57469 0.787344 0.616514i \(-0.211456\pi\)
0.787344 + 0.616514i \(0.211456\pi\)
\(828\) 0 0
\(829\) −40.4769 + 23.3693i −1.40582 + 0.811651i −0.994982 0.100057i \(-0.968097\pi\)
−0.410839 + 0.911708i \(0.634764\pi\)
\(830\) −8.30740 + 9.33817i −0.288354 + 0.324133i
\(831\) 0 0
\(832\) −25.2047 14.0259i −0.873814 0.486260i
\(833\) −12.9991 −0.450392
\(834\) 0 0
\(835\) 45.4281 26.2279i 1.57211 0.907655i
\(836\) −2.30838 19.6910i −0.0798370 0.681028i
\(837\) 0 0
\(838\) 0.813698 3.94415i 0.0281087 0.136248i
\(839\) 7.87045 + 4.54401i 0.271718 + 0.156877i 0.629668 0.776864i \(-0.283191\pi\)
−0.357950 + 0.933741i \(0.616524\pi\)
\(840\) 0 0
\(841\) −14.4805 + 25.0809i −0.499327 + 0.864860i
\(842\) −0.985670 + 1.10797i −0.0339684 + 0.0381832i
\(843\) 0 0
\(844\) 18.7418 + 25.1566i 0.645120 + 0.865928i
\(845\) 8.13075 55.6819i 0.279706 1.91552i
\(846\) 0 0
\(847\) −28.9795 + 16.7313i −0.995747 + 0.574895i
\(848\) −1.94775 8.19319i −0.0668858 0.281355i
\(849\) 0 0
\(850\) −34.2332 103.251i −1.17419 3.54147i
\(851\) −0.468092 + 0.810758i −0.0160460 + 0.0277924i
\(852\) 0 0
\(853\) −42.5016 −1.45523 −0.727613 0.685988i \(-0.759370\pi\)
−0.727613 + 0.685988i \(0.759370\pi\)
\(854\) 36.8175 + 7.59563i 1.25987 + 0.259917i
\(855\) 0 0
\(856\) 6.03978 + 0.525289i 0.206435 + 0.0179540i
\(857\) −44.3414 −1.51467 −0.757337 0.653024i \(-0.773500\pi\)
−0.757337 + 0.653024i \(0.773500\pi\)
\(858\) 0 0
\(859\) 43.6352i 1.48881i −0.667727 0.744406i \(-0.732733\pi\)
0.667727 0.744406i \(-0.267267\pi\)
\(860\) −10.1176 + 23.4772i −0.345006 + 0.800567i
\(861\) 0 0
\(862\) −6.32238 + 30.6458i −0.215341 + 1.04380i
\(863\) 35.7395i 1.21659i 0.793712 + 0.608293i \(0.208146\pi\)
−0.793712 + 0.608293i \(0.791854\pi\)
\(864\) 0 0
\(865\) −21.4288 12.3719i −0.728603 0.420659i
\(866\) −7.45664 22.4900i −0.253387 0.764240i
\(867\) 0 0
\(868\) 28.2625 + 12.1798i 0.959292 + 0.413409i
\(869\) 18.9634 + 32.8456i 0.643290 + 1.11421i
\(870\) 0 0
\(871\) 37.5314 + 13.0359i 1.27170 + 0.441706i
\(872\) −21.5918 15.1023i −0.731192 0.511427i
\(873\) 0 0
\(874\) −3.66890 + 4.12413i −0.124102 + 0.139501i
\(875\) 70.8442 + 40.9019i 2.39497 + 1.38274i
\(876\) 0 0
\(877\) −5.98460 + 10.3656i −0.202085 + 0.350022i −0.949200 0.314673i \(-0.898105\pi\)
0.747115 + 0.664695i \(0.231439\pi\)
\(878\) −9.60273 1.98109i −0.324076 0.0668586i
\(879\) 0 0
\(880\) 61.1769 + 64.7549i 2.06227 + 2.18289i
\(881\) −4.67299 8.09386i −0.157437 0.272689i 0.776507 0.630109i \(-0.216990\pi\)
−0.933944 + 0.357420i \(0.883656\pi\)
\(882\) 0 0
\(883\) 12.2815i 0.413307i −0.978414 0.206653i \(-0.933743\pi\)
0.978414 0.206653i \(-0.0662573\pi\)
\(884\) 38.5009 12.1632i 1.29493 0.409094i
\(885\) 0 0
\(886\) −24.2392 21.5636i −0.814330 0.724443i
\(887\) 5.70155 + 9.87537i 0.191439 + 0.331582i 0.945727 0.324961i \(-0.105351\pi\)
−0.754288 + 0.656543i \(0.772018\pi\)
\(888\) 0 0
\(889\) 14.4021i 0.483030i
\(890\) 6.21258 30.1136i 0.208246 1.00941i
\(891\) 0 0
\(892\) 27.2122 + 36.5263i 0.911133 + 1.22299i
\(893\) −3.67935 2.12427i −0.123125 0.0710860i
\(894\) 0 0
\(895\) −26.4187 + 15.2529i −0.883081 + 0.509847i
\(896\) 15.2008 + 19.1773i 0.507824 + 0.640670i
\(897\) 0 0
\(898\) −40.1151 + 13.3003i −1.33866 + 0.443837i
\(899\) 0.702726 + 1.21716i 0.0234372 + 0.0405944i
\(900\) 0 0
\(901\) 10.2091 + 5.89424i 0.340115 + 0.196366i
\(902\) −9.69498 + 3.21441i −0.322808 + 0.107028i
\(903\) 0 0
\(904\) 49.6601 23.1879i 1.65167 0.771218i
\(905\) 33.9899i 1.12986i
\(906\) 0 0
\(907\) −4.78402 + 2.76206i −0.158851 + 0.0917126i −0.577318 0.816519i \(-0.695901\pi\)
0.418467 + 0.908232i \(0.362567\pi\)
\(908\) −7.88927 3.39990i −0.261815 0.112830i
\(909\) 0 0
\(910\) −24.4529 + 41.0027i −0.810606 + 1.35923i
\(911\) −33.5295 −1.11088 −0.555441 0.831556i \(-0.687451\pi\)
−0.555441 + 0.831556i \(0.687451\pi\)
\(912\) 0 0
\(913\) 5.25226 + 9.09718i 0.173824 + 0.301073i
\(914\) −1.13834 + 5.51775i −0.0376530 + 0.182511i
\(915\) 0 0
\(916\) −4.66557 39.7984i −0.154155 1.31498i
\(917\) 11.2258 19.4436i 0.370708 0.642085i
\(918\) 0 0
\(919\) 13.6169 23.5851i 0.449179 0.778001i −0.549154 0.835721i \(-0.685050\pi\)
0.998333 + 0.0577205i \(0.0183832\pi\)
\(920\) 2.14899 24.7091i 0.0708501 0.814636i
\(921\) 0 0
\(922\) 0.292453 + 0.882068i 0.00963143 + 0.0290494i
\(923\) 20.4892 3.92564i 0.674411 0.129214i
\(924\) 0 0
\(925\) 3.17419 + 5.49786i 0.104367 + 0.180768i
\(926\) −9.09608 8.09204i −0.298916 0.265921i
\(927\) 0 0
\(928\) 0.0334592 + 1.11705i 0.00109835 + 0.0366690i
\(929\) −28.3942 16.3934i −0.931582 0.537849i −0.0442707 0.999020i \(-0.514096\pi\)
−0.887312 + 0.461170i \(0.847430\pi\)
\(930\) 0 0
\(931\) 4.47306 0.146599
\(932\) −1.68106 14.3398i −0.0550649 0.469717i
\(933\) 0 0
\(934\) 20.5458 + 18.2779i 0.672279 + 0.598071i
\(935\) −124.699 −4.07809
\(936\) 0 0
\(937\) 39.0993 1.27732 0.638659 0.769490i \(-0.279489\pi\)
0.638659 + 0.769490i \(0.279489\pi\)
\(938\) −25.1839 22.4040i −0.822282 0.731517i
\(939\) 0 0
\(940\) 18.9600 2.22269i 0.618408 0.0724960i
\(941\) 16.6878 0.544007 0.272003 0.962296i \(-0.412314\pi\)
0.272003 + 0.962296i \(0.412314\pi\)
\(942\) 0 0
\(943\) 2.46277 + 1.42188i 0.0801988 + 0.0463028i
\(944\) 4.99725 16.7336i 0.162647 0.544634i
\(945\) 0 0
\(946\) 16.0529 + 14.2810i 0.521926 + 0.464315i
\(947\) −12.4326 21.5339i −0.404005 0.699758i 0.590200 0.807257i \(-0.299049\pi\)
−0.994205 + 0.107499i \(0.965716\pi\)
\(948\) 0 0
\(949\) −23.8398 27.5738i −0.773874 0.895083i
\(950\) 11.7798 + 35.5292i 0.382188 + 1.15272i
\(951\) 0 0
\(952\) −34.1260 2.96799i −1.10603 0.0961930i
\(953\) 28.8903 50.0395i 0.935850 1.62094i 0.162739 0.986669i \(-0.447967\pi\)
0.773111 0.634270i \(-0.218699\pi\)
\(954\) 0 0
\(955\) −44.0085 + 76.2250i −1.42408 + 2.46658i
\(956\) −2.79375 + 0.327511i −0.0903563 + 0.0105925i
\(957\) 0 0
\(958\) 0.635465 3.08022i 0.0205309 0.0995174i
\(959\) −3.18744 5.52080i −0.102928 0.178276i
\(960\) 0 0
\(961\) −19.6110 −0.632614
\(962\) −2.05718 + 1.14921i −0.0663261 + 0.0370521i
\(963\) 0 0
\(964\) 4.38340 10.1714i 0.141180 0.327600i
\(965\) −28.1319 + 16.2419i −0.905596 + 0.522846i
\(966\) 0 0
\(967\) 38.2787i 1.23096i 0.788153 + 0.615480i \(0.211038\pi\)
−0.788153 + 0.615480i \(0.788962\pi\)
\(968\) 39.6486 18.5132i 1.27435 0.595037i
\(969\) 0 0
\(970\) −49.7296 + 16.4880i −1.59672 + 0.529399i
\(971\) 27.6258 + 15.9498i 0.886554 + 0.511852i 0.872814 0.488053i \(-0.162293\pi\)
0.0137404 + 0.999906i \(0.495626\pi\)
\(972\) 0 0
\(973\) 21.3555 + 36.9887i 0.684625 + 1.18580i
\(974\) −28.4980 + 9.44861i −0.913133 + 0.302753i
\(975\) 0 0
\(976\) −47.1032 14.0667i −1.50774 0.450263i
\(977\) 35.5820 20.5433i 1.13837 0.657237i 0.192342 0.981328i \(-0.438392\pi\)
0.946026 + 0.324091i \(0.105058\pi\)
\(978\) 0 0
\(979\) −22.3800 12.9211i −0.715267 0.412959i
\(980\) −16.1175 + 12.0076i −0.514856 + 0.383570i
\(981\) 0 0
\(982\) 3.58704 17.3871i 0.114467 0.554844i
\(983\) 31.6606i 1.00982i 0.863173 + 0.504909i \(0.168474\pi\)
−0.863173 + 0.504909i \(0.831526\pi\)
\(984\) 0 0
\(985\) −9.78195 16.9428i −0.311679 0.539844i
\(986\) −1.16879 1.03978i −0.0372219 0.0331132i
\(987\) 0 0
\(988\) −13.2484 + 4.18544i −0.421487 + 0.133157i
\(989\) 5.98207i 0.190219i
\(990\) 0 0
\(991\) 15.5004 + 26.8476i 0.492388 + 0.852841i 0.999962 0.00876746i \(-0.00279080\pi\)
−0.507574 + 0.861608i \(0.669457\pi\)
\(992\) −35.4389 19.0694i −1.12518 0.605453i
\(993\) 0 0
\(994\) −17.3339 3.57606i −0.549797 0.113426i
\(995\) 54.5015 94.3993i 1.72781 2.99266i
\(996\) 0 0
\(997\) 23.2481 + 13.4223i 0.736273 + 0.425088i 0.820713 0.571341i \(-0.193577\pi\)
−0.0844395 + 0.996429i \(0.526910\pi\)
\(998\) −19.7694 + 22.2223i −0.625789 + 0.703436i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 936.2.dg.e.829.18 48
3.2 odd 2 312.2.bk.b.205.7 yes 48
8.5 even 2 inner 936.2.dg.e.829.24 48
12.11 even 2 1248.2.ca.b.49.1 48
13.4 even 6 inner 936.2.dg.e.901.24 48
24.5 odd 2 312.2.bk.b.205.1 48
24.11 even 2 1248.2.ca.b.49.24 48
39.17 odd 6 312.2.bk.b.277.1 yes 48
104.69 even 6 inner 936.2.dg.e.901.18 48
156.95 even 6 1248.2.ca.b.433.24 48
312.173 odd 6 312.2.bk.b.277.7 yes 48
312.251 even 6 1248.2.ca.b.433.1 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
312.2.bk.b.205.1 48 24.5 odd 2
312.2.bk.b.205.7 yes 48 3.2 odd 2
312.2.bk.b.277.1 yes 48 39.17 odd 6
312.2.bk.b.277.7 yes 48 312.173 odd 6
936.2.dg.e.829.18 48 1.1 even 1 trivial
936.2.dg.e.829.24 48 8.5 even 2 inner
936.2.dg.e.901.18 48 104.69 even 6 inner
936.2.dg.e.901.24 48 13.4 even 6 inner
1248.2.ca.b.49.1 48 12.11 even 2
1248.2.ca.b.49.24 48 24.11 even 2
1248.2.ca.b.433.1 48 312.251 even 6
1248.2.ca.b.433.24 48 156.95 even 6