Properties

Label 9350.2.a.cw
Level $9350$
Weight $2$
Character orbit 9350.a
Self dual yes
Analytic conductor $74.660$
Analytic rank $0$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [9350,2,Mod(1,9350)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(9350, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("9350.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 9350 = 2 \cdot 5^{2} \cdot 11 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 9350.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [5,5,4,5,0,4,-1,5,5,0,5] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(74.6601258899\)
Analytic rank: \(0\)
Dimension: \(5\)
Coefficient field: 5.5.3484752.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - x^{4} - 8x^{3} + 4x^{2} + 12x - 6 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3,\beta_4\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + q^{2} + ( - \beta_1 + 1) q^{3} + q^{4} + ( - \beta_1 + 1) q^{6} + (\beta_{3} - \beta_1) q^{7} + q^{8} + (\beta_{2} - \beta_1 + 1) q^{9} + q^{11} + ( - \beta_1 + 1) q^{12} - \beta_{4} q^{13} + (\beta_{3} - \beta_1) q^{14}+ \cdots + (\beta_{2} - \beta_1 + 1) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q + 5 q^{2} + 4 q^{3} + 5 q^{4} + 4 q^{6} - q^{7} + 5 q^{8} + 5 q^{9} + 5 q^{11} + 4 q^{12} - 2 q^{13} - q^{14} + 5 q^{16} - 5 q^{17} + 5 q^{18} - 8 q^{19} + 8 q^{21} + 5 q^{22} + 2 q^{23} + 4 q^{24}+ \cdots + 5 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{5} - x^{4} - 8x^{3} + 4x^{2} + 12x - 6 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - \nu - 3 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{3} - 2\nu^{2} - 4\nu + 5 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( \nu^{4} - \nu^{3} - 7\nu^{2} + 2\nu + 7 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + \beta _1 + 3 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{3} + 2\beta_{2} + 6\beta _1 + 1 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( \beta_{4} + \beta_{3} + 9\beta_{2} + 11\beta _1 + 15 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
2.88032
1.27059
0.503193
−1.54426
−2.10984
1.00000 −1.88032 1.00000 0 −1.88032 −2.09827 1.00000 0.535597 0
1.2 1.00000 −0.270590 1.00000 0 −0.270590 −2.53051 1.00000 −2.92678 0
1.3 1.00000 0.496807 1.00000 0 0.496807 2.10504 1.00000 −2.75318 0
1.4 1.00000 2.54426 1.00000 0 2.54426 4.26913 1.00000 3.47328 0
1.5 1.00000 3.10984 1.00000 0 3.10984 −2.74539 1.00000 6.67109 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.5
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(5\) \( -1 \)
\(11\) \( -1 \)
\(17\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 9350.2.a.cw yes 5
5.b even 2 1 9350.2.a.cm 5
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
9350.2.a.cm 5 5.b even 2 1
9350.2.a.cw yes 5 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(9350))\):

\( T_{3}^{5} - 4T_{3}^{4} - 2T_{3}^{3} + 16T_{3}^{2} - 3T_{3} - 2 \) Copy content Toggle raw display
\( T_{7}^{5} + T_{7}^{4} - 20T_{7}^{3} - 34T_{7}^{2} + 69T_{7} + 131 \) Copy content Toggle raw display
\( T_{13}^{5} + 2T_{13}^{4} - 24T_{13}^{3} + 14T_{13}^{2} + 19T_{13} - 8 \) Copy content Toggle raw display
\( T_{19}^{5} + 8T_{19}^{4} - 12T_{19}^{3} - 160T_{19}^{2} - 200T_{19} + 112 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T - 1)^{5} \) Copy content Toggle raw display
$3$ \( T^{5} - 4 T^{4} + \cdots - 2 \) Copy content Toggle raw display
$5$ \( T^{5} \) Copy content Toggle raw display
$7$ \( T^{5} + T^{4} + \cdots + 131 \) Copy content Toggle raw display
$11$ \( (T - 1)^{5} \) Copy content Toggle raw display
$13$ \( T^{5} + 2 T^{4} + \cdots - 8 \) Copy content Toggle raw display
$17$ \( (T + 1)^{5} \) Copy content Toggle raw display
$19$ \( T^{5} + 8 T^{4} + \cdots + 112 \) Copy content Toggle raw display
$23$ \( T^{5} - 2 T^{4} + \cdots + 24 \) Copy content Toggle raw display
$29$ \( T^{5} + 5 T^{4} + \cdots + 24 \) Copy content Toggle raw display
$31$ \( T^{5} - 8 T^{4} + \cdots + 76 \) Copy content Toggle raw display
$37$ \( T^{5} - 16 T^{4} + \cdots - 2608 \) Copy content Toggle raw display
$41$ \( T^{5} - 9 T^{4} + \cdots + 162 \) Copy content Toggle raw display
$43$ \( T^{5} - 8 T^{4} + \cdots - 12800 \) Copy content Toggle raw display
$47$ \( T^{5} - T^{4} + \cdots - 12978 \) Copy content Toggle raw display
$53$ \( T^{5} - 34 T^{4} + \cdots + 7218 \) Copy content Toggle raw display
$59$ \( T^{5} + 7 T^{4} + \cdots + 1944 \) Copy content Toggle raw display
$61$ \( T^{5} + 21 T^{4} + \cdots + 50 \) Copy content Toggle raw display
$67$ \( T^{5} - 19 T^{4} + \cdots + 1728 \) Copy content Toggle raw display
$71$ \( T^{5} - 24 T^{4} + \cdots + 3516 \) Copy content Toggle raw display
$73$ \( T^{5} - 12 T^{4} + \cdots - 10708 \) Copy content Toggle raw display
$79$ \( T^{5} - 21 T^{4} + \cdots - 1249 \) Copy content Toggle raw display
$83$ \( T^{5} - 12 T^{4} + \cdots - 2268 \) Copy content Toggle raw display
$89$ \( T^{5} - 9 T^{4} + \cdots - 6804 \) Copy content Toggle raw display
$97$ \( T^{5} - 2 T^{4} + \cdots - 5144 \) Copy content Toggle raw display
show more
show less