Properties

Label 936.2.ca.b.589.2
Level $936$
Weight $2$
Character 936.589
Analytic conductor $7.474$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [936,2,Mod(205,936)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(936, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 3, 4, 5])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("936.205"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 936 = 2^{3} \cdot 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 936.ca (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.47399762919\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\zeta_{12})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 589.2
Root \(0.866025 - 0.500000i\) of defining polynomial
Character \(\chi\) \(=\) 936.589
Dual form 936.2.ca.b.205.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.00000 + 1.00000i) q^{2} +1.73205 q^{3} +2.00000i q^{4} +(-0.133975 + 0.232051i) q^{5} +(1.73205 + 1.73205i) q^{6} +(1.50000 + 0.866025i) q^{7} +(-2.00000 + 2.00000i) q^{8} +3.00000 q^{9} +(-0.366025 + 0.0980762i) q^{10} -5.46410 q^{11} +3.46410i q^{12} +(3.46410 + 1.00000i) q^{13} +(0.633975 + 2.36603i) q^{14} +(-0.232051 + 0.401924i) q^{15} -4.00000 q^{16} +(0.232051 + 0.401924i) q^{17} +(3.00000 + 3.00000i) q^{18} +(2.59808 + 4.50000i) q^{19} +(-0.464102 - 0.267949i) q^{20} +(2.59808 + 1.50000i) q^{21} +(-5.46410 - 5.46410i) q^{22} +(-3.23205 - 5.59808i) q^{23} +(-3.46410 + 3.46410i) q^{24} +(2.46410 + 4.26795i) q^{25} +(2.46410 + 4.46410i) q^{26} +5.19615 q^{27} +(-1.73205 + 3.00000i) q^{28} +(-0.633975 + 0.169873i) q^{30} +(1.50000 + 0.866025i) q^{31} +(-4.00000 - 4.00000i) q^{32} -9.46410 q^{33} +(-0.169873 + 0.633975i) q^{34} +(-0.401924 + 0.232051i) q^{35} +6.00000i q^{36} +(2.13397 - 3.69615i) q^{37} +(-1.90192 + 7.09808i) q^{38} +(6.00000 + 1.73205i) q^{39} +(-0.196152 - 0.732051i) q^{40} +(4.96410 - 2.86603i) q^{41} +(1.09808 + 4.09808i) q^{42} +(-5.59808 - 3.23205i) q^{43} -10.9282i q^{44} +(-0.401924 + 0.696152i) q^{45} +(2.36603 - 8.83013i) q^{46} +(7.16025 - 4.13397i) q^{47} -6.92820 q^{48} +(-2.00000 - 3.46410i) q^{49} +(-1.80385 + 6.73205i) q^{50} +(0.401924 + 0.696152i) q^{51} +(-2.00000 + 6.92820i) q^{52} +(5.19615 + 5.19615i) q^{54} +(0.732051 - 1.26795i) q^{55} +(-4.73205 + 1.26795i) q^{56} +(4.50000 + 7.79423i) q^{57} -7.46410 q^{59} +(-0.803848 - 0.464102i) q^{60} +(-9.86603 - 5.69615i) q^{61} +(0.633975 + 2.36603i) q^{62} +(4.50000 + 2.59808i) q^{63} -8.00000i q^{64} +(-0.696152 + 0.669873i) q^{65} +(-9.46410 - 9.46410i) q^{66} +(3.86603 + 6.69615i) q^{67} +(-0.803848 + 0.464102i) q^{68} +(-5.59808 - 9.69615i) q^{69} +(-0.633975 - 0.169873i) q^{70} +(11.4282 - 6.59808i) q^{71} +(-6.00000 + 6.00000i) q^{72} +8.53590i q^{73} +(5.83013 - 1.56218i) q^{74} +(4.26795 + 7.39230i) q^{75} +(-9.00000 + 5.19615i) q^{76} +(-8.19615 - 4.73205i) q^{77} +(4.26795 + 7.73205i) q^{78} +(-7.96410 - 13.7942i) q^{79} +(0.535898 - 0.928203i) q^{80} +9.00000 q^{81} +(7.83013 + 2.09808i) q^{82} +(7.06218 + 12.2321i) q^{83} +(-3.00000 + 5.19615i) q^{84} -0.124356 q^{85} +(-2.36603 - 8.83013i) q^{86} +(10.9282 - 10.9282i) q^{88} +(0.571797 + 0.330127i) q^{89} +(-1.09808 + 0.294229i) q^{90} +(4.33013 + 4.50000i) q^{91} +(11.1962 - 6.46410i) q^{92} +(2.59808 + 1.50000i) q^{93} +(11.2942 + 3.02628i) q^{94} -1.39230 q^{95} +(-6.92820 - 6.92820i) q^{96} +(-2.30385 - 1.33013i) q^{97} +(1.46410 - 5.46410i) q^{98} -16.3923 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{2} - 4 q^{5} + 6 q^{7} - 8 q^{8} + 12 q^{9} + 2 q^{10} - 8 q^{11} + 6 q^{14} + 6 q^{15} - 16 q^{16} - 6 q^{17} + 12 q^{18} + 12 q^{20} - 8 q^{22} - 6 q^{23} - 4 q^{25} - 4 q^{26} - 6 q^{30} + 6 q^{31}+ \cdots - 24 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/936\mathbb{Z}\right)^\times\).

\(n\) \(145\) \(209\) \(469\) \(703\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{1}{3}\right)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 + 1.00000i 0.707107 + 0.707107i
\(3\) 1.73205 1.00000
\(4\) 2.00000i 1.00000i
\(5\) −0.133975 + 0.232051i −0.0599153 + 0.103776i −0.894427 0.447214i \(-0.852416\pi\)
0.834512 + 0.550990i \(0.185750\pi\)
\(6\) 1.73205 + 1.73205i 0.707107 + 0.707107i
\(7\) 1.50000 + 0.866025i 0.566947 + 0.327327i 0.755929 0.654654i \(-0.227186\pi\)
−0.188982 + 0.981981i \(0.560519\pi\)
\(8\) −2.00000 + 2.00000i −0.707107 + 0.707107i
\(9\) 3.00000 1.00000
\(10\) −0.366025 + 0.0980762i −0.115747 + 0.0310144i
\(11\) −5.46410 −1.64749 −0.823744 0.566961i \(-0.808119\pi\)
−0.823744 + 0.566961i \(0.808119\pi\)
\(12\) 3.46410i 1.00000i
\(13\) 3.46410 + 1.00000i 0.960769 + 0.277350i
\(14\) 0.633975 + 2.36603i 0.169437 + 0.632347i
\(15\) −0.232051 + 0.401924i −0.0599153 + 0.103776i
\(16\) −4.00000 −1.00000
\(17\) 0.232051 + 0.401924i 0.0562806 + 0.0974808i 0.892793 0.450467i \(-0.148743\pi\)
−0.836512 + 0.547948i \(0.815409\pi\)
\(18\) 3.00000 + 3.00000i 0.707107 + 0.707107i
\(19\) 2.59808 + 4.50000i 0.596040 + 1.03237i 0.993399 + 0.114708i \(0.0365932\pi\)
−0.397360 + 0.917663i \(0.630073\pi\)
\(20\) −0.464102 0.267949i −0.103776 0.0599153i
\(21\) 2.59808 + 1.50000i 0.566947 + 0.327327i
\(22\) −5.46410 5.46410i −1.16495 1.16495i
\(23\) −3.23205 5.59808i −0.673929 1.16728i −0.976781 0.214242i \(-0.931272\pi\)
0.302851 0.953038i \(-0.402061\pi\)
\(24\) −3.46410 + 3.46410i −0.707107 + 0.707107i
\(25\) 2.46410 + 4.26795i 0.492820 + 0.853590i
\(26\) 2.46410 + 4.46410i 0.483250 + 0.875482i
\(27\) 5.19615 1.00000
\(28\) −1.73205 + 3.00000i −0.327327 + 0.566947i
\(29\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(30\) −0.633975 + 0.169873i −0.115747 + 0.0310144i
\(31\) 1.50000 + 0.866025i 0.269408 + 0.155543i 0.628619 0.777714i \(-0.283621\pi\)
−0.359211 + 0.933257i \(0.616954\pi\)
\(32\) −4.00000 4.00000i −0.707107 0.707107i
\(33\) −9.46410 −1.64749
\(34\) −0.169873 + 0.633975i −0.0291330 + 0.108726i
\(35\) −0.401924 + 0.232051i −0.0679375 + 0.0392237i
\(36\) 6.00000i 1.00000i
\(37\) 2.13397 3.69615i 0.350823 0.607644i −0.635571 0.772043i \(-0.719235\pi\)
0.986394 + 0.164399i \(0.0525685\pi\)
\(38\) −1.90192 + 7.09808i −0.308533 + 1.15146i
\(39\) 6.00000 + 1.73205i 0.960769 + 0.277350i
\(40\) −0.196152 0.732051i −0.0310144 0.115747i
\(41\) 4.96410 2.86603i 0.775262 0.447598i −0.0594862 0.998229i \(-0.518946\pi\)
0.834749 + 0.550631i \(0.185613\pi\)
\(42\) 1.09808 + 4.09808i 0.169437 + 0.632347i
\(43\) −5.59808 3.23205i −0.853699 0.492883i 0.00819845 0.999966i \(-0.497390\pi\)
−0.861897 + 0.507083i \(0.830724\pi\)
\(44\) 10.9282i 1.64749i
\(45\) −0.401924 + 0.696152i −0.0599153 + 0.103776i
\(46\) 2.36603 8.83013i 0.348851 1.30193i
\(47\) 7.16025 4.13397i 1.04443 0.603002i 0.123345 0.992364i \(-0.460638\pi\)
0.921085 + 0.389362i \(0.127304\pi\)
\(48\) −6.92820 −1.00000
\(49\) −2.00000 3.46410i −0.285714 0.494872i
\(50\) −1.80385 + 6.73205i −0.255103 + 0.952056i
\(51\) 0.401924 + 0.696152i 0.0562806 + 0.0974808i
\(52\) −2.00000 + 6.92820i −0.277350 + 0.960769i
\(53\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(54\) 5.19615 + 5.19615i 0.707107 + 0.707107i
\(55\) 0.732051 1.26795i 0.0987097 0.170970i
\(56\) −4.73205 + 1.26795i −0.632347 + 0.169437i
\(57\) 4.50000 + 7.79423i 0.596040 + 1.03237i
\(58\) 0 0
\(59\) −7.46410 −0.971743 −0.485872 0.874030i \(-0.661498\pi\)
−0.485872 + 0.874030i \(0.661498\pi\)
\(60\) −0.803848 0.464102i −0.103776 0.0599153i
\(61\) −9.86603 5.69615i −1.26322 0.729318i −0.289520 0.957172i \(-0.593496\pi\)
−0.973695 + 0.227854i \(0.926829\pi\)
\(62\) 0.633975 + 2.36603i 0.0805149 + 0.300486i
\(63\) 4.50000 + 2.59808i 0.566947 + 0.327327i
\(64\) 8.00000i 1.00000i
\(65\) −0.696152 + 0.669873i −0.0863471 + 0.0830875i
\(66\) −9.46410 9.46410i −1.16495 1.16495i
\(67\) 3.86603 + 6.69615i 0.472310 + 0.818065i 0.999498 0.0316836i \(-0.0100869\pi\)
−0.527188 + 0.849749i \(0.676754\pi\)
\(68\) −0.803848 + 0.464102i −0.0974808 + 0.0562806i
\(69\) −5.59808 9.69615i −0.673929 1.16728i
\(70\) −0.633975 0.169873i −0.0757745 0.0203037i
\(71\) 11.4282 6.59808i 1.35628 0.783048i 0.367158 0.930159i \(-0.380331\pi\)
0.989120 + 0.147111i \(0.0469974\pi\)
\(72\) −6.00000 + 6.00000i −0.707107 + 0.707107i
\(73\) 8.53590i 0.999051i 0.866299 + 0.499526i \(0.166492\pi\)
−0.866299 + 0.499526i \(0.833508\pi\)
\(74\) 5.83013 1.56218i 0.677738 0.181599i
\(75\) 4.26795 + 7.39230i 0.492820 + 0.853590i
\(76\) −9.00000 + 5.19615i −1.03237 + 0.596040i
\(77\) −8.19615 4.73205i −0.934038 0.539267i
\(78\) 4.26795 + 7.73205i 0.483250 + 0.875482i
\(79\) −7.96410 13.7942i −0.896031 1.55197i −0.832523 0.553991i \(-0.813104\pi\)
−0.0635086 0.997981i \(-0.520229\pi\)
\(80\) 0.535898 0.928203i 0.0599153 0.103776i
\(81\) 9.00000 1.00000
\(82\) 7.83013 + 2.09808i 0.864693 + 0.231694i
\(83\) 7.06218 + 12.2321i 0.775175 + 1.34264i 0.934696 + 0.355448i \(0.115672\pi\)
−0.159522 + 0.987194i \(0.550995\pi\)
\(84\) −3.00000 + 5.19615i −0.327327 + 0.566947i
\(85\) −0.124356 −0.0134883
\(86\) −2.36603 8.83013i −0.255135 0.952177i
\(87\) 0 0
\(88\) 10.9282 10.9282i 1.16495 1.16495i
\(89\) 0.571797 + 0.330127i 0.0606103 + 0.0349934i 0.529999 0.847998i \(-0.322192\pi\)
−0.469389 + 0.882992i \(0.655526\pi\)
\(90\) −1.09808 + 0.294229i −0.115747 + 0.0310144i
\(91\) 4.33013 + 4.50000i 0.453921 + 0.471728i
\(92\) 11.1962 6.46410i 1.16728 0.673929i
\(93\) 2.59808 + 1.50000i 0.269408 + 0.155543i
\(94\) 11.2942 + 3.02628i 1.16491 + 0.312137i
\(95\) −1.39230 −0.142847
\(96\) −6.92820 6.92820i −0.707107 0.707107i
\(97\) −2.30385 1.33013i −0.233920 0.135054i 0.378459 0.925618i \(-0.376454\pi\)
−0.612379 + 0.790564i \(0.709787\pi\)
\(98\) 1.46410 5.46410i 0.147897 0.551958i
\(99\) −16.3923 −1.64749
\(100\) −8.53590 + 4.92820i −0.853590 + 0.492820i
\(101\) 9.46410i 0.941713i −0.882210 0.470857i \(-0.843945\pi\)
0.882210 0.470857i \(-0.156055\pi\)
\(102\) −0.294229 + 1.09808i −0.0291330 + 0.108726i
\(103\) −2.69615 + 4.66987i −0.265660 + 0.460136i −0.967736 0.251965i \(-0.918923\pi\)
0.702076 + 0.712102i \(0.252256\pi\)
\(104\) −8.92820 + 4.92820i −0.875482 + 0.483250i
\(105\) −0.696152 + 0.401924i −0.0679375 + 0.0392237i
\(106\) 0 0
\(107\) −15.9904 9.23205i −1.54585 0.892496i −0.998452 0.0556227i \(-0.982286\pi\)
−0.547397 0.836873i \(-0.684381\pi\)
\(108\) 10.3923i 1.00000i
\(109\) 6.00000 0.574696 0.287348 0.957826i \(-0.407226\pi\)
0.287348 + 0.957826i \(0.407226\pi\)
\(110\) 2.00000 0.535898i 0.190693 0.0510959i
\(111\) 3.69615 6.40192i 0.350823 0.607644i
\(112\) −6.00000 3.46410i −0.566947 0.327327i
\(113\) 13.8564 1.30350 0.651751 0.758433i \(-0.274035\pi\)
0.651751 + 0.758433i \(0.274035\pi\)
\(114\) −3.29423 + 12.2942i −0.308533 + 1.15146i
\(115\) 1.73205 0.161515
\(116\) 0 0
\(117\) 10.3923 + 3.00000i 0.960769 + 0.277350i
\(118\) −7.46410 7.46410i −0.687126 0.687126i
\(119\) 0.803848i 0.0736886i
\(120\) −0.339746 1.26795i −0.0310144 0.115747i
\(121\) 18.8564 1.71422
\(122\) −4.16987 15.5622i −0.377523 1.40893i
\(123\) 8.59808 4.96410i 0.775262 0.447598i
\(124\) −1.73205 + 3.00000i −0.155543 + 0.269408i
\(125\) −2.66025 −0.237940
\(126\) 1.90192 + 7.09808i 0.169437 + 0.632347i
\(127\) 7.16025 12.4019i 0.635370 1.10049i −0.351067 0.936350i \(-0.614181\pi\)
0.986437 0.164142i \(-0.0524857\pi\)
\(128\) 8.00000 8.00000i 0.707107 0.707107i
\(129\) −9.69615 5.59808i −0.853699 0.492883i
\(130\) −1.36603 0.0262794i −0.119808 0.00230486i
\(131\) −10.7942 6.23205i −0.943096 0.544497i −0.0521666 0.998638i \(-0.516613\pi\)
−0.890930 + 0.454142i \(0.849946\pi\)
\(132\) 18.9282i 1.64749i
\(133\) 9.00000i 0.780399i
\(134\) −2.83013 + 10.5622i −0.244486 + 0.912433i
\(135\) −0.696152 + 1.20577i −0.0599153 + 0.103776i
\(136\) −1.26795 0.339746i −0.108726 0.0291330i
\(137\) −2.42820 1.40192i −0.207455 0.119774i 0.392673 0.919678i \(-0.371550\pi\)
−0.600128 + 0.799904i \(0.704884\pi\)
\(138\) 4.09808 15.2942i 0.348851 1.30193i
\(139\) 7.85641i 0.666372i 0.942861 + 0.333186i \(0.108124\pi\)
−0.942861 + 0.333186i \(0.891876\pi\)
\(140\) −0.464102 0.803848i −0.0392237 0.0679375i
\(141\) 12.4019 7.16025i 1.04443 0.603002i
\(142\) 18.0263 + 4.83013i 1.51273 + 0.405335i
\(143\) −18.9282 5.46410i −1.58286 0.456931i
\(144\) −12.0000 −1.00000
\(145\) 0 0
\(146\) −8.53590 + 8.53590i −0.706436 + 0.706436i
\(147\) −3.46410 6.00000i −0.285714 0.494872i
\(148\) 7.39230 + 4.26795i 0.607644 + 0.350823i
\(149\) −15.8564 −1.29901 −0.649504 0.760358i \(-0.725023\pi\)
−0.649504 + 0.760358i \(0.725023\pi\)
\(150\) −3.12436 + 11.6603i −0.255103 + 0.952056i
\(151\) −0.696152 + 0.401924i −0.0566521 + 0.0327081i −0.528059 0.849208i \(-0.677080\pi\)
0.471406 + 0.881916i \(0.343747\pi\)
\(152\) −14.1962 3.80385i −1.15146 0.308533i
\(153\) 0.696152 + 1.20577i 0.0562806 + 0.0974808i
\(154\) −3.46410 12.9282i −0.279145 1.04178i
\(155\) −0.401924 + 0.232051i −0.0322833 + 0.0186388i
\(156\) −3.46410 + 12.0000i −0.277350 + 0.960769i
\(157\) 7.79423 + 4.50000i 0.622047 + 0.359139i 0.777666 0.628678i \(-0.216404\pi\)
−0.155618 + 0.987817i \(0.549737\pi\)
\(158\) 5.83013 21.7583i 0.463820 1.73100i
\(159\) 0 0
\(160\) 1.46410 0.392305i 0.115747 0.0310144i
\(161\) 11.1962i 0.882380i
\(162\) 9.00000 + 9.00000i 0.707107 + 0.707107i
\(163\) −11.5981 20.0885i −0.908431 1.57345i −0.816244 0.577708i \(-0.803947\pi\)
−0.0921878 0.995742i \(-0.529386\pi\)
\(164\) 5.73205 + 9.92820i 0.447598 + 0.775262i
\(165\) 1.26795 2.19615i 0.0987097 0.170970i
\(166\) −5.16987 + 19.2942i −0.401260 + 1.49752i
\(167\) −0.232051 + 0.133975i −0.0179566 + 0.0103673i −0.508951 0.860795i \(-0.669967\pi\)
0.490995 + 0.871162i \(0.336633\pi\)
\(168\) −8.19615 + 2.19615i −0.632347 + 0.169437i
\(169\) 11.0000 + 6.92820i 0.846154 + 0.532939i
\(170\) −0.124356 0.124356i −0.00953764 0.00953764i
\(171\) 7.79423 + 13.5000i 0.596040 + 1.03237i
\(172\) 6.46410 11.1962i 0.492883 0.853699i
\(173\) 19.7942 + 11.4282i 1.50493 + 0.868870i 0.999984 + 0.00571791i \(0.00182008\pi\)
0.504944 + 0.863152i \(0.331513\pi\)
\(174\) 0 0
\(175\) 8.53590i 0.645253i
\(176\) 21.8564 1.64749
\(177\) −12.9282 −0.971743
\(178\) 0.241670 + 0.901924i 0.0181139 + 0.0676020i
\(179\) 1.79423 + 1.03590i 0.134107 + 0.0774267i 0.565552 0.824712i \(-0.308663\pi\)
−0.431446 + 0.902139i \(0.641996\pi\)
\(180\) −1.39230 0.803848i −0.103776 0.0599153i
\(181\) 14.5359i 1.08044i 0.841522 + 0.540222i \(0.181660\pi\)
−0.841522 + 0.540222i \(0.818340\pi\)
\(182\) −0.169873 + 8.83013i −0.0125918 + 0.654533i
\(183\) −17.0885 9.86603i −1.26322 0.729318i
\(184\) 17.6603 + 4.73205i 1.30193 + 0.348851i
\(185\) 0.571797 + 0.990381i 0.0420393 + 0.0728143i
\(186\) 1.09808 + 4.09808i 0.0805149 + 0.300486i
\(187\) −1.26795 2.19615i −0.0927216 0.160599i
\(188\) 8.26795 + 14.3205i 0.603002 + 1.04443i
\(189\) 7.79423 + 4.50000i 0.566947 + 0.327327i
\(190\) −1.39230 1.39230i −0.101008 0.101008i
\(191\) −9.23205 + 15.9904i −0.668008 + 1.15702i 0.310453 + 0.950589i \(0.399519\pi\)
−0.978460 + 0.206435i \(0.933814\pi\)
\(192\) 13.8564i 1.00000i
\(193\) 3.69615 2.13397i 0.266055 0.153607i −0.361039 0.932551i \(-0.617578\pi\)
0.627093 + 0.778944i \(0.284244\pi\)
\(194\) −0.973721 3.63397i −0.0699091 0.260904i
\(195\) −1.20577 + 1.16025i −0.0863471 + 0.0830875i
\(196\) 6.92820 4.00000i 0.494872 0.285714i
\(197\) 7.86603 13.6244i 0.560431 0.970695i −0.437028 0.899448i \(-0.643969\pi\)
0.997459 0.0712470i \(-0.0226979\pi\)
\(198\) −16.3923 16.3923i −1.16495 1.16495i
\(199\) −3.69615 6.40192i −0.262013 0.453820i 0.704764 0.709442i \(-0.251053\pi\)
−0.966777 + 0.255622i \(0.917720\pi\)
\(200\) −13.4641 3.60770i −0.952056 0.255103i
\(201\) 6.69615 + 11.5981i 0.472310 + 0.818065i
\(202\) 9.46410 9.46410i 0.665892 0.665892i
\(203\) 0 0
\(204\) −1.39230 + 0.803848i −0.0974808 + 0.0562806i
\(205\) 1.53590i 0.107272i
\(206\) −7.36603 + 1.97372i −0.513215 + 0.137516i
\(207\) −9.69615 16.7942i −0.673929 1.16728i
\(208\) −13.8564 4.00000i −0.960769 0.277350i
\(209\) −14.1962 24.5885i −0.981968 1.70082i
\(210\) −1.09808 0.294229i −0.0757745 0.0203037i
\(211\) −8.13397 + 4.69615i −0.559966 + 0.323296i −0.753132 0.657870i \(-0.771458\pi\)
0.193166 + 0.981166i \(0.438124\pi\)
\(212\) 0 0
\(213\) 19.7942 11.4282i 1.35628 0.783048i
\(214\) −6.75833 25.2224i −0.461990 1.72417i
\(215\) 1.50000 0.866025i 0.102299 0.0590624i
\(216\) −10.3923 + 10.3923i −0.707107 + 0.707107i
\(217\) 1.50000 + 2.59808i 0.101827 + 0.176369i
\(218\) 6.00000 + 6.00000i 0.406371 + 0.406371i
\(219\) 14.7846i 0.999051i
\(220\) 2.53590 + 1.46410i 0.170970 + 0.0987097i
\(221\) 0.401924 + 1.62436i 0.0270363 + 0.109266i
\(222\) 10.0981 2.70577i 0.677738 0.181599i
\(223\) 5.32051i 0.356288i 0.984004 + 0.178144i \(0.0570092\pi\)
−0.984004 + 0.178144i \(0.942991\pi\)
\(224\) −2.53590 9.46410i −0.169437 0.632347i
\(225\) 7.39230 + 12.8038i 0.492820 + 0.853590i
\(226\) 13.8564 + 13.8564i 0.921714 + 0.921714i
\(227\) −6.59808 + 11.4282i −0.437930 + 0.758516i −0.997530 0.0702464i \(-0.977621\pi\)
0.559600 + 0.828763i \(0.310955\pi\)
\(228\) −15.5885 + 9.00000i −1.03237 + 0.596040i
\(229\) −0.401924 + 0.696152i −0.0265599 + 0.0460030i −0.879000 0.476822i \(-0.841789\pi\)
0.852440 + 0.522825i \(0.175122\pi\)
\(230\) 1.73205 + 1.73205i 0.114208 + 0.114208i
\(231\) −14.1962 8.19615i −0.934038 0.539267i
\(232\) 0 0
\(233\) 7.85641 0.514690 0.257345 0.966320i \(-0.417152\pi\)
0.257345 + 0.966320i \(0.417152\pi\)
\(234\) 7.39230 + 13.3923i 0.483250 + 0.875482i
\(235\) 2.21539i 0.144516i
\(236\) 14.9282i 0.971743i
\(237\) −13.7942 23.8923i −0.896031 1.55197i
\(238\) −0.803848 + 0.803848i −0.0521057 + 0.0521057i
\(239\) −2.42820 1.40192i −0.157067 0.0906829i 0.419406 0.907799i \(-0.362238\pi\)
−0.576474 + 0.817116i \(0.695572\pi\)
\(240\) 0.928203 1.60770i 0.0599153 0.103776i
\(241\) 1.50000 + 0.866025i 0.0966235 + 0.0557856i 0.547533 0.836784i \(-0.315567\pi\)
−0.450910 + 0.892570i \(0.648900\pi\)
\(242\) 18.8564 + 18.8564i 1.21214 + 1.21214i
\(243\) 15.5885 1.00000
\(244\) 11.3923 19.7321i 0.729318 1.26322i
\(245\) 1.07180 0.0684746
\(246\) 13.5622 + 3.63397i 0.864693 + 0.231694i
\(247\) 4.50000 + 18.1865i 0.286328 + 1.15718i
\(248\) −4.73205 + 1.26795i −0.300486 + 0.0805149i
\(249\) 12.2321 + 21.1865i 0.775175 + 1.34264i
\(250\) −2.66025 2.66025i −0.168249 0.168249i
\(251\) −19.7942 + 11.4282i −1.24940 + 0.721342i −0.970990 0.239120i \(-0.923141\pi\)
−0.278411 + 0.960462i \(0.589808\pi\)
\(252\) −5.19615 + 9.00000i −0.327327 + 0.566947i
\(253\) 17.6603 + 30.5885i 1.11029 + 1.92308i
\(254\) 19.5622 5.24167i 1.22744 0.328892i
\(255\) −0.215390 −0.0134883
\(256\) 16.0000 1.00000
\(257\) −3.23205 5.59808i −0.201610 0.349198i 0.747437 0.664332i \(-0.231284\pi\)
−0.949047 + 0.315134i \(0.897951\pi\)
\(258\) −4.09808 15.2942i −0.255135 0.952177i
\(259\) 6.40192 3.69615i 0.397796 0.229668i
\(260\) −1.33975 1.39230i −0.0830875 0.0863471i
\(261\) 0 0
\(262\) −4.56218 17.0263i −0.281852 1.05189i
\(263\) −3.46410 −0.213606 −0.106803 0.994280i \(-0.534061\pi\)
−0.106803 + 0.994280i \(0.534061\pi\)
\(264\) 18.9282 18.9282i 1.16495 1.16495i
\(265\) 0 0
\(266\) −9.00000 + 9.00000i −0.551825 + 0.551825i
\(267\) 0.990381 + 0.571797i 0.0606103 + 0.0349934i
\(268\) −13.3923 + 7.73205i −0.818065 + 0.472310i
\(269\) 11.5981 6.69615i 0.707147 0.408272i −0.102857 0.994696i \(-0.532798\pi\)
0.810004 + 0.586425i \(0.199465\pi\)
\(270\) −1.90192 + 0.509619i −0.115747 + 0.0310144i
\(271\) −14.0885 8.13397i −0.855813 0.494104i 0.00679505 0.999977i \(-0.497837\pi\)
−0.862608 + 0.505873i \(0.831170\pi\)
\(272\) −0.928203 1.60770i −0.0562806 0.0974808i
\(273\) 7.50000 + 7.79423i 0.453921 + 0.471728i
\(274\) −1.02628 3.83013i −0.0619998 0.231386i
\(275\) −13.4641 23.3205i −0.811916 1.40628i
\(276\) 19.3923 11.1962i 1.16728 0.673929i
\(277\) −24.1865 13.9641i −1.45323 0.839022i −0.454565 0.890714i \(-0.650205\pi\)
−0.998663 + 0.0516921i \(0.983539\pi\)
\(278\) −7.85641 + 7.85641i −0.471196 + 0.471196i
\(279\) 4.50000 + 2.59808i 0.269408 + 0.155543i
\(280\) 0.339746 1.26795i 0.0203037 0.0757745i
\(281\) −18.2321 + 10.5263i −1.08763 + 0.627945i −0.932945 0.360018i \(-0.882770\pi\)
−0.154688 + 0.987963i \(0.549437\pi\)
\(282\) 19.5622 + 5.24167i 1.16491 + 0.312137i
\(283\) 27.5263 15.8923i 1.63627 0.944699i 0.654165 0.756352i \(-0.273020\pi\)
0.982102 0.188348i \(-0.0603132\pi\)
\(284\) 13.1962 + 22.8564i 0.783048 + 1.35628i
\(285\) −2.41154 −0.142847
\(286\) −13.4641 24.3923i −0.796149 1.44235i
\(287\) 9.92820 0.586043
\(288\) −12.0000 12.0000i −0.707107 0.707107i
\(289\) 8.39230 14.5359i 0.493665 0.855053i
\(290\) 0 0
\(291\) −3.99038 2.30385i −0.233920 0.135054i
\(292\) −17.0718 −0.999051
\(293\) 4.92820 0.287909 0.143954 0.989584i \(-0.454018\pi\)
0.143954 + 0.989584i \(0.454018\pi\)
\(294\) 2.53590 9.46410i 0.147897 0.551958i
\(295\) 1.00000 1.73205i 0.0582223 0.100844i
\(296\) 3.12436 + 11.6603i 0.181599 + 0.677738i
\(297\) −28.3923 −1.64749
\(298\) −15.8564 15.8564i −0.918537 0.918537i
\(299\) −5.59808 22.6244i −0.323745 1.30840i
\(300\) −14.7846 + 8.53590i −0.853590 + 0.492820i
\(301\) −5.59808 9.69615i −0.322668 0.558877i
\(302\) −1.09808 0.294229i −0.0631872 0.0169310i
\(303\) 16.3923i 0.941713i
\(304\) −10.3923 18.0000i −0.596040 1.03237i
\(305\) 2.64359 1.52628i 0.151372 0.0873945i
\(306\) −0.509619 + 1.90192i −0.0291330 + 0.108726i
\(307\) 5.07180 0.289463 0.144731 0.989471i \(-0.453768\pi\)
0.144731 + 0.989471i \(0.453768\pi\)
\(308\) 9.46410 16.3923i 0.539267 0.934038i
\(309\) −4.66987 + 8.08846i −0.265660 + 0.460136i
\(310\) −0.633975 0.169873i −0.0360073 0.00964814i
\(311\) −4.96410 + 8.59808i −0.281488 + 0.487552i −0.971752 0.236006i \(-0.924161\pi\)
0.690263 + 0.723558i \(0.257495\pi\)
\(312\) −15.4641 + 8.53590i −0.875482 + 0.483250i
\(313\) 6.69615 + 11.5981i 0.378489 + 0.655562i 0.990843 0.135022i \(-0.0431105\pi\)
−0.612354 + 0.790584i \(0.709777\pi\)
\(314\) 3.29423 + 12.2942i 0.185904 + 0.693803i
\(315\) −1.20577 + 0.696152i −0.0679375 + 0.0392237i
\(316\) 27.5885 15.9282i 1.55197 0.896031i
\(317\) 2.52628 + 4.37564i 0.141890 + 0.245761i 0.928208 0.372061i \(-0.121349\pi\)
−0.786318 + 0.617822i \(0.788015\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 1.85641 + 1.07180i 0.103776 + 0.0599153i
\(321\) −27.6962 15.9904i −1.54585 0.892496i
\(322\) 11.1962 11.1962i 0.623937 0.623937i
\(323\) −1.20577 + 2.08846i −0.0670909 + 0.116205i
\(324\) 18.0000i 1.00000i
\(325\) 4.26795 + 17.2487i 0.236743 + 0.956786i
\(326\) 8.49038 31.6865i 0.470239 1.75495i
\(327\) 10.3923 0.574696
\(328\) −4.19615 + 15.6603i −0.231694 + 0.864693i
\(329\) 14.3205 0.789515
\(330\) 3.46410 0.928203i 0.190693 0.0510959i
\(331\) −8.25833 + 14.3038i −0.453919 + 0.786211i −0.998625 0.0524162i \(-0.983308\pi\)
0.544706 + 0.838627i \(0.316641\pi\)
\(332\) −24.4641 + 14.1244i −1.34264 + 0.775175i
\(333\) 6.40192 11.0885i 0.350823 0.607644i
\(334\) −0.366025 0.0980762i −0.0200280 0.00536649i
\(335\) −2.07180 −0.113194
\(336\) −10.3923 6.00000i −0.566947 0.327327i
\(337\) −4.96410 + 8.59808i −0.270412 + 0.468367i −0.968967 0.247189i \(-0.920493\pi\)
0.698555 + 0.715556i \(0.253827\pi\)
\(338\) 4.07180 + 17.9282i 0.221477 + 0.975166i
\(339\) 24.0000 1.30350
\(340\) 0.248711i 0.0134883i
\(341\) −8.19615 4.73205i −0.443847 0.256255i
\(342\) −5.70577 + 21.2942i −0.308533 + 1.15146i
\(343\) 19.0526i 1.02874i
\(344\) 17.6603 4.73205i 0.952177 0.255135i
\(345\) 3.00000 0.161515
\(346\) 8.36603 + 31.2224i 0.449760 + 1.67853i
\(347\) 7.85641i 0.421754i 0.977513 + 0.210877i \(0.0676320\pi\)
−0.977513 + 0.210877i \(0.932368\pi\)
\(348\) 0 0
\(349\) 14.7846 0.791402 0.395701 0.918379i \(-0.370502\pi\)
0.395701 + 0.918379i \(0.370502\pi\)
\(350\) −8.53590 + 8.53590i −0.456263 + 0.456263i
\(351\) 18.0000 + 5.19615i 0.960769 + 0.277350i
\(352\) 21.8564 + 21.8564i 1.16495 + 1.16495i
\(353\) 2.00000i 0.106449i 0.998583 + 0.0532246i \(0.0169499\pi\)
−0.998583 + 0.0532246i \(0.983050\pi\)
\(354\) −12.9282 12.9282i −0.687126 0.687126i
\(355\) 3.53590i 0.187666i
\(356\) −0.660254 + 1.14359i −0.0349934 + 0.0606103i
\(357\) 1.39230i 0.0736886i
\(358\) 0.758330 + 2.83013i 0.0400790 + 0.149577i
\(359\) 13.0718i 0.689903i 0.938621 + 0.344952i \(0.112105\pi\)
−0.938621 + 0.344952i \(0.887895\pi\)
\(360\) −0.588457 2.19615i −0.0310144 0.115747i
\(361\) −4.00000 + 6.92820i −0.210526 + 0.364642i
\(362\) −14.5359 + 14.5359i −0.763990 + 0.763990i
\(363\) 32.6603 1.71422
\(364\) −9.00000 + 8.66025i −0.471728 + 0.453921i
\(365\) −1.98076 1.14359i −0.103678 0.0598584i
\(366\) −7.22243 26.9545i −0.377523 1.40893i
\(367\) 5.60770 0.292719 0.146360 0.989231i \(-0.453244\pi\)
0.146360 + 0.989231i \(0.453244\pi\)
\(368\) 12.9282 + 22.3923i 0.673929 + 1.16728i
\(369\) 14.8923 8.59808i 0.775262 0.447598i
\(370\) −0.418584 + 1.56218i −0.0217612 + 0.0812138i
\(371\) 0 0
\(372\) −3.00000 + 5.19615i −0.155543 + 0.269408i
\(373\) 12.3923i 0.641649i 0.947139 + 0.320825i \(0.103960\pi\)
−0.947139 + 0.320825i \(0.896040\pi\)
\(374\) 0.928203 3.46410i 0.0479962 0.179124i
\(375\) −4.60770 −0.237940
\(376\) −6.05256 + 22.5885i −0.312137 + 1.16491i
\(377\) 0 0
\(378\) 3.29423 + 12.2942i 0.169437 + 0.632347i
\(379\) 16.3301 28.2846i 0.838822 1.45288i −0.0520577 0.998644i \(-0.516578\pi\)
0.890880 0.454239i \(-0.150089\pi\)
\(380\) 2.78461i 0.142847i
\(381\) 12.4019 21.4808i 0.635370 1.10049i
\(382\) −25.2224 + 6.75833i −1.29049 + 0.345786i
\(383\) 38.2487i 1.95442i 0.212280 + 0.977209i \(0.431911\pi\)
−0.212280 + 0.977209i \(0.568089\pi\)
\(384\) 13.8564 13.8564i 0.707107 0.707107i
\(385\) 2.19615 1.26795i 0.111926 0.0646207i
\(386\) 5.83013 + 1.56218i 0.296746 + 0.0795128i
\(387\) −16.7942 9.69615i −0.853699 0.492883i
\(388\) 2.66025 4.60770i 0.135054 0.233920i
\(389\) −7.20577 + 4.16025i −0.365347 + 0.210933i −0.671424 0.741074i \(-0.734317\pi\)
0.306077 + 0.952007i \(0.400984\pi\)
\(390\) −2.36603 0.0455173i −0.119808 0.00230486i
\(391\) 1.50000 2.59808i 0.0758583 0.131390i
\(392\) 10.9282 + 2.92820i 0.551958 + 0.147897i
\(393\) −18.6962 10.7942i −0.943096 0.544497i
\(394\) 21.4904 5.75833i 1.08267 0.290100i
\(395\) 4.26795 0.214744
\(396\) 32.7846i 1.64749i
\(397\) 9.86603 + 17.0885i 0.495162 + 0.857645i 0.999984 0.00557790i \(-0.00177551\pi\)
−0.504823 + 0.863223i \(0.668442\pi\)
\(398\) 2.70577 10.0981i 0.135628 0.506171i
\(399\) 15.5885i 0.780399i
\(400\) −9.85641 17.0718i −0.492820 0.853590i
\(401\) −25.6244 + 14.7942i −1.27962 + 0.738789i −0.976778 0.214253i \(-0.931268\pi\)
−0.302841 + 0.953041i \(0.597935\pi\)
\(402\) −4.90192 + 18.2942i −0.244486 + 0.912433i
\(403\) 4.33013 + 4.50000i 0.215699 + 0.224161i
\(404\) 18.9282 0.941713
\(405\) −1.20577 + 2.08846i −0.0599153 + 0.103776i
\(406\) 0 0
\(407\) −11.6603 + 20.1962i −0.577977 + 1.00109i
\(408\) −2.19615 0.588457i −0.108726 0.0291330i
\(409\) 17.0718i 0.844146i −0.906562 0.422073i \(-0.861303\pi\)
0.906562 0.422073i \(-0.138697\pi\)
\(410\) −1.53590 + 1.53590i −0.0758526 + 0.0758526i
\(411\) −4.20577 2.42820i −0.207455 0.119774i
\(412\) −9.33975 5.39230i −0.460136 0.265660i
\(413\) −11.1962 6.46410i −0.550927 0.318078i
\(414\) 7.09808 26.4904i 0.348851 1.30193i
\(415\) −3.78461 −0.185779
\(416\) −9.85641 17.8564i −0.483250 0.875482i
\(417\) 13.6077i 0.666372i
\(418\) 10.3923 38.7846i 0.508304 1.89702i
\(419\) −9.18653 + 5.30385i −0.448792 + 0.259110i −0.707320 0.706894i \(-0.750096\pi\)
0.258528 + 0.966004i \(0.416763\pi\)
\(420\) −0.803848 1.39230i −0.0392237 0.0679375i
\(421\) 0.866025 + 1.50000i 0.0422075 + 0.0731055i 0.886357 0.463002i \(-0.153228\pi\)
−0.844150 + 0.536107i \(0.819894\pi\)
\(422\) −12.8301 3.43782i −0.624561 0.167351i
\(423\) 21.4808 12.4019i 1.04443 0.603002i
\(424\) 0 0
\(425\) −1.14359 + 1.98076i −0.0554724 + 0.0960811i
\(426\) 31.2224 + 8.36603i 1.51273 + 0.405335i
\(427\) −9.86603 17.0885i −0.477450 0.826968i
\(428\) 18.4641 31.9808i 0.892496 1.54585i
\(429\) −32.7846 9.46410i −1.58286 0.456931i
\(430\) 2.36603 + 0.633975i 0.114100 + 0.0305730i
\(431\) 14.5526 + 8.40192i 0.700972 + 0.404706i 0.807709 0.589581i \(-0.200707\pi\)
−0.106737 + 0.994287i \(0.534040\pi\)
\(432\) −20.7846 −1.00000
\(433\) 4.16025 + 7.20577i 0.199929 + 0.346287i 0.948505 0.316762i \(-0.102595\pi\)
−0.748576 + 0.663049i \(0.769262\pi\)
\(434\) −1.09808 + 4.09808i −0.0527093 + 0.196714i
\(435\) 0 0
\(436\) 12.0000i 0.574696i
\(437\) 16.7942 29.0885i 0.803377 1.39149i
\(438\) −14.7846 + 14.7846i −0.706436 + 0.706436i
\(439\) −38.3923 −1.83236 −0.916182 0.400762i \(-0.868746\pi\)
−0.916182 + 0.400762i \(0.868746\pi\)
\(440\) 1.07180 + 4.00000i 0.0510959 + 0.190693i
\(441\) −6.00000 10.3923i −0.285714 0.494872i
\(442\) −1.22243 + 2.02628i −0.0581452 + 0.0963803i
\(443\) −36.1865 + 20.8923i −1.71927 + 0.992623i −0.799018 + 0.601308i \(0.794647\pi\)
−0.920256 + 0.391316i \(0.872020\pi\)
\(444\) 12.8038 + 7.39230i 0.607644 + 0.350823i
\(445\) −0.153212 + 0.0884573i −0.00726297 + 0.00419328i
\(446\) −5.32051 + 5.32051i −0.251933 + 0.251933i
\(447\) −27.4641 −1.29901
\(448\) 6.92820 12.0000i 0.327327 0.566947i
\(449\) −7.83975 + 4.52628i −0.369980 + 0.213608i −0.673450 0.739233i \(-0.735188\pi\)
0.303469 + 0.952841i \(0.401855\pi\)
\(450\) −5.41154 + 20.1962i −0.255103 + 0.952056i
\(451\) −27.1244 + 15.6603i −1.27724 + 0.737413i
\(452\) 27.7128i 1.30350i
\(453\) −1.20577 + 0.696152i −0.0566521 + 0.0327081i
\(454\) −18.0263 + 4.83013i −0.846015 + 0.226689i
\(455\) −1.62436 + 0.401924i −0.0761510 + 0.0188425i
\(456\) −24.5885 6.58846i −1.15146 0.308533i
\(457\) 32.5359i 1.52197i 0.648772 + 0.760983i \(0.275283\pi\)
−0.648772 + 0.760983i \(0.724717\pi\)
\(458\) −1.09808 + 0.294229i −0.0513097 + 0.0137484i
\(459\) 1.20577 + 2.08846i 0.0562806 + 0.0974808i
\(460\) 3.46410i 0.161515i
\(461\) 0.205771 0.356406i 0.00958373 0.0165995i −0.861194 0.508277i \(-0.830283\pi\)
0.870777 + 0.491677i \(0.163616\pi\)
\(462\) −6.00000 22.3923i −0.279145 1.04178i
\(463\) −25.5000 14.7224i −1.18509 0.684209i −0.227900 0.973685i \(-0.573186\pi\)
−0.957186 + 0.289475i \(0.906519\pi\)
\(464\) 0 0
\(465\) −0.696152 + 0.401924i −0.0322833 + 0.0186388i
\(466\) 7.85641 + 7.85641i 0.363941 + 0.363941i
\(467\) 20.5359i 0.950288i −0.879908 0.475144i \(-0.842396\pi\)
0.879908 0.475144i \(-0.157604\pi\)
\(468\) −6.00000 + 20.7846i −0.277350 + 0.960769i
\(469\) 13.3923i 0.618399i
\(470\) −2.21539 + 2.21539i −0.102188 + 0.102188i
\(471\) 13.5000 + 7.79423i 0.622047 + 0.359139i
\(472\) 14.9282 14.9282i 0.687126 0.687126i
\(473\) 30.5885 + 17.6603i 1.40646 + 0.812019i
\(474\) 10.0981 37.6865i 0.463820 1.73100i
\(475\) −12.8038 + 22.1769i −0.587481 + 1.01755i
\(476\) −1.60770 −0.0736886
\(477\) 0 0
\(478\) −1.02628 3.83013i −0.0469409 0.175186i
\(479\) 39.3205i 1.79660i 0.439383 + 0.898300i \(0.355197\pi\)
−0.439383 + 0.898300i \(0.644803\pi\)
\(480\) 2.53590 0.679492i 0.115747 0.0310144i
\(481\) 11.0885 10.6699i 0.505590 0.486504i
\(482\) 0.633975 + 2.36603i 0.0288768 + 0.107770i
\(483\) 19.3923i 0.882380i
\(484\) 37.7128i 1.71422i
\(485\) 0.617314 0.356406i 0.0280308 0.0161836i
\(486\) 15.5885 + 15.5885i 0.707107 + 0.707107i
\(487\) −36.4808 + 21.0622i −1.65310 + 0.954418i −0.677315 + 0.735694i \(0.736856\pi\)
−0.975787 + 0.218725i \(0.929810\pi\)
\(488\) 31.1244 8.33975i 1.40893 0.377523i
\(489\) −20.0885 34.7942i −0.908431 1.57345i
\(490\) 1.07180 + 1.07180i 0.0484188 + 0.0484188i
\(491\) −8.59808 + 4.96410i −0.388026 + 0.224027i −0.681304 0.732000i \(-0.738587\pi\)
0.293279 + 0.956027i \(0.405254\pi\)
\(492\) 9.92820 + 17.1962i 0.447598 + 0.775262i
\(493\) 0 0
\(494\) −13.6865 + 22.6865i −0.615786 + 1.02072i
\(495\) 2.19615 3.80385i 0.0987097 0.170970i
\(496\) −6.00000 3.46410i −0.269408 0.155543i
\(497\) 22.8564 1.02525
\(498\) −8.95448 + 33.4186i −0.401260 + 1.49752i
\(499\) −1.79423 + 3.10770i −0.0803207 + 0.139120i −0.903388 0.428825i \(-0.858928\pi\)
0.823067 + 0.567944i \(0.192261\pi\)
\(500\) 5.32051i 0.237940i
\(501\) −0.401924 + 0.232051i −0.0179566 + 0.0103673i
\(502\) −31.2224 8.36603i −1.39353 0.373394i
\(503\) −13.1603 22.7942i −0.586787 1.01634i −0.994650 0.103301i \(-0.967059\pi\)
0.407863 0.913043i \(-0.366274\pi\)
\(504\) −14.1962 + 3.80385i −0.632347 + 0.169437i
\(505\) 2.19615 + 1.26795i 0.0977275 + 0.0564230i
\(506\) −12.9282 + 48.2487i −0.574729 + 2.14492i
\(507\) 19.0526 + 12.0000i 0.846154 + 0.532939i
\(508\) 24.8038 + 14.3205i 1.10049 + 0.635370i
\(509\) 10.0622 + 17.4282i 0.445998 + 0.772492i 0.998121 0.0612712i \(-0.0195154\pi\)
−0.552123 + 0.833763i \(0.686182\pi\)
\(510\) −0.215390 0.215390i −0.00953764 0.00953764i
\(511\) −7.39230 + 12.8038i −0.327016 + 0.566409i
\(512\) 16.0000 + 16.0000i 0.707107 + 0.707107i
\(513\) 13.5000 + 23.3827i 0.596040 + 1.03237i
\(514\) 2.36603 8.83013i 0.104361 0.389480i
\(515\) −0.722432 1.25129i −0.0318342 0.0551384i
\(516\) 11.1962 19.3923i 0.492883 0.853699i
\(517\) −39.1244 + 22.5885i −1.72069 + 0.993439i
\(518\) 10.0981 + 2.70577i 0.443684 + 0.118885i
\(519\) 34.2846 + 19.7942i 1.50493 + 0.868870i
\(520\) 0.0525589 2.73205i 0.00230486 0.119808i
\(521\) −18.2487 −0.799491 −0.399745 0.916626i \(-0.630901\pi\)
−0.399745 + 0.916626i \(0.630901\pi\)
\(522\) 0 0
\(523\) 14.3827 + 8.30385i 0.628911 + 0.363102i 0.780330 0.625368i \(-0.215051\pi\)
−0.151419 + 0.988470i \(0.548384\pi\)
\(524\) 12.4641 21.5885i 0.544497 0.943096i
\(525\) 14.7846i 0.645253i
\(526\) −3.46410 3.46410i −0.151042 0.151042i
\(527\) 0.803848i 0.0350162i
\(528\) 37.8564 1.64749
\(529\) −9.39230 + 16.2679i −0.408361 + 0.707302i
\(530\) 0 0
\(531\) −22.3923 −0.971743
\(532\) −18.0000 −0.780399
\(533\) 20.0622 4.96410i 0.868989 0.215019i
\(534\) 0.418584 + 1.56218i 0.0181139 + 0.0676020i
\(535\) 4.28461 2.47372i 0.185240 0.106948i
\(536\) −21.1244 5.66025i −0.912433 0.244486i
\(537\) 3.10770 + 1.79423i 0.134107 + 0.0774267i
\(538\) 18.2942 + 4.90192i 0.788720 + 0.211337i
\(539\) 10.9282 + 18.9282i 0.470711 + 0.815295i
\(540\) −2.41154 1.39230i −0.103776 0.0599153i
\(541\) −37.8564 −1.62757 −0.813787 0.581163i \(-0.802598\pi\)
−0.813787 + 0.581163i \(0.802598\pi\)
\(542\) −5.95448 22.2224i −0.255767 0.954535i
\(543\) 25.1769i 1.08044i
\(544\) 0.679492 2.53590i 0.0291330 0.108726i
\(545\) −0.803848 + 1.39230i −0.0344330 + 0.0596398i
\(546\) −0.294229 + 15.2942i −0.0125918 + 0.654533i
\(547\) −17.5981 + 10.1603i −0.752439 + 0.434421i −0.826575 0.562827i \(-0.809714\pi\)
0.0741352 + 0.997248i \(0.476380\pi\)
\(548\) 2.80385 4.85641i 0.119774 0.207455i
\(549\) −29.5981 17.0885i −1.26322 0.729318i
\(550\) 9.85641 36.7846i 0.420279 1.56850i
\(551\) 0 0
\(552\) 30.5885 + 8.19615i 1.30193 + 0.348851i
\(553\) 27.5885i 1.17318i
\(554\) −10.2224 38.1506i −0.434310 1.62087i
\(555\) 0.990381 + 1.71539i 0.0420393 + 0.0728143i
\(556\) −15.7128 −0.666372
\(557\) −13.1340 + 22.7487i −0.556504 + 0.963894i 0.441280 + 0.897369i \(0.354524\pi\)
−0.997785 + 0.0665246i \(0.978809\pi\)
\(558\) 1.90192 + 7.09808i 0.0805149 + 0.300486i
\(559\) −16.1603 16.7942i −0.683506 0.710320i
\(560\) 1.60770 0.928203i 0.0679375 0.0392237i
\(561\) −2.19615 3.80385i −0.0927216 0.160599i
\(562\) −28.7583 7.70577i −1.21310 0.325048i
\(563\) 12.9282i 0.544859i −0.962176 0.272429i \(-0.912173\pi\)
0.962176 0.272429i \(-0.0878271\pi\)
\(564\) 14.3205 + 24.8038i 0.603002 + 1.04443i
\(565\) −1.85641 + 3.21539i −0.0780996 + 0.135272i
\(566\) 43.4186 + 11.6340i 1.82502 + 0.489012i
\(567\) 13.5000 + 7.79423i 0.566947 + 0.327327i
\(568\) −9.66025 + 36.0526i −0.405335 + 1.51273i
\(569\) −42.9282 −1.79964 −0.899822 0.436257i \(-0.856304\pi\)
−0.899822 + 0.436257i \(0.856304\pi\)
\(570\) −2.41154 2.41154i −0.101008 0.101008i
\(571\) 15.0622 + 8.69615i 0.630333 + 0.363923i 0.780881 0.624680i \(-0.214771\pi\)
−0.150548 + 0.988603i \(0.548104\pi\)
\(572\) 10.9282 37.8564i 0.456931 1.58286i
\(573\) −15.9904 + 27.6962i −0.668008 + 1.15702i
\(574\) 9.92820 + 9.92820i 0.414395 + 0.414395i
\(575\) 15.9282 27.5885i 0.664252 1.15052i
\(576\) 24.0000i 1.00000i
\(577\) 6.00000i 0.249783i 0.992170 + 0.124892i \(0.0398583\pi\)
−0.992170 + 0.124892i \(0.960142\pi\)
\(578\) 22.9282 6.14359i 0.953688 0.255540i
\(579\) 6.40192 3.69615i 0.266055 0.153607i
\(580\) 0 0
\(581\) 24.4641i 1.01494i
\(582\) −1.68653 6.29423i −0.0699091 0.260904i
\(583\) 0 0
\(584\) −17.0718 17.0718i −0.706436 0.706436i
\(585\) −2.08846 + 2.00962i −0.0863471 + 0.0830875i
\(586\) 4.92820 + 4.92820i 0.203582 + 0.203582i
\(587\) −11.6077 −0.479101 −0.239550 0.970884i \(-0.577000\pi\)
−0.239550 + 0.970884i \(0.577000\pi\)
\(588\) 12.0000 6.92820i 0.494872 0.285714i
\(589\) 9.00000i 0.370839i
\(590\) 2.73205 0.732051i 0.112477 0.0301381i
\(591\) 13.6244 23.5981i 0.560431 0.970695i
\(592\) −8.53590 + 14.7846i −0.350823 + 0.607644i
\(593\) 16.2487i 0.667255i −0.942705 0.333627i \(-0.891727\pi\)
0.942705 0.333627i \(-0.108273\pi\)
\(594\) −28.3923 28.3923i −1.16495 1.16495i
\(595\) −0.186533 0.107695i −0.00764713 0.00441507i
\(596\) 31.7128i 1.29901i
\(597\) −6.40192 11.0885i −0.262013 0.453820i
\(598\) 17.0263 28.2224i 0.696256 1.15410i
\(599\) 2.76795 4.79423i 0.113095 0.195887i −0.803921 0.594736i \(-0.797257\pi\)
0.917017 + 0.398849i \(0.130590\pi\)
\(600\) −23.3205 6.24871i −0.952056 0.255103i
\(601\) −11.3205 −0.461773 −0.230887 0.972981i \(-0.574163\pi\)
−0.230887 + 0.972981i \(0.574163\pi\)
\(602\) 4.09808 15.2942i 0.167025 0.623346i
\(603\) 11.5981 + 20.0885i 0.472310 + 0.818065i
\(604\) −0.803848 1.39230i −0.0327081 0.0566521i
\(605\) −2.52628 + 4.37564i −0.102708 + 0.177895i
\(606\) 16.3923 16.3923i 0.665892 0.665892i
\(607\) 18.3923 0.746521 0.373260 0.927727i \(-0.378240\pi\)
0.373260 + 0.927727i \(0.378240\pi\)
\(608\) 7.60770 28.3923i 0.308533 1.15146i
\(609\) 0 0
\(610\) 4.16987 + 1.11731i 0.168833 + 0.0452387i
\(611\) 28.9378 7.16025i 1.17070 0.289673i
\(612\) −2.41154 + 1.39230i −0.0974808 + 0.0562806i
\(613\) 9.52628 16.5000i 0.384763 0.666429i −0.606973 0.794722i \(-0.707617\pi\)
0.991736 + 0.128293i \(0.0409499\pi\)
\(614\) 5.07180 + 5.07180i 0.204681 + 0.204681i
\(615\) 2.66025i 0.107272i
\(616\) 25.8564 6.92820i 1.04178 0.279145i
\(617\) 5.60770i 0.225757i 0.993609 + 0.112879i \(0.0360071\pi\)
−0.993609 + 0.112879i \(0.963993\pi\)
\(618\) −12.7583 + 3.41858i −0.513215 + 0.137516i
\(619\) 2.93782 + 5.08846i 0.118081 + 0.204522i 0.919007 0.394241i \(-0.128992\pi\)
−0.800926 + 0.598763i \(0.795659\pi\)
\(620\) −0.464102 0.803848i −0.0186388 0.0322833i
\(621\) −16.7942 29.0885i −0.673929 1.16728i
\(622\) −13.5622 + 3.63397i −0.543794 + 0.145709i
\(623\) 0.571797 + 0.990381i 0.0229086 + 0.0396788i
\(624\) −24.0000 6.92820i −0.960769 0.277350i
\(625\) −11.9641 + 20.7224i −0.478564 + 0.828897i
\(626\) −4.90192 + 18.2942i −0.195920 + 0.731184i
\(627\) −24.5885 42.5885i −0.981968 1.70082i
\(628\) −9.00000 + 15.5885i −0.359139 + 0.622047i
\(629\) 1.98076 0.0789782
\(630\) −1.90192 0.509619i −0.0757745 0.0203037i
\(631\) 2.89230 1.66987i 0.115141 0.0664766i −0.441324 0.897348i \(-0.645491\pi\)
0.556464 + 0.830871i \(0.312158\pi\)
\(632\) 43.5167 + 11.6603i 1.73100 + 0.463820i
\(633\) −14.0885 + 8.13397i −0.559966 + 0.323296i
\(634\) −1.84936 + 6.90192i −0.0734477 + 0.274110i
\(635\) 1.91858 + 3.32309i 0.0761367 + 0.131873i
\(636\) 0 0
\(637\) −3.46410 14.0000i −0.137253 0.554700i
\(638\) 0 0
\(639\) 34.2846 19.7942i 1.35628 0.783048i
\(640\) 0.784610 + 2.92820i 0.0310144 + 0.115747i
\(641\) 18.3564 31.7942i 0.725034 1.25580i −0.233925 0.972255i \(-0.575157\pi\)
0.958960 0.283542i \(-0.0915095\pi\)
\(642\) −11.7058 43.6865i −0.461990 1.72417i
\(643\) −3.46410 −0.136611 −0.0683054 0.997664i \(-0.521759\pi\)
−0.0683054 + 0.997664i \(0.521759\pi\)
\(644\) 22.3923 0.882380
\(645\) 2.59808 1.50000i 0.102299 0.0590624i
\(646\) −3.29423 + 0.882686i −0.129610 + 0.0347288i
\(647\) 10.0359 17.3827i 0.394552 0.683384i −0.598492 0.801129i \(-0.704233\pi\)
0.993044 + 0.117745i \(0.0375665\pi\)
\(648\) −18.0000 + 18.0000i −0.707107 + 0.707107i
\(649\) 40.7846 1.60094
\(650\) −12.9808 + 21.5167i −0.509147 + 0.843953i
\(651\) 2.59808 + 4.50000i 0.101827 + 0.176369i
\(652\) 40.1769 23.1962i 1.57345 0.908431i
\(653\) 9.40192 5.42820i 0.367926 0.212422i −0.304626 0.952472i \(-0.598532\pi\)
0.672552 + 0.740050i \(0.265198\pi\)
\(654\) 10.3923 + 10.3923i 0.406371 + 0.406371i
\(655\) 2.89230 1.66987i 0.113012 0.0652473i
\(656\) −19.8564 + 11.4641i −0.775262 + 0.447598i
\(657\) 25.6077i 0.999051i
\(658\) 14.3205 + 14.3205i 0.558272 + 0.558272i
\(659\) 4.79423 + 2.76795i 0.186757 + 0.107824i 0.590463 0.807064i \(-0.298945\pi\)
−0.403707 + 0.914888i \(0.632278\pi\)
\(660\) 4.39230 + 2.53590i 0.170970 + 0.0987097i
\(661\) 1.33013 + 2.30385i 0.0517359 + 0.0896093i 0.890734 0.454526i \(-0.150191\pi\)
−0.838998 + 0.544135i \(0.816858\pi\)
\(662\) −22.5622 + 6.04552i −0.876904 + 0.234966i
\(663\) 0.696152 + 2.81347i 0.0270363 + 0.109266i
\(664\) −38.5885 10.3397i −1.49752 0.401260i
\(665\) −2.08846 1.20577i −0.0809869 0.0467578i
\(666\) 17.4904 4.68653i 0.677738 0.181599i
\(667\) 0 0
\(668\) −0.267949 0.464102i −0.0103673 0.0179566i
\(669\) 9.21539i 0.356288i
\(670\) −2.07180 2.07180i −0.0800405 0.0800405i
\(671\) 53.9090 + 31.1244i 2.08113 + 1.20154i
\(672\) −4.39230 16.3923i −0.169437 0.632347i
\(673\) −12.3923 −0.477688 −0.238844 0.971058i \(-0.576768\pi\)
−0.238844 + 0.971058i \(0.576768\pi\)
\(674\) −13.5622 + 3.63397i −0.522396 + 0.139975i
\(675\) 12.8038 + 22.1769i 0.492820 + 0.853590i
\(676\) −13.8564 + 22.0000i −0.532939 + 0.846154i
\(677\) 26.3827 15.2321i 1.01397 0.585415i 0.101618 0.994824i \(-0.467598\pi\)
0.912351 + 0.409408i \(0.134265\pi\)
\(678\) 24.0000 + 24.0000i 0.921714 + 0.921714i
\(679\) −2.30385 3.99038i −0.0884136 0.153137i
\(680\) 0.248711 0.248711i 0.00953764 0.00953764i
\(681\) −11.4282 + 19.7942i −0.437930 + 0.758516i
\(682\) −3.46410 12.9282i −0.132647 0.495046i
\(683\) 15.4545 + 26.7679i 0.591349 + 1.02425i 0.994051 + 0.108916i \(0.0347379\pi\)
−0.402702 + 0.915331i \(0.631929\pi\)
\(684\) −27.0000 + 15.5885i −1.03237 + 0.596040i
\(685\) 0.650635 0.375644i 0.0248595 0.0143526i
\(686\) 19.0526 19.0526i 0.727430 0.727430i
\(687\) −0.696152 + 1.20577i −0.0265599 + 0.0460030i
\(688\) 22.3923 + 12.9282i 0.853699 + 0.492883i
\(689\) 0 0
\(690\) 3.00000 + 3.00000i 0.114208 + 0.114208i
\(691\) 32.5359 1.23772 0.618862 0.785500i \(-0.287594\pi\)
0.618862 + 0.785500i \(0.287594\pi\)
\(692\) −22.8564 + 39.5885i −0.868870 + 1.50493i
\(693\) −24.5885 14.1962i −0.934038 0.539267i
\(694\) −7.85641 + 7.85641i −0.298225 + 0.298225i
\(695\) −1.82309 1.05256i −0.0691536 0.0399258i
\(696\) 0 0
\(697\) 2.30385 + 1.33013i 0.0872644 + 0.0503822i
\(698\) 14.7846 + 14.7846i 0.559606 + 0.559606i
\(699\) 13.6077 0.514690
\(700\) −17.0718 −0.645253
\(701\) 28.3923i 1.07236i −0.844103 0.536181i \(-0.819866\pi\)
0.844103 0.536181i \(-0.180134\pi\)
\(702\) 12.8038 + 23.1962i 0.483250 + 0.875482i
\(703\) 22.1769 0.836418
\(704\) 43.7128i 1.64749i
\(705\) 3.83717i 0.144516i
\(706\) −2.00000 + 2.00000i −0.0752710 + 0.0752710i
\(707\) 8.19615 14.1962i 0.308248 0.533901i
\(708\) 25.8564i 0.971743i
\(709\) 16.3301 28.2846i 0.613291 1.06225i −0.377391 0.926054i \(-0.623179\pi\)
0.990682 0.136197i \(-0.0434880\pi\)
\(710\) −3.53590 + 3.53590i −0.132700 + 0.132700i
\(711\) −23.8923 41.3827i −0.896031 1.55197i
\(712\) −1.80385 + 0.483340i −0.0676020 + 0.0181139i
\(713\) 11.1962i 0.419299i
\(714\) −1.39230 + 1.39230i −0.0521057 + 0.0521057i
\(715\) 3.80385 3.66025i 0.142256 0.136886i
\(716\) −2.07180 + 3.58846i −0.0774267 + 0.134107i
\(717\) −4.20577 2.42820i −0.157067 0.0906829i
\(718\) −13.0718 + 13.0718i −0.487835 + 0.487835i
\(719\) −3.69615 6.40192i −0.137843 0.238751i 0.788837 0.614603i \(-0.210684\pi\)
−0.926680 + 0.375851i \(0.877350\pi\)
\(720\) 1.60770 2.78461i 0.0599153 0.103776i
\(721\) −8.08846 + 4.66987i −0.301230 + 0.173915i
\(722\) −10.9282 + 2.92820i −0.406706 + 0.108976i
\(723\) 2.59808 + 1.50000i 0.0966235 + 0.0557856i
\(724\) −29.0718 −1.08044
\(725\) 0 0
\(726\) 32.6603 + 32.6603i 1.21214 + 1.21214i
\(727\) −24.3564 42.1865i −0.903329 1.56461i −0.823145 0.567832i \(-0.807782\pi\)
−0.0801846 0.996780i \(-0.525551\pi\)
\(728\) −17.6603 0.339746i −0.654533 0.0125918i
\(729\) 27.0000 1.00000
\(730\) −0.837169 3.12436i −0.0309850 0.115638i
\(731\) 3.00000i 0.110959i
\(732\) 19.7321 34.1769i 0.729318 1.26322i
\(733\) 2.13397 3.69615i 0.0788202 0.136521i −0.823921 0.566705i \(-0.808218\pi\)
0.902741 + 0.430184i \(0.141551\pi\)
\(734\) 5.60770 + 5.60770i 0.206984 + 0.206984i
\(735\) 1.85641 0.0684746
\(736\) −9.46410 + 35.3205i −0.348851 + 1.30193i
\(737\) −21.1244 36.5885i −0.778126 1.34775i
\(738\) 23.4904 + 6.29423i 0.864693 + 0.231694i
\(739\) 24.6506 42.6962i 0.906788 1.57060i 0.0882897 0.996095i \(-0.471860\pi\)
0.818499 0.574509i \(-0.194807\pi\)
\(740\) −1.98076 + 1.14359i −0.0728143 + 0.0420393i
\(741\) 7.79423 + 31.5000i 0.286328 + 1.15718i
\(742\) 0 0
\(743\) −8.64359 + 4.99038i −0.317103 + 0.183079i −0.650100 0.759848i \(-0.725273\pi\)
0.332998 + 0.942928i \(0.391940\pi\)
\(744\) −8.19615 + 2.19615i −0.300486 + 0.0805149i
\(745\) 2.12436 3.67949i 0.0778304 0.134806i
\(746\) −12.3923 + 12.3923i −0.453715 + 0.453715i
\(747\) 21.1865 + 36.6962i 0.775175 + 1.34264i
\(748\) 4.39230 2.53590i 0.160599 0.0927216i
\(749\) −15.9904 27.6962i −0.584276 1.01200i
\(750\) −4.60770 4.60770i −0.168249 0.168249i
\(751\) 25.4808 + 44.1340i 0.929806 + 1.61047i 0.783643 + 0.621211i \(0.213359\pi\)
0.146163 + 0.989261i \(0.453308\pi\)
\(752\) −28.6410 + 16.5359i −1.04443 + 0.603002i
\(753\) −34.2846 + 19.7942i −1.24940 + 0.721342i
\(754\) 0 0
\(755\) 0.215390i 0.00783886i
\(756\) −9.00000 + 15.5885i −0.327327 + 0.566947i
\(757\) 24.0622 + 13.8923i 0.874555 + 0.504924i 0.868859 0.495059i \(-0.164854\pi\)
0.00569558 + 0.999984i \(0.498187\pi\)
\(758\) 44.6147 11.9545i 1.62048 0.434206i
\(759\) 30.5885 + 52.9808i 1.11029 + 1.92308i
\(760\) 2.78461 2.78461i 0.101008 0.101008i
\(761\) 26.3923i 0.956720i −0.878164 0.478360i \(-0.841231\pi\)
0.878164 0.478360i \(-0.158769\pi\)
\(762\) 33.8827 9.07884i 1.22744 0.328892i
\(763\) 9.00000 + 5.19615i 0.325822 + 0.188113i
\(764\) −31.9808 18.4641i −1.15702 0.668008i
\(765\) −0.373067 −0.0134883
\(766\) −38.2487 + 38.2487i −1.38198 + 1.38198i
\(767\) −25.8564 7.46410i −0.933621 0.269513i
\(768\) 27.7128 1.00000
\(769\) −28.2846 + 16.3301i −1.01997 + 0.588879i −0.914095 0.405500i \(-0.867097\pi\)
−0.105874 + 0.994380i \(0.533764\pi\)
\(770\) 3.46410 + 0.928203i 0.124838 + 0.0334501i
\(771\) −5.59808 9.69615i −0.201610 0.349198i
\(772\) 4.26795 + 7.39230i 0.153607 + 0.266055i
\(773\) 14.9904 + 25.9641i 0.539167 + 0.933864i 0.998949 + 0.0458323i \(0.0145940\pi\)
−0.459783 + 0.888032i \(0.652073\pi\)
\(774\) −7.09808 26.4904i −0.255135 0.952177i
\(775\) 8.53590i 0.306619i
\(776\) 7.26795 1.94744i 0.260904 0.0699091i
\(777\) 11.0885 6.40192i 0.397796 0.229668i
\(778\) −11.3660 3.04552i −0.407492 0.109187i
\(779\) 25.7942 + 14.8923i 0.924174 + 0.533572i
\(780\) −2.32051 2.41154i −0.0830875 0.0863471i
\(781\) −62.4449 + 36.0526i −2.23445 + 1.29006i
\(782\) 4.09808 1.09808i 0.146547 0.0392671i
\(783\) 0 0
\(784\) 8.00000 + 13.8564i 0.285714 + 0.494872i
\(785\) −2.08846 + 1.20577i −0.0745402 + 0.0430358i
\(786\) −7.90192 29.4904i −0.281852 1.05189i
\(787\) −49.1769 −1.75297 −0.876484 0.481431i \(-0.840117\pi\)
−0.876484 + 0.481431i \(0.840117\pi\)
\(788\) 27.2487 + 15.7321i 0.970695 + 0.560431i
\(789\) −6.00000 −0.213606
\(790\) 4.26795 + 4.26795i 0.151847 + 0.151847i
\(791\) 20.7846 + 12.0000i 0.739016 + 0.426671i
\(792\) 32.7846 32.7846i 1.16495 1.16495i
\(793\) −28.4808 29.5981i −1.01138 1.05106i
\(794\) −7.22243 + 26.9545i −0.256315 + 0.956579i
\(795\) 0 0
\(796\) 12.8038 7.39230i 0.453820 0.262013i
\(797\) 16.3923i 0.580645i 0.956929 + 0.290323i \(0.0937626\pi\)
−0.956929 + 0.290323i \(0.906237\pi\)
\(798\) −15.5885 + 15.5885i −0.551825 + 0.551825i
\(799\) 3.32309 + 1.91858i 0.117562 + 0.0678746i
\(800\) 7.21539 26.9282i 0.255103 0.952056i
\(801\) 1.71539 + 0.990381i 0.0606103 + 0.0349934i
\(802\) −40.4186 10.8301i −1.42723 0.382425i
\(803\) 46.6410i 1.64593i
\(804\) −23.1962 + 13.3923i −0.818065 + 0.472310i
\(805\) 2.59808 + 1.50000i 0.0915702 + 0.0528681i
\(806\) −0.169873 + 8.83013i −0.00598352 + 0.311028i
\(807\) 20.0885 11.5981i 0.707147 0.408272i
\(808\) 18.9282 + 18.9282i 0.665892 + 0.665892i
\(809\) 0.571797 0.990381i 0.0201033 0.0348199i −0.855799 0.517309i \(-0.826934\pi\)
0.875902 + 0.482489i \(0.160267\pi\)
\(810\) −3.29423 + 0.882686i −0.115747 + 0.0310144i
\(811\) 19.6077 0.688519 0.344260 0.938874i \(-0.388130\pi\)
0.344260 + 0.938874i \(0.388130\pi\)
\(812\) 0 0
\(813\) −24.4019 14.0885i −0.855813 0.494104i
\(814\) −31.8564 + 8.53590i −1.11657 + 0.299183i
\(815\) 6.21539 0.217716
\(816\) −1.60770 2.78461i −0.0562806 0.0974808i
\(817\) 33.5885i 1.17511i
\(818\) 17.0718 17.0718i 0.596901 0.596901i
\(819\) 12.9904 + 13.5000i 0.453921 + 0.471728i
\(820\) −3.07180 −0.107272
\(821\) −1.32051 −0.0460860 −0.0230430 0.999734i \(-0.507335\pi\)
−0.0230430 + 0.999734i \(0.507335\pi\)
\(822\) −1.77757 6.63397i −0.0619998 0.231386i
\(823\) 26.0000 0.906303 0.453152 0.891434i \(-0.350300\pi\)
0.453152 + 0.891434i \(0.350300\pi\)
\(824\) −3.94744 14.7321i −0.137516 0.513215i
\(825\) −23.3205 40.3923i −0.811916 1.40628i
\(826\) −4.73205 17.6603i −0.164649 0.614479i
\(827\) 38.9282 1.35367 0.676833 0.736136i \(-0.263352\pi\)
0.676833 + 0.736136i \(0.263352\pi\)
\(828\) 33.5885 19.3923i 1.16728 0.673929i
\(829\) −7.11474 4.10770i −0.247105 0.142666i 0.371333 0.928500i \(-0.378901\pi\)
−0.618438 + 0.785834i \(0.712234\pi\)
\(830\) −3.78461 3.78461i −0.131366 0.131366i
\(831\) −41.8923 24.1865i −1.45323 0.839022i
\(832\) 8.00000 27.7128i 0.277350 0.960769i
\(833\) 0.928203 1.60770i 0.0321603 0.0557033i
\(834\) −13.6077 + 13.6077i −0.471196 + 0.471196i
\(835\) 0.0717968i 0.00248463i
\(836\) 49.1769 28.3923i 1.70082 0.981968i
\(837\) 7.79423 + 4.50000i 0.269408 + 0.155543i
\(838\) −14.4904 3.88269i −0.500562 0.134125i
\(839\) −13.1603 7.59808i −0.454342 0.262315i 0.255320 0.966857i \(-0.417819\pi\)
−0.709662 + 0.704542i \(0.751153\pi\)
\(840\) 0.588457 2.19615i 0.0203037 0.0757745i
\(841\) 29.0000 1.00000
\(842\) −0.633975 + 2.36603i −0.0218482 + 0.0815386i
\(843\) −31.5788 + 18.2321i −1.08763 + 0.627945i
\(844\) −9.39230 16.2679i −0.323296 0.559966i
\(845\) −3.08142 + 1.62436i −0.106004 + 0.0558795i
\(846\) 33.8827 + 9.07884i 1.16491 + 0.312137i
\(847\) 28.2846 + 16.3301i 0.971871 + 0.561110i
\(848\) 0 0
\(849\) 47.6769 27.5263i 1.63627 0.944699i
\(850\) −3.12436 + 0.837169i −0.107165 + 0.0287146i
\(851\) −27.5885 −0.945720
\(852\) 22.8564 + 39.5885i 0.783048 + 1.35628i
\(853\) −11.7224 20.3038i −0.401368 0.695191i 0.592523 0.805554i \(-0.298132\pi\)
−0.993891 + 0.110363i \(0.964799\pi\)
\(854\) 7.22243 26.9545i 0.247147 0.922363i
\(855\) −4.17691 −0.142847
\(856\) 50.4449 13.5167i 1.72417 0.461990i
\(857\) 19.6244 + 33.9904i 0.670355 + 1.16109i 0.977803 + 0.209524i \(0.0671916\pi\)
−0.307448 + 0.951565i \(0.599475\pi\)
\(858\) −23.3205 42.2487i −0.796149 1.44235i
\(859\) 30.3109 + 17.5000i 1.03419 + 0.597092i 0.918183 0.396156i \(-0.129656\pi\)
0.116011 + 0.993248i \(0.462989\pi\)
\(860\) 1.73205 + 3.00000i 0.0590624 + 0.102299i
\(861\) 17.1962 0.586043
\(862\) 6.15064 + 22.9545i 0.209491 + 0.781833i
\(863\) 22.1051i 0.752467i −0.926525 0.376233i \(-0.877219\pi\)
0.926525 0.376233i \(-0.122781\pi\)
\(864\) −20.7846 20.7846i −0.707107 0.707107i
\(865\) −5.30385 + 3.06218i −0.180336 + 0.104117i
\(866\) −3.04552 + 11.3660i −0.103491 + 0.386233i
\(867\) 14.5359 25.1769i 0.493665 0.855053i
\(868\) −5.19615 + 3.00000i −0.176369 + 0.101827i
\(869\) 43.5167 + 75.3731i 1.47620 + 2.55686i
\(870\) 0 0
\(871\) 6.69615 + 27.0622i 0.226890 + 0.916967i
\(872\) −12.0000 + 12.0000i −0.406371 + 0.406371i
\(873\) −6.91154 3.99038i −0.233920 0.135054i
\(874\) 45.8827 12.2942i 1.55201 0.415858i
\(875\) −3.99038 2.30385i −0.134900 0.0778843i
\(876\) −29.5692 −0.999051
\(877\) −46.3923 −1.56656 −0.783278 0.621671i \(-0.786454\pi\)
−0.783278 + 0.621671i \(0.786454\pi\)
\(878\) −38.3923 38.3923i −1.29568 1.29568i
\(879\) 8.53590 0.287909
\(880\) −2.92820 + 5.07180i −0.0987097 + 0.170970i
\(881\) 13.9641 24.1865i 0.470463 0.814865i −0.528967 0.848642i \(-0.677420\pi\)
0.999429 + 0.0337775i \(0.0107537\pi\)
\(882\) 4.39230 16.3923i 0.147897 0.551958i
\(883\) 40.7846i 1.37251i −0.727360 0.686256i \(-0.759253\pi\)
0.727360 0.686256i \(-0.240747\pi\)
\(884\) −3.24871 + 0.803848i −0.109266 + 0.0270363i
\(885\) 1.73205 3.00000i 0.0582223 0.100844i
\(886\) −57.0788 15.2942i −1.91760 0.513820i
\(887\) 23.0885 + 39.9904i 0.775235 + 1.34275i 0.934663 + 0.355536i \(0.115702\pi\)
−0.159428 + 0.987210i \(0.550965\pi\)
\(888\) 5.41154 + 20.1962i 0.181599 + 0.677738i
\(889\) 21.4808 12.4019i 0.720442 0.415947i
\(890\) −0.241670 0.0647552i −0.00810079 0.00217060i
\(891\) −49.1769 −1.64749
\(892\) −10.6410 −0.356288
\(893\) 37.2058 + 21.4808i 1.24504 + 0.718826i
\(894\) −27.4641 27.4641i −0.918537 0.918537i
\(895\) −0.480762 + 0.277568i −0.0160701 + 0.00927808i
\(896\) 18.9282 5.07180i 0.632347 0.169437i
\(897\) −9.69615 39.1865i −0.323745 1.30840i
\(898\) −12.3660 3.31347i −0.412660 0.110572i
\(899\) 0 0
\(900\) −25.6077 + 14.7846i −0.853590 + 0.492820i
\(901\) 0 0
\(902\) −42.7846 11.4641i −1.42457 0.381713i
\(903\) −9.69615 16.7942i −0.322668 0.558877i
\(904\) −27.7128 + 27.7128i −0.921714 + 0.921714i
\(905\) −3.37307 1.94744i −0.112125 0.0647351i
\(906\) −1.90192 0.509619i −0.0631872 0.0169310i
\(907\) 51.1769i 1.69930i −0.527346 0.849651i \(-0.676813\pi\)
0.527346 0.849651i \(-0.323187\pi\)
\(908\) −22.8564 13.1962i −0.758516 0.437930i
\(909\) 28.3923i 0.941713i
\(910\) −2.02628 1.22243i −0.0671705 0.0405232i
\(911\) −4.03590 6.99038i −0.133715 0.231602i 0.791391 0.611311i \(-0.209357\pi\)
−0.925106 + 0.379709i \(0.876024\pi\)
\(912\) −18.0000 31.1769i −0.596040 1.03237i
\(913\) −38.5885 66.8372i −1.27709 2.21199i
\(914\) −32.5359 + 32.5359i −1.07619 + 1.07619i
\(915\) 4.57884 2.64359i 0.151372 0.0873945i
\(916\) −1.39230 0.803848i −0.0460030 0.0265599i
\(917\) −10.7942 18.6962i −0.356457 0.617401i
\(918\) −0.882686 + 3.29423i −0.0291330 + 0.108726i
\(919\) 4.37564 + 7.57884i 0.144339 + 0.250003i 0.929126 0.369763i \(-0.120561\pi\)
−0.784787 + 0.619766i \(0.787228\pi\)
\(920\) −3.46410 + 3.46410i −0.114208 + 0.114208i
\(921\) 8.78461 0.289463
\(922\) 0.562178 0.150635i 0.0185143 0.00496090i
\(923\) 46.1865 11.4282i 1.52025 0.376164i
\(924\) 16.3923 28.3923i 0.539267 0.934038i
\(925\) 21.0333 0.691571
\(926\) −10.7776 40.2224i −0.354173 1.32179i
\(927\) −8.08846 + 14.0096i −0.265660 + 0.460136i
\(928\) 0 0
\(929\) −18.0167 10.4019i −0.591107 0.341276i 0.174428 0.984670i \(-0.444192\pi\)
−0.765535 + 0.643394i \(0.777526\pi\)
\(930\) −1.09808 0.294229i −0.0360073 0.00964814i
\(931\) 10.3923 18.0000i 0.340594 0.589926i
\(932\) 15.7128i 0.514690i
\(933\) −8.59808 + 14.8923i −0.281488 + 0.487552i
\(934\) 20.5359 20.5359i 0.671955 0.671955i
\(935\) 0.679492 0.0222218
\(936\) −26.7846 + 14.7846i −0.875482 + 0.483250i
\(937\) −18.2487 −0.596159 −0.298080 0.954541i \(-0.596346\pi\)
−0.298080 + 0.954541i \(0.596346\pi\)
\(938\) −13.3923 + 13.3923i −0.437274 + 0.437274i
\(939\) 11.5981 + 20.0885i 0.378489 + 0.655562i
\(940\) −4.43078 −0.144516
\(941\) 16.1865 28.0359i 0.527666 0.913944i −0.471814 0.881698i \(-0.656401\pi\)
0.999480 0.0322461i \(-0.0102660\pi\)
\(942\) 5.70577 + 21.2942i 0.185904 + 0.693803i
\(943\) −32.0885 18.5263i −1.04494 0.603299i
\(944\) 29.8564 0.971743
\(945\) −2.08846 + 1.20577i −0.0679375 + 0.0392237i
\(946\) 12.9282 + 48.2487i 0.420332 + 1.56870i
\(947\) 19.3205 0.627832 0.313916 0.949451i \(-0.398359\pi\)
0.313916 + 0.949451i \(0.398359\pi\)
\(948\) 47.7846 27.5885i 1.55197 0.896031i
\(949\) −8.53590 + 29.5692i −0.277087 + 0.959857i
\(950\) −34.9808 + 9.37307i −1.13493 + 0.304102i
\(951\) 4.37564 + 7.57884i 0.141890 + 0.245761i
\(952\) −1.60770 1.60770i −0.0521057 0.0521057i
\(953\) 4.16025 + 7.20577i 0.134764 + 0.233418i 0.925507 0.378730i \(-0.123639\pi\)
−0.790743 + 0.612148i \(0.790306\pi\)
\(954\) 0 0
\(955\) −2.47372 4.28461i −0.0800477 0.138647i
\(956\) 2.80385 4.85641i 0.0906829 0.157067i
\(957\) 0 0
\(958\) −39.3205 + 39.3205i −1.27039 + 1.27039i
\(959\) −2.42820 4.20577i −0.0784108 0.135811i
\(960\) 3.21539 + 1.85641i 0.103776 + 0.0599153i
\(961\) −14.0000 24.2487i −0.451613 0.782216i
\(962\) 21.7583 + 0.418584i 0.701517 + 0.0134957i
\(963\) −47.9711 27.6962i −1.54585 0.892496i
\(964\) −1.73205 + 3.00000i −0.0557856 + 0.0966235i
\(965\) 1.14359i 0.0368136i
\(966\) 19.3923 19.3923i 0.623937 0.623937i
\(967\) −35.6769 20.5981i −1.14729 0.662389i −0.199066 0.979986i \(-0.563791\pi\)
−0.948226 + 0.317597i \(0.897124\pi\)
\(968\) −37.7128 + 37.7128i −1.21214 + 1.21214i
\(969\) −2.08846 + 3.61731i −0.0670909 + 0.116205i
\(970\) 0.973721 + 0.260908i 0.0312643 + 0.00837724i
\(971\) 36.9904 21.3564i 1.18708 0.685360i 0.229437 0.973324i \(-0.426312\pi\)
0.957641 + 0.287964i \(0.0929783\pi\)
\(972\) 31.1769i 1.00000i
\(973\) −6.80385 + 11.7846i −0.218121 + 0.377797i
\(974\) −57.5429 15.4186i −1.84379 0.494043i
\(975\) 7.39230 + 29.8756i 0.236743 + 0.956786i
\(976\) 39.4641 + 22.7846i 1.26322 + 0.729318i
\(977\) 7.83975 4.52628i 0.250816 0.144809i −0.369322 0.929301i \(-0.620410\pi\)
0.620138 + 0.784493i \(0.287077\pi\)
\(978\) 14.7058 54.8827i 0.470239 1.75495i
\(979\) −3.12436 1.80385i −0.0998548 0.0576512i
\(980\) 2.14359i 0.0684746i
\(981\) 18.0000 0.574696
\(982\) −13.5622 3.63397i −0.432786 0.115965i
\(983\) 32.5526 18.7942i 1.03827 0.599443i 0.118924 0.992903i \(-0.462056\pi\)
0.919341 + 0.393461i \(0.128722\pi\)
\(984\) −7.26795 + 27.1244i −0.231694 + 0.864693i
\(985\) 2.10770 + 3.65064i 0.0671568 + 0.116319i
\(986\) 0 0
\(987\) 24.8038 0.789515
\(988\) −36.3731 + 9.00000i −1.15718 + 0.286328i
\(989\) 41.7846i 1.32867i
\(990\) 6.00000 1.60770i 0.190693 0.0510959i
\(991\) 3.89230 6.74167i 0.123643 0.214156i −0.797559 0.603241i \(-0.793876\pi\)
0.921202 + 0.389085i \(0.127209\pi\)
\(992\) −2.53590 9.46410i −0.0805149 0.300486i
\(993\) −14.3038 + 24.7750i −0.453919 + 0.786211i
\(994\) 22.8564 + 22.8564i 0.724961 + 0.724961i
\(995\) 1.98076 0.0627944
\(996\) −42.3731 + 24.4641i −1.34264 + 0.775175i
\(997\) 4.79423 + 2.76795i 0.151835 + 0.0876618i 0.573993 0.818861i \(-0.305394\pi\)
−0.422158 + 0.906522i \(0.638727\pi\)
\(998\) −4.90192 + 1.31347i −0.155168 + 0.0415771i
\(999\) 11.0885 19.2058i 0.350823 0.607644i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 936.2.ca.b.589.2 yes 4
8.5 even 2 936.2.ca.a.589.2 yes 4
9.7 even 3 936.2.bk.a.277.2 4
13.10 even 6 936.2.bk.b.517.2 yes 4
72.61 even 6 936.2.bk.b.277.2 yes 4
104.101 even 6 936.2.bk.a.517.2 yes 4
117.88 even 6 936.2.ca.a.205.1 yes 4
936.205 even 6 inner 936.2.ca.b.205.1 yes 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
936.2.bk.a.277.2 4 9.7 even 3
936.2.bk.a.517.2 yes 4 104.101 even 6
936.2.bk.b.277.2 yes 4 72.61 even 6
936.2.bk.b.517.2 yes 4 13.10 even 6
936.2.ca.a.205.1 yes 4 117.88 even 6
936.2.ca.a.589.2 yes 4 8.5 even 2
936.2.ca.b.205.1 yes 4 936.205 even 6 inner
936.2.ca.b.589.2 yes 4 1.1 even 1 trivial