Properties

Label 9350.2.a.dc.1.4
Level $9350$
Weight $2$
Character 9350.1
Self dual yes
Analytic conductor $74.660$
Analytic rank $1$
Dimension $7$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [9350,2,Mod(1,9350)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(9350, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("9350.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 9350 = 2 \cdot 5^{2} \cdot 11 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 9350.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [7,7,-3,7,0,-3,-4,7,0,0,-7] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(74.6601258899\)
Analytic rank: \(1\)
Dimension: \(7\)
Coefficient field: \(\mathbb{Q}[x]/(x^{7} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{7} - 3x^{6} - 6x^{5} + 20x^{4} + 3x^{3} - 25x^{2} + 8 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 1870)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(0.724668\) of defining polynomial
Character \(\chi\) \(=\) 9350.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{2} -0.724668 q^{3} +1.00000 q^{4} -0.724668 q^{6} +3.02718 q^{7} +1.00000 q^{8} -2.47486 q^{9} -1.00000 q^{11} -0.724668 q^{12} +1.39587 q^{13} +3.02718 q^{14} +1.00000 q^{16} -1.00000 q^{17} -2.47486 q^{18} +0.0534645 q^{19} -2.19370 q^{21} -1.00000 q^{22} -8.40277 q^{23} -0.724668 q^{24} +1.39587 q^{26} +3.96745 q^{27} +3.02718 q^{28} +2.16970 q^{29} -2.74831 q^{31} +1.00000 q^{32} +0.724668 q^{33} -1.00000 q^{34} -2.47486 q^{36} -2.67359 q^{37} +0.0534645 q^{38} -1.01154 q^{39} +5.95641 q^{41} -2.19370 q^{42} -10.8302 q^{43} -1.00000 q^{44} -8.40277 q^{46} -3.10280 q^{47} -0.724668 q^{48} +2.16380 q^{49} +0.724668 q^{51} +1.39587 q^{52} +7.41679 q^{53} +3.96745 q^{54} +3.02718 q^{56} -0.0387440 q^{57} +2.16970 q^{58} -8.18848 q^{59} -5.86969 q^{61} -2.74831 q^{62} -7.49183 q^{63} +1.00000 q^{64} +0.724668 q^{66} -6.60195 q^{67} -1.00000 q^{68} +6.08922 q^{69} -3.28974 q^{71} -2.47486 q^{72} -6.31206 q^{73} -2.67359 q^{74} +0.0534645 q^{76} -3.02718 q^{77} -1.01154 q^{78} -0.551928 q^{79} +4.54949 q^{81} +5.95641 q^{82} +6.86419 q^{83} -2.19370 q^{84} -10.8302 q^{86} -1.57231 q^{87} -1.00000 q^{88} +6.03841 q^{89} +4.22555 q^{91} -8.40277 q^{92} +1.99161 q^{93} -3.10280 q^{94} -0.724668 q^{96} -1.74048 q^{97} +2.16380 q^{98} +2.47486 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 7 q + 7 q^{2} - 3 q^{3} + 7 q^{4} - 3 q^{6} - 4 q^{7} + 7 q^{8} - 7 q^{11} - 3 q^{12} + 9 q^{13} - 4 q^{14} + 7 q^{16} - 7 q^{17} - 3 q^{19} - 4 q^{21} - 7 q^{22} - 6 q^{23} - 3 q^{24} + 9 q^{26} - 3 q^{27}+ \cdots + 3 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 0.707107
\(3\) −0.724668 −0.418387 −0.209194 0.977874i \(-0.567084\pi\)
−0.209194 + 0.977874i \(0.567084\pi\)
\(4\) 1.00000 0.500000
\(5\) 0 0
\(6\) −0.724668 −0.295844
\(7\) 3.02718 1.14417 0.572083 0.820196i \(-0.306136\pi\)
0.572083 + 0.820196i \(0.306136\pi\)
\(8\) 1.00000 0.353553
\(9\) −2.47486 −0.824952
\(10\) 0 0
\(11\) −1.00000 −0.301511
\(12\) −0.724668 −0.209194
\(13\) 1.39587 0.387145 0.193572 0.981086i \(-0.437993\pi\)
0.193572 + 0.981086i \(0.437993\pi\)
\(14\) 3.02718 0.809047
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) −1.00000 −0.242536
\(18\) −2.47486 −0.583329
\(19\) 0.0534645 0.0122656 0.00613280 0.999981i \(-0.498048\pi\)
0.00613280 + 0.999981i \(0.498048\pi\)
\(20\) 0 0
\(21\) −2.19370 −0.478704
\(22\) −1.00000 −0.213201
\(23\) −8.40277 −1.75210 −0.876049 0.482221i \(-0.839830\pi\)
−0.876049 + 0.482221i \(0.839830\pi\)
\(24\) −0.724668 −0.147922
\(25\) 0 0
\(26\) 1.39587 0.273753
\(27\) 3.96745 0.763536
\(28\) 3.02718 0.572083
\(29\) 2.16970 0.402903 0.201451 0.979499i \(-0.435434\pi\)
0.201451 + 0.979499i \(0.435434\pi\)
\(30\) 0 0
\(31\) −2.74831 −0.493610 −0.246805 0.969065i \(-0.579381\pi\)
−0.246805 + 0.969065i \(0.579381\pi\)
\(32\) 1.00000 0.176777
\(33\) 0.724668 0.126148
\(34\) −1.00000 −0.171499
\(35\) 0 0
\(36\) −2.47486 −0.412476
\(37\) −2.67359 −0.439535 −0.219768 0.975552i \(-0.570530\pi\)
−0.219768 + 0.975552i \(0.570530\pi\)
\(38\) 0.0534645 0.00867309
\(39\) −1.01154 −0.161976
\(40\) 0 0
\(41\) 5.95641 0.930234 0.465117 0.885249i \(-0.346012\pi\)
0.465117 + 0.885249i \(0.346012\pi\)
\(42\) −2.19370 −0.338495
\(43\) −10.8302 −1.65159 −0.825795 0.563970i \(-0.809273\pi\)
−0.825795 + 0.563970i \(0.809273\pi\)
\(44\) −1.00000 −0.150756
\(45\) 0 0
\(46\) −8.40277 −1.23892
\(47\) −3.10280 −0.452590 −0.226295 0.974059i \(-0.572661\pi\)
−0.226295 + 0.974059i \(0.572661\pi\)
\(48\) −0.724668 −0.104597
\(49\) 2.16380 0.309114
\(50\) 0 0
\(51\) 0.724668 0.101474
\(52\) 1.39587 0.193572
\(53\) 7.41679 1.01877 0.509387 0.860538i \(-0.329872\pi\)
0.509387 + 0.860538i \(0.329872\pi\)
\(54\) 3.96745 0.539902
\(55\) 0 0
\(56\) 3.02718 0.404523
\(57\) −0.0387440 −0.00513177
\(58\) 2.16970 0.284895
\(59\) −8.18848 −1.06605 −0.533025 0.846100i \(-0.678945\pi\)
−0.533025 + 0.846100i \(0.678945\pi\)
\(60\) 0 0
\(61\) −5.86969 −0.751536 −0.375768 0.926714i \(-0.622621\pi\)
−0.375768 + 0.926714i \(0.622621\pi\)
\(62\) −2.74831 −0.349035
\(63\) −7.49183 −0.943882
\(64\) 1.00000 0.125000
\(65\) 0 0
\(66\) 0.724668 0.0892004
\(67\) −6.60195 −0.806557 −0.403278 0.915077i \(-0.632129\pi\)
−0.403278 + 0.915077i \(0.632129\pi\)
\(68\) −1.00000 −0.121268
\(69\) 6.08922 0.733056
\(70\) 0 0
\(71\) −3.28974 −0.390420 −0.195210 0.980761i \(-0.562539\pi\)
−0.195210 + 0.980761i \(0.562539\pi\)
\(72\) −2.47486 −0.291665
\(73\) −6.31206 −0.738771 −0.369385 0.929276i \(-0.620432\pi\)
−0.369385 + 0.929276i \(0.620432\pi\)
\(74\) −2.67359 −0.310798
\(75\) 0 0
\(76\) 0.0534645 0.00613280
\(77\) −3.02718 −0.344979
\(78\) −1.01154 −0.114535
\(79\) −0.551928 −0.0620968 −0.0310484 0.999518i \(-0.509885\pi\)
−0.0310484 + 0.999518i \(0.509885\pi\)
\(80\) 0 0
\(81\) 4.54949 0.505498
\(82\) 5.95641 0.657775
\(83\) 6.86419 0.753443 0.376722 0.926327i \(-0.377051\pi\)
0.376722 + 0.926327i \(0.377051\pi\)
\(84\) −2.19370 −0.239352
\(85\) 0 0
\(86\) −10.8302 −1.16785
\(87\) −1.57231 −0.168569
\(88\) −1.00000 −0.106600
\(89\) 6.03841 0.640070 0.320035 0.947406i \(-0.396305\pi\)
0.320035 + 0.947406i \(0.396305\pi\)
\(90\) 0 0
\(91\) 4.22555 0.442958
\(92\) −8.40277 −0.876049
\(93\) 1.99161 0.206520
\(94\) −3.10280 −0.320029
\(95\) 0 0
\(96\) −0.724668 −0.0739611
\(97\) −1.74048 −0.176719 −0.0883594 0.996089i \(-0.528162\pi\)
−0.0883594 + 0.996089i \(0.528162\pi\)
\(98\) 2.16380 0.218577
\(99\) 2.47486 0.248732
\(100\) 0 0
\(101\) −14.4049 −1.43334 −0.716672 0.697410i \(-0.754336\pi\)
−0.716672 + 0.697410i \(0.754336\pi\)
\(102\) 0.724668 0.0717528
\(103\) −0.264784 −0.0260899 −0.0130450 0.999915i \(-0.504152\pi\)
−0.0130450 + 0.999915i \(0.504152\pi\)
\(104\) 1.39587 0.136876
\(105\) 0 0
\(106\) 7.41679 0.720382
\(107\) 12.0412 1.16406 0.582031 0.813166i \(-0.302258\pi\)
0.582031 + 0.813166i \(0.302258\pi\)
\(108\) 3.96745 0.381768
\(109\) 3.73438 0.357688 0.178844 0.983877i \(-0.442764\pi\)
0.178844 + 0.983877i \(0.442764\pi\)
\(110\) 0 0
\(111\) 1.93746 0.183896
\(112\) 3.02718 0.286041
\(113\) −12.0191 −1.13066 −0.565331 0.824864i \(-0.691252\pi\)
−0.565331 + 0.824864i \(0.691252\pi\)
\(114\) −0.0387440 −0.00362871
\(115\) 0 0
\(116\) 2.16970 0.201451
\(117\) −3.45458 −0.319376
\(118\) −8.18848 −0.753811
\(119\) −3.02718 −0.277501
\(120\) 0 0
\(121\) 1.00000 0.0909091
\(122\) −5.86969 −0.531416
\(123\) −4.31641 −0.389198
\(124\) −2.74831 −0.246805
\(125\) 0 0
\(126\) −7.49183 −0.667425
\(127\) −4.16210 −0.369326 −0.184663 0.982802i \(-0.559119\pi\)
−0.184663 + 0.982802i \(0.559119\pi\)
\(128\) 1.00000 0.0883883
\(129\) 7.84830 0.691004
\(130\) 0 0
\(131\) −20.2513 −1.76936 −0.884680 0.466199i \(-0.845623\pi\)
−0.884680 + 0.466199i \(0.845623\pi\)
\(132\) 0.724668 0.0630742
\(133\) 0.161846 0.0140339
\(134\) −6.60195 −0.570322
\(135\) 0 0
\(136\) −1.00000 −0.0857493
\(137\) 1.24462 0.106335 0.0531673 0.998586i \(-0.483068\pi\)
0.0531673 + 0.998586i \(0.483068\pi\)
\(138\) 6.08922 0.518349
\(139\) 1.56712 0.132921 0.0664605 0.997789i \(-0.478829\pi\)
0.0664605 + 0.997789i \(0.478829\pi\)
\(140\) 0 0
\(141\) 2.24850 0.189358
\(142\) −3.28974 −0.276069
\(143\) −1.39587 −0.116729
\(144\) −2.47486 −0.206238
\(145\) 0 0
\(146\) −6.31206 −0.522390
\(147\) −1.56803 −0.129329
\(148\) −2.67359 −0.219768
\(149\) 3.42956 0.280961 0.140480 0.990083i \(-0.455135\pi\)
0.140480 + 0.990083i \(0.455135\pi\)
\(150\) 0 0
\(151\) 15.3510 1.24925 0.624623 0.780926i \(-0.285253\pi\)
0.624623 + 0.780926i \(0.285253\pi\)
\(152\) 0.0534645 0.00433654
\(153\) 2.47486 0.200080
\(154\) −3.02718 −0.243937
\(155\) 0 0
\(156\) −1.01154 −0.0809882
\(157\) −12.0923 −0.965067 −0.482534 0.875877i \(-0.660283\pi\)
−0.482534 + 0.875877i \(0.660283\pi\)
\(158\) −0.551928 −0.0439090
\(159\) −5.37471 −0.426242
\(160\) 0 0
\(161\) −25.4367 −2.00469
\(162\) 4.54949 0.357441
\(163\) −5.33332 −0.417738 −0.208869 0.977944i \(-0.566978\pi\)
−0.208869 + 0.977944i \(0.566978\pi\)
\(164\) 5.95641 0.465117
\(165\) 0 0
\(166\) 6.86419 0.532765
\(167\) −6.51295 −0.503987 −0.251994 0.967729i \(-0.581086\pi\)
−0.251994 + 0.967729i \(0.581086\pi\)
\(168\) −2.19370 −0.169247
\(169\) −11.0515 −0.850119
\(170\) 0 0
\(171\) −0.132317 −0.0101185
\(172\) −10.8302 −0.825795
\(173\) 12.1605 0.924547 0.462273 0.886737i \(-0.347034\pi\)
0.462273 + 0.886737i \(0.347034\pi\)
\(174\) −1.57231 −0.119197
\(175\) 0 0
\(176\) −1.00000 −0.0753778
\(177\) 5.93393 0.446021
\(178\) 6.03841 0.452598
\(179\) −10.4443 −0.780642 −0.390321 0.920679i \(-0.627636\pi\)
−0.390321 + 0.920679i \(0.627636\pi\)
\(180\) 0 0
\(181\) 3.20921 0.238539 0.119270 0.992862i \(-0.461945\pi\)
0.119270 + 0.992862i \(0.461945\pi\)
\(182\) 4.22555 0.313218
\(183\) 4.25357 0.314433
\(184\) −8.40277 −0.619461
\(185\) 0 0
\(186\) 1.99161 0.146032
\(187\) 1.00000 0.0731272
\(188\) −3.10280 −0.226295
\(189\) 12.0102 0.873612
\(190\) 0 0
\(191\) 1.15482 0.0835596 0.0417798 0.999127i \(-0.486697\pi\)
0.0417798 + 0.999127i \(0.486697\pi\)
\(192\) −0.724668 −0.0522984
\(193\) 23.6016 1.69888 0.849442 0.527682i \(-0.176939\pi\)
0.849442 + 0.527682i \(0.176939\pi\)
\(194\) −1.74048 −0.124959
\(195\) 0 0
\(196\) 2.16380 0.154557
\(197\) −0.923402 −0.0657897 −0.0328948 0.999459i \(-0.510473\pi\)
−0.0328948 + 0.999459i \(0.510473\pi\)
\(198\) 2.47486 0.175880
\(199\) −11.4023 −0.808287 −0.404143 0.914696i \(-0.632430\pi\)
−0.404143 + 0.914696i \(0.632430\pi\)
\(200\) 0 0
\(201\) 4.78422 0.337453
\(202\) −14.4049 −1.01353
\(203\) 6.56806 0.460987
\(204\) 0.724668 0.0507369
\(205\) 0 0
\(206\) −0.264784 −0.0184483
\(207\) 20.7957 1.44540
\(208\) 1.39587 0.0967862
\(209\) −0.0534645 −0.00369822
\(210\) 0 0
\(211\) −18.3851 −1.26568 −0.632841 0.774282i \(-0.718111\pi\)
−0.632841 + 0.774282i \(0.718111\pi\)
\(212\) 7.41679 0.509387
\(213\) 2.38397 0.163347
\(214\) 12.0412 0.823117
\(215\) 0 0
\(216\) 3.96745 0.269951
\(217\) −8.31961 −0.564772
\(218\) 3.73438 0.252924
\(219\) 4.57414 0.309092
\(220\) 0 0
\(221\) −1.39587 −0.0938964
\(222\) 1.93746 0.130034
\(223\) 6.79286 0.454884 0.227442 0.973792i \(-0.426964\pi\)
0.227442 + 0.973792i \(0.426964\pi\)
\(224\) 3.02718 0.202262
\(225\) 0 0
\(226\) −12.0191 −0.799499
\(227\) −1.83089 −0.121520 −0.0607602 0.998152i \(-0.519352\pi\)
−0.0607602 + 0.998152i \(0.519352\pi\)
\(228\) −0.0387440 −0.00256588
\(229\) −11.5899 −0.765884 −0.382942 0.923772i \(-0.625089\pi\)
−0.382942 + 0.923772i \(0.625089\pi\)
\(230\) 0 0
\(231\) 2.19370 0.144335
\(232\) 2.16970 0.142448
\(233\) −3.95494 −0.259096 −0.129548 0.991573i \(-0.541353\pi\)
−0.129548 + 0.991573i \(0.541353\pi\)
\(234\) −3.45458 −0.225833
\(235\) 0 0
\(236\) −8.18848 −0.533025
\(237\) 0.399964 0.0259805
\(238\) −3.02718 −0.196223
\(239\) −24.6785 −1.59632 −0.798159 0.602447i \(-0.794192\pi\)
−0.798159 + 0.602447i \(0.794192\pi\)
\(240\) 0 0
\(241\) −19.9073 −1.28234 −0.641170 0.767399i \(-0.721551\pi\)
−0.641170 + 0.767399i \(0.721551\pi\)
\(242\) 1.00000 0.0642824
\(243\) −15.1992 −0.975030
\(244\) −5.86969 −0.375768
\(245\) 0 0
\(246\) −4.31641 −0.275205
\(247\) 0.0746295 0.00474856
\(248\) −2.74831 −0.174518
\(249\) −4.97426 −0.315231
\(250\) 0 0
\(251\) 20.6043 1.30053 0.650267 0.759705i \(-0.274657\pi\)
0.650267 + 0.759705i \(0.274657\pi\)
\(252\) −7.49183 −0.471941
\(253\) 8.40277 0.528278
\(254\) −4.16210 −0.261153
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) −0.395876 −0.0246940 −0.0123470 0.999924i \(-0.503930\pi\)
−0.0123470 + 0.999924i \(0.503930\pi\)
\(258\) 7.84830 0.488614
\(259\) −8.09342 −0.502901
\(260\) 0 0
\(261\) −5.36969 −0.332376
\(262\) −20.2513 −1.25113
\(263\) 20.9577 1.29230 0.646152 0.763208i \(-0.276377\pi\)
0.646152 + 0.763208i \(0.276377\pi\)
\(264\) 0.724668 0.0446002
\(265\) 0 0
\(266\) 0.161846 0.00992344
\(267\) −4.37584 −0.267797
\(268\) −6.60195 −0.403278
\(269\) −28.9880 −1.76743 −0.883716 0.468023i \(-0.844966\pi\)
−0.883716 + 0.468023i \(0.844966\pi\)
\(270\) 0 0
\(271\) −1.00582 −0.0610992 −0.0305496 0.999533i \(-0.509726\pi\)
−0.0305496 + 0.999533i \(0.509726\pi\)
\(272\) −1.00000 −0.0606339
\(273\) −3.06212 −0.185328
\(274\) 1.24462 0.0751900
\(275\) 0 0
\(276\) 6.08922 0.366528
\(277\) 17.5108 1.05212 0.526062 0.850446i \(-0.323668\pi\)
0.526062 + 0.850446i \(0.323668\pi\)
\(278\) 1.56712 0.0939894
\(279\) 6.80166 0.407205
\(280\) 0 0
\(281\) 33.1304 1.97639 0.988197 0.153188i \(-0.0489539\pi\)
0.988197 + 0.153188i \(0.0489539\pi\)
\(282\) 2.24850 0.133896
\(283\) 29.0481 1.72673 0.863367 0.504577i \(-0.168352\pi\)
0.863367 + 0.504577i \(0.168352\pi\)
\(284\) −3.28974 −0.195210
\(285\) 0 0
\(286\) −1.39587 −0.0825396
\(287\) 18.0311 1.06434
\(288\) −2.47486 −0.145832
\(289\) 1.00000 0.0588235
\(290\) 0 0
\(291\) 1.26127 0.0739368
\(292\) −6.31206 −0.369385
\(293\) 10.7790 0.629717 0.314859 0.949139i \(-0.398043\pi\)
0.314859 + 0.949139i \(0.398043\pi\)
\(294\) −1.56803 −0.0914496
\(295\) 0 0
\(296\) −2.67359 −0.155399
\(297\) −3.96745 −0.230215
\(298\) 3.42956 0.198669
\(299\) −11.7292 −0.678316
\(300\) 0 0
\(301\) −32.7849 −1.88969
\(302\) 15.3510 0.883351
\(303\) 10.4388 0.599693
\(304\) 0.0534645 0.00306640
\(305\) 0 0
\(306\) 2.47486 0.141478
\(307\) 4.78632 0.273170 0.136585 0.990628i \(-0.456387\pi\)
0.136585 + 0.990628i \(0.456387\pi\)
\(308\) −3.02718 −0.172489
\(309\) 0.191880 0.0109157
\(310\) 0 0
\(311\) 27.4662 1.55746 0.778731 0.627358i \(-0.215864\pi\)
0.778731 + 0.627358i \(0.215864\pi\)
\(312\) −1.01154 −0.0572673
\(313\) −22.3627 −1.26401 −0.632006 0.774964i \(-0.717768\pi\)
−0.632006 + 0.774964i \(0.717768\pi\)
\(314\) −12.0923 −0.682406
\(315\) 0 0
\(316\) −0.551928 −0.0310484
\(317\) −3.26388 −0.183318 −0.0916589 0.995790i \(-0.529217\pi\)
−0.0916589 + 0.995790i \(0.529217\pi\)
\(318\) −5.37471 −0.301399
\(319\) −2.16970 −0.121480
\(320\) 0 0
\(321\) −8.72584 −0.487029
\(322\) −25.4367 −1.41753
\(323\) −0.0534645 −0.00297484
\(324\) 4.54949 0.252749
\(325\) 0 0
\(326\) −5.33332 −0.295385
\(327\) −2.70618 −0.149652
\(328\) 5.95641 0.328888
\(329\) −9.39272 −0.517838
\(330\) 0 0
\(331\) −34.9394 −1.92044 −0.960221 0.279240i \(-0.909917\pi\)
−0.960221 + 0.279240i \(0.909917\pi\)
\(332\) 6.86419 0.376722
\(333\) 6.61675 0.362595
\(334\) −6.51295 −0.356373
\(335\) 0 0
\(336\) −2.19370 −0.119676
\(337\) 13.2745 0.723108 0.361554 0.932351i \(-0.382246\pi\)
0.361554 + 0.932351i \(0.382246\pi\)
\(338\) −11.0515 −0.601125
\(339\) 8.70986 0.473055
\(340\) 0 0
\(341\) 2.74831 0.148829
\(342\) −0.132317 −0.00715488
\(343\) −14.6400 −0.790488
\(344\) −10.8302 −0.583925
\(345\) 0 0
\(346\) 12.1605 0.653753
\(347\) 21.6176 1.16049 0.580247 0.814441i \(-0.302956\pi\)
0.580247 + 0.814441i \(0.302956\pi\)
\(348\) −1.57231 −0.0842847
\(349\) −13.2983 −0.711844 −0.355922 0.934516i \(-0.615833\pi\)
−0.355922 + 0.934516i \(0.615833\pi\)
\(350\) 0 0
\(351\) 5.53805 0.295599
\(352\) −1.00000 −0.0533002
\(353\) −19.5775 −1.04201 −0.521003 0.853555i \(-0.674442\pi\)
−0.521003 + 0.853555i \(0.674442\pi\)
\(354\) 5.93393 0.315385
\(355\) 0 0
\(356\) 6.03841 0.320035
\(357\) 2.19370 0.116103
\(358\) −10.4443 −0.551998
\(359\) 3.63893 0.192055 0.0960276 0.995379i \(-0.469386\pi\)
0.0960276 + 0.995379i \(0.469386\pi\)
\(360\) 0 0
\(361\) −18.9971 −0.999850
\(362\) 3.20921 0.168673
\(363\) −0.724668 −0.0380352
\(364\) 4.22555 0.221479
\(365\) 0 0
\(366\) 4.25357 0.222338
\(367\) −20.6075 −1.07570 −0.537852 0.843039i \(-0.680764\pi\)
−0.537852 + 0.843039i \(0.680764\pi\)
\(368\) −8.40277 −0.438025
\(369\) −14.7413 −0.767399
\(370\) 0 0
\(371\) 22.4519 1.16565
\(372\) 1.99161 0.103260
\(373\) 27.3516 1.41621 0.708107 0.706105i \(-0.249549\pi\)
0.708107 + 0.706105i \(0.249549\pi\)
\(374\) 1.00000 0.0517088
\(375\) 0 0
\(376\) −3.10280 −0.160015
\(377\) 3.02862 0.155982
\(378\) 12.0102 0.617737
\(379\) −24.7166 −1.26961 −0.634803 0.772674i \(-0.718919\pi\)
−0.634803 + 0.772674i \(0.718919\pi\)
\(380\) 0 0
\(381\) 3.01614 0.154521
\(382\) 1.15482 0.0590855
\(383\) 15.2868 0.781121 0.390561 0.920577i \(-0.372281\pi\)
0.390561 + 0.920577i \(0.372281\pi\)
\(384\) −0.724668 −0.0369805
\(385\) 0 0
\(386\) 23.6016 1.20129
\(387\) 26.8032 1.36248
\(388\) −1.74048 −0.0883594
\(389\) −31.3293 −1.58846 −0.794230 0.607617i \(-0.792126\pi\)
−0.794230 + 0.607617i \(0.792126\pi\)
\(390\) 0 0
\(391\) 8.40277 0.424946
\(392\) 2.16380 0.109288
\(393\) 14.6754 0.740277
\(394\) −0.923402 −0.0465203
\(395\) 0 0
\(396\) 2.47486 0.124366
\(397\) −0.421597 −0.0211593 −0.0105797 0.999944i \(-0.503368\pi\)
−0.0105797 + 0.999944i \(0.503368\pi\)
\(398\) −11.4023 −0.571545
\(399\) −0.117285 −0.00587159
\(400\) 0 0
\(401\) 4.99225 0.249301 0.124651 0.992201i \(-0.460219\pi\)
0.124651 + 0.992201i \(0.460219\pi\)
\(402\) 4.78422 0.238615
\(403\) −3.83628 −0.191099
\(404\) −14.4049 −0.716672
\(405\) 0 0
\(406\) 6.56806 0.325967
\(407\) 2.67359 0.132525
\(408\) 0.724668 0.0358764
\(409\) −18.2776 −0.903769 −0.451885 0.892076i \(-0.649248\pi\)
−0.451885 + 0.892076i \(0.649248\pi\)
\(410\) 0 0
\(411\) −0.901932 −0.0444890
\(412\) −0.264784 −0.0130450
\(413\) −24.7880 −1.21974
\(414\) 20.7957 1.02205
\(415\) 0 0
\(416\) 1.39587 0.0684382
\(417\) −1.13564 −0.0556125
\(418\) −0.0534645 −0.00261503
\(419\) 18.6601 0.911605 0.455803 0.890081i \(-0.349352\pi\)
0.455803 + 0.890081i \(0.349352\pi\)
\(420\) 0 0
\(421\) 9.32531 0.454488 0.227244 0.973838i \(-0.427029\pi\)
0.227244 + 0.973838i \(0.427029\pi\)
\(422\) −18.3851 −0.894973
\(423\) 7.67899 0.373365
\(424\) 7.41679 0.360191
\(425\) 0 0
\(426\) 2.38397 0.115504
\(427\) −17.7686 −0.859882
\(428\) 12.0412 0.582031
\(429\) 1.01154 0.0488377
\(430\) 0 0
\(431\) 12.0838 0.582057 0.291029 0.956714i \(-0.406003\pi\)
0.291029 + 0.956714i \(0.406003\pi\)
\(432\) 3.96745 0.190884
\(433\) −28.6421 −1.37645 −0.688225 0.725497i \(-0.741610\pi\)
−0.688225 + 0.725497i \(0.741610\pi\)
\(434\) −8.31961 −0.399354
\(435\) 0 0
\(436\) 3.73438 0.178844
\(437\) −0.449250 −0.0214905
\(438\) 4.57414 0.218561
\(439\) −31.8119 −1.51830 −0.759151 0.650915i \(-0.774385\pi\)
−0.759151 + 0.650915i \(0.774385\pi\)
\(440\) 0 0
\(441\) −5.35509 −0.255004
\(442\) −1.39587 −0.0663948
\(443\) −28.2282 −1.34116 −0.670581 0.741836i \(-0.733955\pi\)
−0.670581 + 0.741836i \(0.733955\pi\)
\(444\) 1.93746 0.0919479
\(445\) 0 0
\(446\) 6.79286 0.321651
\(447\) −2.48529 −0.117550
\(448\) 3.02718 0.143021
\(449\) −29.6729 −1.40035 −0.700175 0.713972i \(-0.746895\pi\)
−0.700175 + 0.713972i \(0.746895\pi\)
\(450\) 0 0
\(451\) −5.95641 −0.280476
\(452\) −12.0191 −0.565331
\(453\) −11.1244 −0.522669
\(454\) −1.83089 −0.0859279
\(455\) 0 0
\(456\) −0.0387440 −0.00181435
\(457\) 8.96831 0.419520 0.209760 0.977753i \(-0.432732\pi\)
0.209760 + 0.977753i \(0.432732\pi\)
\(458\) −11.5899 −0.541562
\(459\) −3.96745 −0.185185
\(460\) 0 0
\(461\) 0.685658 0.0319343 0.0159671 0.999873i \(-0.494917\pi\)
0.0159671 + 0.999873i \(0.494917\pi\)
\(462\) 2.19370 0.102060
\(463\) −1.17487 −0.0546008 −0.0273004 0.999627i \(-0.508691\pi\)
−0.0273004 + 0.999627i \(0.508691\pi\)
\(464\) 2.16970 0.100726
\(465\) 0 0
\(466\) −3.95494 −0.183209
\(467\) −15.8853 −0.735086 −0.367543 0.930007i \(-0.619801\pi\)
−0.367543 + 0.930007i \(0.619801\pi\)
\(468\) −3.45458 −0.159688
\(469\) −19.9853 −0.922834
\(470\) 0 0
\(471\) 8.76287 0.403772
\(472\) −8.18848 −0.376905
\(473\) 10.8302 0.497973
\(474\) 0.399964 0.0183710
\(475\) 0 0
\(476\) −3.02718 −0.138750
\(477\) −18.3555 −0.840440
\(478\) −24.6785 −1.12877
\(479\) 16.9229 0.773227 0.386613 0.922242i \(-0.373645\pi\)
0.386613 + 0.922242i \(0.373645\pi\)
\(480\) 0 0
\(481\) −3.73198 −0.170164
\(482\) −19.9073 −0.906752
\(483\) 18.4331 0.838737
\(484\) 1.00000 0.0454545
\(485\) 0 0
\(486\) −15.1992 −0.689451
\(487\) −28.1832 −1.27710 −0.638551 0.769580i \(-0.720466\pi\)
−0.638551 + 0.769580i \(0.720466\pi\)
\(488\) −5.86969 −0.265708
\(489\) 3.86488 0.174776
\(490\) 0 0
\(491\) 14.6487 0.661087 0.330544 0.943791i \(-0.392768\pi\)
0.330544 + 0.943791i \(0.392768\pi\)
\(492\) −4.31641 −0.194599
\(493\) −2.16970 −0.0977183
\(494\) 0.0746295 0.00335774
\(495\) 0 0
\(496\) −2.74831 −0.123403
\(497\) −9.95862 −0.446705
\(498\) −4.97426 −0.222902
\(499\) 13.8988 0.622196 0.311098 0.950378i \(-0.399303\pi\)
0.311098 + 0.950378i \(0.399303\pi\)
\(500\) 0 0
\(501\) 4.71972 0.210862
\(502\) 20.6043 0.919617
\(503\) −4.38882 −0.195688 −0.0978439 0.995202i \(-0.531195\pi\)
−0.0978439 + 0.995202i \(0.531195\pi\)
\(504\) −7.49183 −0.333713
\(505\) 0 0
\(506\) 8.40277 0.373549
\(507\) 8.00870 0.355679
\(508\) −4.16210 −0.184663
\(509\) 0.992746 0.0440027 0.0220013 0.999758i \(-0.492996\pi\)
0.0220013 + 0.999758i \(0.492996\pi\)
\(510\) 0 0
\(511\) −19.1077 −0.845276
\(512\) 1.00000 0.0441942
\(513\) 0.212118 0.00936523
\(514\) −0.395876 −0.0174613
\(515\) 0 0
\(516\) 7.84830 0.345502
\(517\) 3.10280 0.136461
\(518\) −8.09342 −0.355605
\(519\) −8.81233 −0.386818
\(520\) 0 0
\(521\) 25.4548 1.11520 0.557598 0.830111i \(-0.311723\pi\)
0.557598 + 0.830111i \(0.311723\pi\)
\(522\) −5.36969 −0.235025
\(523\) −39.1522 −1.71201 −0.856003 0.516970i \(-0.827060\pi\)
−0.856003 + 0.516970i \(0.827060\pi\)
\(524\) −20.2513 −0.884680
\(525\) 0 0
\(526\) 20.9577 0.913798
\(527\) 2.74831 0.119718
\(528\) 0.724668 0.0315371
\(529\) 47.6066 2.06985
\(530\) 0 0
\(531\) 20.2653 0.879440
\(532\) 0.161846 0.00701693
\(533\) 8.31437 0.360136
\(534\) −4.37584 −0.189361
\(535\) 0 0
\(536\) −6.60195 −0.285161
\(537\) 7.56864 0.326611
\(538\) −28.9880 −1.24976
\(539\) −2.16380 −0.0932014
\(540\) 0 0
\(541\) −32.6588 −1.40411 −0.702055 0.712123i \(-0.747734\pi\)
−0.702055 + 0.712123i \(0.747734\pi\)
\(542\) −1.00582 −0.0432037
\(543\) −2.32561 −0.0998017
\(544\) −1.00000 −0.0428746
\(545\) 0 0
\(546\) −3.06212 −0.131047
\(547\) 2.59218 0.110834 0.0554168 0.998463i \(-0.482351\pi\)
0.0554168 + 0.998463i \(0.482351\pi\)
\(548\) 1.24462 0.0531673
\(549\) 14.5266 0.619981
\(550\) 0 0
\(551\) 0.116002 0.00494184
\(552\) 6.08922 0.259174
\(553\) −1.67078 −0.0710489
\(554\) 17.5108 0.743965
\(555\) 0 0
\(556\) 1.56712 0.0664605
\(557\) −10.1094 −0.428350 −0.214175 0.976795i \(-0.568706\pi\)
−0.214175 + 0.976795i \(0.568706\pi\)
\(558\) 6.80166 0.287937
\(559\) −15.1176 −0.639405
\(560\) 0 0
\(561\) −0.724668 −0.0305955
\(562\) 33.1304 1.39752
\(563\) −10.5762 −0.445732 −0.222866 0.974849i \(-0.571541\pi\)
−0.222866 + 0.974849i \(0.571541\pi\)
\(564\) 2.24850 0.0946789
\(565\) 0 0
\(566\) 29.0481 1.22098
\(567\) 13.7721 0.578374
\(568\) −3.28974 −0.138034
\(569\) 3.76468 0.157824 0.0789118 0.996882i \(-0.474855\pi\)
0.0789118 + 0.996882i \(0.474855\pi\)
\(570\) 0 0
\(571\) −14.9685 −0.626411 −0.313206 0.949685i \(-0.601403\pi\)
−0.313206 + 0.949685i \(0.601403\pi\)
\(572\) −1.39587 −0.0583643
\(573\) −0.836858 −0.0349602
\(574\) 18.0311 0.752603
\(575\) 0 0
\(576\) −2.47486 −0.103119
\(577\) −36.9847 −1.53969 −0.769847 0.638228i \(-0.779668\pi\)
−0.769847 + 0.638228i \(0.779668\pi\)
\(578\) 1.00000 0.0415945
\(579\) −17.1034 −0.710791
\(580\) 0 0
\(581\) 20.7791 0.862063
\(582\) 1.26127 0.0522812
\(583\) −7.41679 −0.307172
\(584\) −6.31206 −0.261195
\(585\) 0 0
\(586\) 10.7790 0.445277
\(587\) 16.7220 0.690190 0.345095 0.938568i \(-0.387847\pi\)
0.345095 + 0.938568i \(0.387847\pi\)
\(588\) −1.56803 −0.0646647
\(589\) −0.146937 −0.00605443
\(590\) 0 0
\(591\) 0.669160 0.0275255
\(592\) −2.67359 −0.109884
\(593\) 24.0675 0.988334 0.494167 0.869367i \(-0.335473\pi\)
0.494167 + 0.869367i \(0.335473\pi\)
\(594\) −3.96745 −0.162787
\(595\) 0 0
\(596\) 3.42956 0.140480
\(597\) 8.26287 0.338177
\(598\) −11.7292 −0.479642
\(599\) −26.6896 −1.09051 −0.545254 0.838271i \(-0.683567\pi\)
−0.545254 + 0.838271i \(0.683567\pi\)
\(600\) 0 0
\(601\) −30.0183 −1.22447 −0.612236 0.790675i \(-0.709730\pi\)
−0.612236 + 0.790675i \(0.709730\pi\)
\(602\) −32.7849 −1.33621
\(603\) 16.3389 0.665371
\(604\) 15.3510 0.624623
\(605\) 0 0
\(606\) 10.4388 0.424047
\(607\) 2.28769 0.0928545 0.0464272 0.998922i \(-0.485216\pi\)
0.0464272 + 0.998922i \(0.485216\pi\)
\(608\) 0.0534645 0.00216827
\(609\) −4.75966 −0.192871
\(610\) 0 0
\(611\) −4.33111 −0.175218
\(612\) 2.47486 0.100040
\(613\) 31.3655 1.26684 0.633420 0.773808i \(-0.281650\pi\)
0.633420 + 0.773808i \(0.281650\pi\)
\(614\) 4.78632 0.193160
\(615\) 0 0
\(616\) −3.02718 −0.121968
\(617\) 14.6167 0.588448 0.294224 0.955737i \(-0.404939\pi\)
0.294224 + 0.955737i \(0.404939\pi\)
\(618\) 0.191880 0.00771855
\(619\) −1.57326 −0.0632346 −0.0316173 0.999500i \(-0.510066\pi\)
−0.0316173 + 0.999500i \(0.510066\pi\)
\(620\) 0 0
\(621\) −33.3376 −1.33779
\(622\) 27.4662 1.10129
\(623\) 18.2793 0.732346
\(624\) −1.01154 −0.0404941
\(625\) 0 0
\(626\) −22.3627 −0.893791
\(627\) 0.0387440 0.00154729
\(628\) −12.0923 −0.482534
\(629\) 2.67359 0.106603
\(630\) 0 0
\(631\) −4.65673 −0.185381 −0.0926907 0.995695i \(-0.529547\pi\)
−0.0926907 + 0.995695i \(0.529547\pi\)
\(632\) −0.551928 −0.0219545
\(633\) 13.3231 0.529545
\(634\) −3.26388 −0.129625
\(635\) 0 0
\(636\) −5.37471 −0.213121
\(637\) 3.02038 0.119672
\(638\) −2.16970 −0.0858992
\(639\) 8.14164 0.322078
\(640\) 0 0
\(641\) 20.8853 0.824920 0.412460 0.910976i \(-0.364670\pi\)
0.412460 + 0.910976i \(0.364670\pi\)
\(642\) −8.72584 −0.344381
\(643\) 36.7808 1.45049 0.725247 0.688489i \(-0.241726\pi\)
0.725247 + 0.688489i \(0.241726\pi\)
\(644\) −25.4367 −1.00235
\(645\) 0 0
\(646\) −0.0534645 −0.00210353
\(647\) 7.36088 0.289386 0.144693 0.989477i \(-0.453781\pi\)
0.144693 + 0.989477i \(0.453781\pi\)
\(648\) 4.54949 0.178721
\(649\) 8.18848 0.321426
\(650\) 0 0
\(651\) 6.02895 0.236293
\(652\) −5.33332 −0.208869
\(653\) 12.6554 0.495242 0.247621 0.968857i \(-0.420351\pi\)
0.247621 + 0.968857i \(0.420351\pi\)
\(654\) −2.70618 −0.105820
\(655\) 0 0
\(656\) 5.95641 0.232559
\(657\) 15.6214 0.609450
\(658\) −9.39272 −0.366167
\(659\) −1.31820 −0.0513496 −0.0256748 0.999670i \(-0.508173\pi\)
−0.0256748 + 0.999670i \(0.508173\pi\)
\(660\) 0 0
\(661\) 30.2120 1.17511 0.587555 0.809184i \(-0.300091\pi\)
0.587555 + 0.809184i \(0.300091\pi\)
\(662\) −34.9394 −1.35796
\(663\) 1.01154 0.0392851
\(664\) 6.86419 0.266382
\(665\) 0 0
\(666\) 6.61675 0.256394
\(667\) −18.2315 −0.705926
\(668\) −6.51295 −0.251994
\(669\) −4.92257 −0.190317
\(670\) 0 0
\(671\) 5.86969 0.226597
\(672\) −2.19370 −0.0846237
\(673\) 39.6417 1.52808 0.764038 0.645171i \(-0.223214\pi\)
0.764038 + 0.645171i \(0.223214\pi\)
\(674\) 13.2745 0.511315
\(675\) 0 0
\(676\) −11.0515 −0.425059
\(677\) −3.27436 −0.125844 −0.0629219 0.998018i \(-0.520042\pi\)
−0.0629219 + 0.998018i \(0.520042\pi\)
\(678\) 8.70986 0.334500
\(679\) −5.26873 −0.202195
\(680\) 0 0
\(681\) 1.32679 0.0508426
\(682\) 2.74831 0.105238
\(683\) 17.6334 0.674725 0.337362 0.941375i \(-0.390465\pi\)
0.337362 + 0.941375i \(0.390465\pi\)
\(684\) −0.132317 −0.00505927
\(685\) 0 0
\(686\) −14.6400 −0.558959
\(687\) 8.39885 0.320436
\(688\) −10.8302 −0.412897
\(689\) 10.3529 0.394413
\(690\) 0 0
\(691\) 21.2663 0.809007 0.404504 0.914536i \(-0.367444\pi\)
0.404504 + 0.914536i \(0.367444\pi\)
\(692\) 12.1605 0.462273
\(693\) 7.49183 0.284591
\(694\) 21.6176 0.820593
\(695\) 0 0
\(696\) −1.57231 −0.0595983
\(697\) −5.95641 −0.225615
\(698\) −13.2983 −0.503350
\(699\) 2.86601 0.108403
\(700\) 0 0
\(701\) 28.9152 1.09211 0.546055 0.837749i \(-0.316129\pi\)
0.546055 + 0.837749i \(0.316129\pi\)
\(702\) 5.53805 0.209020
\(703\) −0.142942 −0.00539116
\(704\) −1.00000 −0.0376889
\(705\) 0 0
\(706\) −19.5775 −0.736810
\(707\) −43.6063 −1.63998
\(708\) 5.93393 0.223011
\(709\) −44.2276 −1.66100 −0.830501 0.557018i \(-0.811946\pi\)
−0.830501 + 0.557018i \(0.811946\pi\)
\(710\) 0 0
\(711\) 1.36594 0.0512269
\(712\) 6.03841 0.226299
\(713\) 23.0934 0.864854
\(714\) 2.19370 0.0820970
\(715\) 0 0
\(716\) −10.4443 −0.390321
\(717\) 17.8837 0.667879
\(718\) 3.63893 0.135804
\(719\) 20.7101 0.772356 0.386178 0.922424i \(-0.373795\pi\)
0.386178 + 0.922424i \(0.373795\pi\)
\(720\) 0 0
\(721\) −0.801547 −0.0298512
\(722\) −18.9971 −0.707000
\(723\) 14.4262 0.536515
\(724\) 3.20921 0.119270
\(725\) 0 0
\(726\) −0.724668 −0.0268949
\(727\) 16.8122 0.623531 0.311766 0.950159i \(-0.399080\pi\)
0.311766 + 0.950159i \(0.399080\pi\)
\(728\) 4.22555 0.156609
\(729\) −2.63407 −0.0975583
\(730\) 0 0
\(731\) 10.8302 0.400569
\(732\) 4.25357 0.157217
\(733\) 38.6736 1.42844 0.714221 0.699920i \(-0.246781\pi\)
0.714221 + 0.699920i \(0.246781\pi\)
\(734\) −20.6075 −0.760638
\(735\) 0 0
\(736\) −8.40277 −0.309730
\(737\) 6.60195 0.243186
\(738\) −14.7413 −0.542633
\(739\) −21.5690 −0.793427 −0.396713 0.917943i \(-0.629849\pi\)
−0.396713 + 0.917943i \(0.629849\pi\)
\(740\) 0 0
\(741\) −0.0540816 −0.00198674
\(742\) 22.4519 0.824236
\(743\) −25.3310 −0.929304 −0.464652 0.885493i \(-0.653821\pi\)
−0.464652 + 0.885493i \(0.653821\pi\)
\(744\) 1.99161 0.0730159
\(745\) 0 0
\(746\) 27.3516 1.00141
\(747\) −16.9879 −0.621555
\(748\) 1.00000 0.0365636
\(749\) 36.4507 1.33188
\(750\) 0 0
\(751\) −53.1871 −1.94082 −0.970412 0.241457i \(-0.922375\pi\)
−0.970412 + 0.241457i \(0.922375\pi\)
\(752\) −3.10280 −0.113147
\(753\) −14.9313 −0.544127
\(754\) 3.02862 0.110296
\(755\) 0 0
\(756\) 12.0102 0.436806
\(757\) −4.36305 −0.158578 −0.0792889 0.996852i \(-0.525265\pi\)
−0.0792889 + 0.996852i \(0.525265\pi\)
\(758\) −24.7166 −0.897747
\(759\) −6.08922 −0.221025
\(760\) 0 0
\(761\) −7.13617 −0.258686 −0.129343 0.991600i \(-0.541287\pi\)
−0.129343 + 0.991600i \(0.541287\pi\)
\(762\) 3.01614 0.109263
\(763\) 11.3046 0.409255
\(764\) 1.15482 0.0417798
\(765\) 0 0
\(766\) 15.2868 0.552336
\(767\) −11.4301 −0.412716
\(768\) −0.724668 −0.0261492
\(769\) 46.7698 1.68656 0.843281 0.537473i \(-0.180621\pi\)
0.843281 + 0.537473i \(0.180621\pi\)
\(770\) 0 0
\(771\) 0.286878 0.0103317
\(772\) 23.6016 0.849442
\(773\) −26.7223 −0.961134 −0.480567 0.876958i \(-0.659569\pi\)
−0.480567 + 0.876958i \(0.659569\pi\)
\(774\) 26.8032 0.963421
\(775\) 0 0
\(776\) −1.74048 −0.0624795
\(777\) 5.86504 0.210407
\(778\) −31.3293 −1.12321
\(779\) 0.318456 0.0114099
\(780\) 0 0
\(781\) 3.28974 0.117716
\(782\) 8.40277 0.300482
\(783\) 8.60817 0.307631
\(784\) 2.16380 0.0772785
\(785\) 0 0
\(786\) 14.6754 0.523455
\(787\) 14.8532 0.529460 0.264730 0.964323i \(-0.414717\pi\)
0.264730 + 0.964323i \(0.414717\pi\)
\(788\) −0.923402 −0.0328948
\(789\) −15.1873 −0.540684
\(790\) 0 0
\(791\) −36.3840 −1.29366
\(792\) 2.47486 0.0879402
\(793\) −8.19332 −0.290953
\(794\) −0.421597 −0.0149619
\(795\) 0 0
\(796\) −11.4023 −0.404143
\(797\) −1.85452 −0.0656904 −0.0328452 0.999460i \(-0.510457\pi\)
−0.0328452 + 0.999460i \(0.510457\pi\)
\(798\) −0.117285 −0.00415184
\(799\) 3.10280 0.109769
\(800\) 0 0
\(801\) −14.9442 −0.528027
\(802\) 4.99225 0.176283
\(803\) 6.31206 0.222748
\(804\) 4.78422 0.168726
\(805\) 0 0
\(806\) −3.83628 −0.135127
\(807\) 21.0067 0.739471
\(808\) −14.4049 −0.506764
\(809\) −23.4811 −0.825550 −0.412775 0.910833i \(-0.635440\pi\)
−0.412775 + 0.910833i \(0.635440\pi\)
\(810\) 0 0
\(811\) 18.8763 0.662837 0.331419 0.943484i \(-0.392473\pi\)
0.331419 + 0.943484i \(0.392473\pi\)
\(812\) 6.56806 0.230494
\(813\) 0.728885 0.0255631
\(814\) 2.67359 0.0937092
\(815\) 0 0
\(816\) 0.724668 0.0253684
\(817\) −0.579031 −0.0202577
\(818\) −18.2776 −0.639061
\(819\) −10.4576 −0.365419
\(820\) 0 0
\(821\) 41.5288 1.44937 0.724683 0.689083i \(-0.241986\pi\)
0.724683 + 0.689083i \(0.241986\pi\)
\(822\) −0.901932 −0.0314585
\(823\) −22.7171 −0.791868 −0.395934 0.918279i \(-0.629579\pi\)
−0.395934 + 0.918279i \(0.629579\pi\)
\(824\) −0.264784 −0.00922417
\(825\) 0 0
\(826\) −24.7880 −0.862484
\(827\) −27.0014 −0.938930 −0.469465 0.882951i \(-0.655553\pi\)
−0.469465 + 0.882951i \(0.655553\pi\)
\(828\) 20.7957 0.722699
\(829\) 12.8741 0.447136 0.223568 0.974688i \(-0.428229\pi\)
0.223568 + 0.974688i \(0.428229\pi\)
\(830\) 0 0
\(831\) −12.6895 −0.440195
\(832\) 1.39587 0.0483931
\(833\) −2.16380 −0.0749712
\(834\) −1.13564 −0.0393240
\(835\) 0 0
\(836\) −0.0534645 −0.00184911
\(837\) −10.9038 −0.376889
\(838\) 18.6601 0.644602
\(839\) −10.3177 −0.356206 −0.178103 0.984012i \(-0.556996\pi\)
−0.178103 + 0.984012i \(0.556996\pi\)
\(840\) 0 0
\(841\) −24.2924 −0.837669
\(842\) 9.32531 0.321371
\(843\) −24.0085 −0.826898
\(844\) −18.3851 −0.632841
\(845\) 0 0
\(846\) 7.67899 0.264009
\(847\) 3.02718 0.104015
\(848\) 7.41679 0.254694
\(849\) −21.0503 −0.722443
\(850\) 0 0
\(851\) 22.4655 0.770109
\(852\) 2.38397 0.0816734
\(853\) −21.1747 −0.725008 −0.362504 0.931982i \(-0.618078\pi\)
−0.362504 + 0.931982i \(0.618078\pi\)
\(854\) −17.7686 −0.608028
\(855\) 0 0
\(856\) 12.0412 0.411558
\(857\) −16.9109 −0.577665 −0.288833 0.957380i \(-0.593267\pi\)
−0.288833 + 0.957380i \(0.593267\pi\)
\(858\) 1.01154 0.0345335
\(859\) −18.4243 −0.628630 −0.314315 0.949319i \(-0.601775\pi\)
−0.314315 + 0.949319i \(0.601775\pi\)
\(860\) 0 0
\(861\) −13.0666 −0.445307
\(862\) 12.0838 0.411577
\(863\) −6.89704 −0.234778 −0.117389 0.993086i \(-0.537452\pi\)
−0.117389 + 0.993086i \(0.537452\pi\)
\(864\) 3.96745 0.134975
\(865\) 0 0
\(866\) −28.6421 −0.973297
\(867\) −0.724668 −0.0246110
\(868\) −8.31961 −0.282386
\(869\) 0.551928 0.0187229
\(870\) 0 0
\(871\) −9.21547 −0.312254
\(872\) 3.73438 0.126462
\(873\) 4.30743 0.145785
\(874\) −0.449250 −0.0151961
\(875\) 0 0
\(876\) 4.57414 0.154546
\(877\) −29.8559 −1.00816 −0.504082 0.863656i \(-0.668169\pi\)
−0.504082 + 0.863656i \(0.668169\pi\)
\(878\) −31.8119 −1.07360
\(879\) −7.81121 −0.263466
\(880\) 0 0
\(881\) −31.1015 −1.04784 −0.523918 0.851769i \(-0.675530\pi\)
−0.523918 + 0.851769i \(0.675530\pi\)
\(882\) −5.35509 −0.180315
\(883\) 8.75992 0.294795 0.147397 0.989077i \(-0.452910\pi\)
0.147397 + 0.989077i \(0.452910\pi\)
\(884\) −1.39587 −0.0469482
\(885\) 0 0
\(886\) −28.2282 −0.948345
\(887\) −43.6395 −1.46527 −0.732635 0.680621i \(-0.761710\pi\)
−0.732635 + 0.680621i \(0.761710\pi\)
\(888\) 1.93746 0.0650170
\(889\) −12.5994 −0.422570
\(890\) 0 0
\(891\) −4.54949 −0.152414
\(892\) 6.79286 0.227442
\(893\) −0.165890 −0.00555129
\(894\) −2.48529 −0.0831206
\(895\) 0 0
\(896\) 3.02718 0.101131
\(897\) 8.49976 0.283799
\(898\) −29.6729 −0.990196
\(899\) −5.96300 −0.198877
\(900\) 0 0
\(901\) −7.41679 −0.247089
\(902\) −5.95641 −0.198327
\(903\) 23.7582 0.790623
\(904\) −12.0191 −0.399750
\(905\) 0 0
\(906\) −11.1244 −0.369582
\(907\) −32.3656 −1.07468 −0.537342 0.843365i \(-0.680571\pi\)
−0.537342 + 0.843365i \(0.680571\pi\)
\(908\) −1.83089 −0.0607602
\(909\) 35.6501 1.18244
\(910\) 0 0
\(911\) 27.5847 0.913921 0.456961 0.889487i \(-0.348938\pi\)
0.456961 + 0.889487i \(0.348938\pi\)
\(912\) −0.0387440 −0.00128294
\(913\) −6.86419 −0.227172
\(914\) 8.96831 0.296645
\(915\) 0 0
\(916\) −11.5899 −0.382942
\(917\) −61.3041 −2.02444
\(918\) −3.96745 −0.130945
\(919\) 41.8655 1.38102 0.690508 0.723325i \(-0.257387\pi\)
0.690508 + 0.723325i \(0.257387\pi\)
\(920\) 0 0
\(921\) −3.46849 −0.114291
\(922\) 0.685658 0.0225809
\(923\) −4.59205 −0.151149
\(924\) 2.19370 0.0721673
\(925\) 0 0
\(926\) −1.17487 −0.0386086
\(927\) 0.655302 0.0215229
\(928\) 2.16970 0.0712238
\(929\) −8.76334 −0.287516 −0.143758 0.989613i \(-0.545919\pi\)
−0.143758 + 0.989613i \(0.545919\pi\)
\(930\) 0 0
\(931\) 0.115686 0.00379147
\(932\) −3.95494 −0.129548
\(933\) −19.9038 −0.651622
\(934\) −15.8853 −0.519784
\(935\) 0 0
\(936\) −3.45458 −0.112916
\(937\) 38.8017 1.26760 0.633798 0.773499i \(-0.281495\pi\)
0.633798 + 0.773499i \(0.281495\pi\)
\(938\) −19.9853 −0.652542
\(939\) 16.2055 0.528846
\(940\) 0 0
\(941\) −34.3084 −1.11842 −0.559211 0.829025i \(-0.688896\pi\)
−0.559211 + 0.829025i \(0.688896\pi\)
\(942\) 8.76287 0.285510
\(943\) −50.0503 −1.62986
\(944\) −8.18848 −0.266512
\(945\) 0 0
\(946\) 10.8302 0.352120
\(947\) 13.5470 0.440219 0.220110 0.975475i \(-0.429358\pi\)
0.220110 + 0.975475i \(0.429358\pi\)
\(948\) 0.399964 0.0129902
\(949\) −8.81082 −0.286011
\(950\) 0 0
\(951\) 2.36523 0.0766978
\(952\) −3.02718 −0.0981114
\(953\) 51.1084 1.65556 0.827782 0.561050i \(-0.189603\pi\)
0.827782 + 0.561050i \(0.189603\pi\)
\(954\) −18.3555 −0.594281
\(955\) 0 0
\(956\) −24.6785 −0.798159
\(957\) 1.57231 0.0508256
\(958\) 16.9229 0.546754
\(959\) 3.76767 0.121664
\(960\) 0 0
\(961\) −23.4468 −0.756349
\(962\) −3.73198 −0.120324
\(963\) −29.8001 −0.960296
\(964\) −19.9073 −0.641170
\(965\) 0 0
\(966\) 18.4331 0.593076
\(967\) 51.3932 1.65269 0.826347 0.563161i \(-0.190415\pi\)
0.826347 + 0.563161i \(0.190415\pi\)
\(968\) 1.00000 0.0321412
\(969\) 0.0387440 0.00124464
\(970\) 0 0
\(971\) 8.91971 0.286247 0.143124 0.989705i \(-0.454285\pi\)
0.143124 + 0.989705i \(0.454285\pi\)
\(972\) −15.1992 −0.487515
\(973\) 4.74394 0.152084
\(974\) −28.1832 −0.903047
\(975\) 0 0
\(976\) −5.86969 −0.187884
\(977\) 35.7429 1.14352 0.571758 0.820423i \(-0.306262\pi\)
0.571758 + 0.820423i \(0.306262\pi\)
\(978\) 3.86488 0.123585
\(979\) −6.03841 −0.192988
\(980\) 0 0
\(981\) −9.24205 −0.295076
\(982\) 14.6487 0.467459
\(983\) −55.8385 −1.78097 −0.890485 0.455012i \(-0.849635\pi\)
−0.890485 + 0.455012i \(0.849635\pi\)
\(984\) −4.31641 −0.137602
\(985\) 0 0
\(986\) −2.16970 −0.0690973
\(987\) 6.80660 0.216657
\(988\) 0.0746295 0.00237428
\(989\) 91.0037 2.89375
\(990\) 0 0
\(991\) −17.6297 −0.560025 −0.280012 0.959996i \(-0.590339\pi\)
−0.280012 + 0.959996i \(0.590339\pi\)
\(992\) −2.74831 −0.0872588
\(993\) 25.3194 0.803488
\(994\) −9.95862 −0.315868
\(995\) 0 0
\(996\) −4.97426 −0.157615
\(997\) 18.2497 0.577974 0.288987 0.957333i \(-0.406682\pi\)
0.288987 + 0.957333i \(0.406682\pi\)
\(998\) 13.8988 0.439959
\(999\) −10.6073 −0.335601
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 9350.2.a.dc.1.4 7
5.2 odd 4 1870.2.b.d.749.11 yes 14
5.3 odd 4 1870.2.b.d.749.4 14
5.4 even 2 9350.2.a.db.1.4 7
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1870.2.b.d.749.4 14 5.3 odd 4
1870.2.b.d.749.11 yes 14 5.2 odd 4
9350.2.a.db.1.4 7 5.4 even 2
9350.2.a.dc.1.4 7 1.1 even 1 trivial