Properties

Label 931.2.f.j
Level $931$
Weight $2$
Character orbit 931.f
Analytic conductor $7.434$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [931,2,Mod(324,931)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("931.324"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(931, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([2, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 931 = 7^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 931.f (of order \(3\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,3,-3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.43407242818\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\sqrt{-3}, \sqrt{5})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} + 2x^{2} + x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 133)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta_{3} + \beta_1 + 1) q^{2} + (\beta_{3} + \beta_{2} + \beta_1) q^{3} + (3 \beta_{2} + 3 \beta_1) q^{4} + ( - \beta_{3} + 2 \beta_1 - 1) q^{5} + (3 \beta_{2} - 2) q^{6} + (4 \beta_{2} - 1) q^{8}+ \cdots + (14 \beta_{2} + 1) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 3 q^{2} - 3 q^{3} - 3 q^{4} - 14 q^{6} - 12 q^{8} - q^{9} - 5 q^{10} + 9 q^{11} - 12 q^{12} - 4 q^{13} - 10 q^{15} - 13 q^{16} - 3 q^{17} + 9 q^{18} - 2 q^{19} - 30 q^{20} + 32 q^{22} + 6 q^{23}+ \cdots - 24 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - x^{3} + 2x^{2} + x + 1 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{3} + 1 ) / 2 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( -\nu^{3} + 2\nu^{2} - 2\nu - 1 ) / 2 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{3} + \beta_{2} + \beta_1 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( 2\beta_{2} - 1 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/931\mathbb{Z}\right)^\times\).

\(n\) \(248\) \(344\)
\(\chi(n)\) \(-1 - \beta_{3}\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
324.1
−0.309017 + 0.535233i
0.809017 1.40126i
−0.309017 0.535233i
0.809017 + 1.40126i
0.190983 0.330792i −0.190983 0.330792i 0.927051 + 1.60570i −1.11803 + 1.93649i −0.145898 0 1.47214 1.42705 2.47172i 0.427051 + 0.739674i
324.2 1.30902 2.26728i −1.30902 2.26728i −2.42705 4.20378i 1.11803 1.93649i −6.85410 0 −7.47214 −1.92705 + 3.33775i −2.92705 5.06980i
704.1 0.190983 + 0.330792i −0.190983 + 0.330792i 0.927051 1.60570i −1.11803 1.93649i −0.145898 0 1.47214 1.42705 + 2.47172i 0.427051 0.739674i
704.2 1.30902 + 2.26728i −1.30902 + 2.26728i −2.42705 + 4.20378i 1.11803 + 1.93649i −6.85410 0 −7.47214 −1.92705 3.33775i −2.92705 + 5.06980i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 931.2.f.j 4
7.b odd 2 1 931.2.f.k 4
7.c even 3 1 931.2.a.d 2
7.c even 3 1 inner 931.2.f.j 4
7.d odd 6 1 133.2.a.a 2
7.d odd 6 1 931.2.f.k 4
21.g even 6 1 1197.2.a.j 2
21.h odd 6 1 8379.2.a.bn 2
28.f even 6 1 2128.2.a.o 2
35.i odd 6 1 3325.2.a.q 2
56.j odd 6 1 8512.2.a.be 2
56.m even 6 1 8512.2.a.j 2
133.o even 6 1 2527.2.a.e 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
133.2.a.a 2 7.d odd 6 1
931.2.a.d 2 7.c even 3 1
931.2.f.j 4 1.a even 1 1 trivial
931.2.f.j 4 7.c even 3 1 inner
931.2.f.k 4 7.b odd 2 1
931.2.f.k 4 7.d odd 6 1
1197.2.a.j 2 21.g even 6 1
2128.2.a.o 2 28.f even 6 1
2527.2.a.e 2 133.o even 6 1
3325.2.a.q 2 35.i odd 6 1
8379.2.a.bn 2 21.h odd 6 1
8512.2.a.j 2 56.m even 6 1
8512.2.a.be 2 56.j odd 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(931, [\chi])\):

\( T_{2}^{4} - 3T_{2}^{3} + 8T_{2}^{2} - 3T_{2} + 1 \) Copy content Toggle raw display
\( T_{3}^{4} + 3T_{3}^{3} + 8T_{3}^{2} + 3T_{3} + 1 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} - 3 T^{3} + \cdots + 1 \) Copy content Toggle raw display
$3$ \( T^{4} + 3 T^{3} + \cdots + 1 \) Copy content Toggle raw display
$5$ \( T^{4} + 5T^{2} + 25 \) Copy content Toggle raw display
$7$ \( T^{4} \) Copy content Toggle raw display
$11$ \( T^{4} - 9 T^{3} + \cdots + 361 \) Copy content Toggle raw display
$13$ \( (T + 1)^{4} \) Copy content Toggle raw display
$17$ \( T^{4} + 3 T^{3} + \cdots + 81 \) Copy content Toggle raw display
$19$ \( (T^{2} + T + 1)^{2} \) Copy content Toggle raw display
$23$ \( (T^{2} - 3 T + 9)^{2} \) Copy content Toggle raw display
$29$ \( (T^{2} + 9 T + 19)^{2} \) Copy content Toggle raw display
$31$ \( T^{4} - 5 T^{3} + \cdots + 25 \) Copy content Toggle raw display
$37$ \( T^{4} - 8 T^{3} + \cdots + 841 \) Copy content Toggle raw display
$41$ \( (T^{2} + 3 T + 1)^{2} \) Copy content Toggle raw display
$43$ \( (T + 2)^{4} \) Copy content Toggle raw display
$47$ \( T^{4} + 125 T^{2} + 15625 \) Copy content Toggle raw display
$53$ \( T^{4} - 9 T^{3} + \cdots + 121 \) Copy content Toggle raw display
$59$ \( T^{4} + 12 T^{3} + \cdots + 81 \) Copy content Toggle raw display
$61$ \( T^{4} + 45T^{2} + 2025 \) Copy content Toggle raw display
$67$ \( T^{4} - 7 T^{3} + \cdots + 7921 \) Copy content Toggle raw display
$71$ \( (T^{2} - 6 T - 11)^{2} \) Copy content Toggle raw display
$73$ \( T^{4} - 15 T^{3} + \cdots + 2025 \) Copy content Toggle raw display
$79$ \( (T^{2} - 10 T + 100)^{2} \) Copy content Toggle raw display
$83$ \( (T^{2} - 9 T + 9)^{2} \) Copy content Toggle raw display
$89$ \( T^{4} - 18 T^{3} + \cdots + 1296 \) Copy content Toggle raw display
$97$ \( (T^{2} + 2 T - 179)^{2} \) Copy content Toggle raw display
show more
show less