Properties

Label 936.2.ca.b
Level $936$
Weight $2$
Character orbit 936.ca
Analytic conductor $7.474$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [936,2,Mod(205,936)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(936, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 3, 4, 5])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("936.205"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 936 = 2^{3} \cdot 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 936.ca (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.47399762919\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\zeta_{12})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{12}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \zeta_{12}^{3} + 1) q^{2} + ( - \zeta_{12}^{3} + 2 \zeta_{12}) q^{3} - 2 \zeta_{12}^{3} q^{4} + (\zeta_{12}^{3} - 2 \zeta_{12}^{2} + \zeta_{12}) q^{5} + ( - \zeta_{12}^{3} - 2 \zeta_{12}^{2} + \cdots + 1) q^{6} + \cdots + (6 \zeta_{12}^{3} - 12 \zeta_{12} - 6) q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{2} - 4 q^{5} + 6 q^{7} - 8 q^{8} + 12 q^{9} + 2 q^{10} - 8 q^{11} + 6 q^{14} + 6 q^{15} - 16 q^{16} - 6 q^{17} + 12 q^{18} + 12 q^{20} - 8 q^{22} - 6 q^{23} - 4 q^{25} - 4 q^{26} - 6 q^{30} + 6 q^{31}+ \cdots - 24 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/936\mathbb{Z}\right)^\times\).

\(n\) \(145\) \(209\) \(469\) \(703\)
\(\chi(n)\) \(1 - \zeta_{12}^{2}\) \(-\zeta_{12}^{2}\) \(-1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
205.1
0.866025 + 0.500000i
−0.866025 0.500000i
−0.866025 + 0.500000i
0.866025 0.500000i
1.00000 1.00000i 1.73205 2.00000i −0.133975 0.232051i 1.73205 1.73205i 1.50000 0.866025i −2.00000 2.00000i 3.00000 −0.366025 0.0980762i
205.2 1.00000 + 1.00000i −1.73205 2.00000i −1.86603 3.23205i −1.73205 1.73205i 1.50000 0.866025i −2.00000 + 2.00000i 3.00000 1.36603 5.09808i
589.1 1.00000 1.00000i −1.73205 2.00000i −1.86603 + 3.23205i −1.73205 + 1.73205i 1.50000 + 0.866025i −2.00000 2.00000i 3.00000 1.36603 + 5.09808i
589.2 1.00000 + 1.00000i 1.73205 2.00000i −0.133975 + 0.232051i 1.73205 + 1.73205i 1.50000 + 0.866025i −2.00000 + 2.00000i 3.00000 −0.366025 + 0.0980762i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
936.ca even 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 936.2.ca.b yes 4
8.b even 2 1 936.2.ca.a yes 4
9.c even 3 1 936.2.bk.a 4
13.e even 6 1 936.2.bk.b yes 4
72.n even 6 1 936.2.bk.b yes 4
104.s even 6 1 936.2.bk.a 4
117.l even 6 1 936.2.ca.a yes 4
936.ca even 6 1 inner 936.2.ca.b yes 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
936.2.bk.a 4 9.c even 3 1
936.2.bk.a 4 104.s even 6 1
936.2.bk.b yes 4 13.e even 6 1
936.2.bk.b yes 4 72.n even 6 1
936.2.ca.a yes 4 8.b even 2 1
936.2.ca.a yes 4 117.l even 6 1
936.2.ca.b yes 4 1.a even 1 1 trivial
936.2.ca.b yes 4 936.ca even 6 1 inner

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5}^{4} + 4T_{5}^{3} + 15T_{5}^{2} + 4T_{5} + 1 \) acting on \(S_{2}^{\mathrm{new}}(936, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T^{2} - 2 T + 2)^{2} \) Copy content Toggle raw display
$3$ \( (T^{2} - 3)^{2} \) Copy content Toggle raw display
$5$ \( T^{4} + 4 T^{3} + \cdots + 1 \) Copy content Toggle raw display
$7$ \( (T^{2} - 3 T + 3)^{2} \) Copy content Toggle raw display
$11$ \( (T^{2} + 4 T - 8)^{2} \) Copy content Toggle raw display
$13$ \( T^{4} - 22T^{2} + 169 \) Copy content Toggle raw display
$17$ \( T^{4} + 6 T^{3} + \cdots + 9 \) Copy content Toggle raw display
$19$ \( T^{4} + 27T^{2} + 729 \) Copy content Toggle raw display
$23$ \( T^{4} + 6 T^{3} + \cdots + 9 \) Copy content Toggle raw display
$29$ \( T^{4} \) Copy content Toggle raw display
$31$ \( (T^{2} - 3 T + 3)^{2} \) Copy content Toggle raw display
$37$ \( T^{4} - 12 T^{3} + \cdots + 1089 \) Copy content Toggle raw display
$41$ \( T^{4} - 6 T^{3} + \cdots + 169 \) Copy content Toggle raw display
$43$ \( T^{4} + 12 T^{3} + \cdots + 9 \) Copy content Toggle raw display
$47$ \( T^{4} + 6 T^{3} + \cdots + 9409 \) Copy content Toggle raw display
$53$ \( T^{4} \) Copy content Toggle raw display
$59$ \( (T^{2} + 8 T + 4)^{2} \) Copy content Toggle raw display
$61$ \( T^{4} + 36 T^{3} + \cdots + 11449 \) Copy content Toggle raw display
$67$ \( T^{4} - 12 T^{3} + \cdots + 1089 \) Copy content Toggle raw display
$71$ \( T^{4} - 18 T^{3} + \cdots + 1369 \) Copy content Toggle raw display
$73$ \( T^{4} + 312 T^{2} + 17424 \) Copy content Toggle raw display
$79$ \( T^{4} + 18 T^{3} + \cdots + 1089 \) Copy content Toggle raw display
$83$ \( T^{4} - 4 T^{3} + \cdots + 20449 \) Copy content Toggle raw display
$89$ \( T^{4} - 30 T^{3} + \cdots + 121 \) Copy content Toggle raw display
$97$ \( T^{4} + 30 T^{3} + \cdots + 1521 \) Copy content Toggle raw display
show more
show less