Properties

Label 93.4.a.e
Level $93$
Weight $4$
Character orbit 93.a
Self dual yes
Analytic conductor $5.487$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [93,4,Mod(1,93)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("93.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(93, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 93 = 3 \cdot 31 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 93.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(5.48717763053\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.2089.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - 13x - 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta_1 + 1) q^{2} - 3 q^{3} + (2 \beta_{2} + 3 \beta_1 + 1) q^{4} + ( - \beta_{2} + 2 \beta_1 + 3) q^{5} + ( - 3 \beta_1 - 3) q^{6} + ( - 5 \beta_{2} + \beta_1 + 8) q^{7} + (6 \beta_{2} + 3 \beta_1 + 13) q^{8}+ \cdots + ( - 36 \beta_{2} - 27 \beta_1 + 189) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + 3 q^{2} - 9 q^{3} + 5 q^{4} + 8 q^{5} - 9 q^{6} + 19 q^{7} + 45 q^{8} + 27 q^{9} + 67 q^{10} + 59 q^{11} - 15 q^{12} + 25 q^{13} + 80 q^{14} - 24 q^{15} + 41 q^{16} + 71 q^{17} + 27 q^{18} + 52 q^{19}+ \cdots + 531 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{3} - 13x - 4 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{2} - \nu - 8 ) / 2 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( 2\beta_{2} + \beta _1 + 8 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−3.44055
−0.309984
3.75054
−2.44055 −3.00000 −2.04371 −7.52008 7.32165 −13.6354 24.5122 9.00000 18.3531
1.2 0.690016 −3.00000 −7.52388 6.17700 −2.07005 26.6748 −10.7117 9.00000 4.26223
1.3 4.75054 −3.00000 14.5676 9.34308 −14.2516 5.96059 31.1995 9.00000 44.3846
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( +1 \)
\(31\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 93.4.a.e 3
3.b odd 2 1 279.4.a.f 3
4.b odd 2 1 1488.4.a.q 3
5.b even 2 1 2325.4.a.o 3
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
93.4.a.e 3 1.a even 1 1 trivial
279.4.a.f 3 3.b odd 2 1
1488.4.a.q 3 4.b odd 2 1
2325.4.a.o 3 5.b even 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{3} - 3T_{2}^{2} - 10T_{2} + 8 \) acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(93))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{3} - 3 T^{2} + \cdots + 8 \) Copy content Toggle raw display
$3$ \( (T + 3)^{3} \) Copy content Toggle raw display
$5$ \( T^{3} - 8 T^{2} + \cdots + 434 \) Copy content Toggle raw display
$7$ \( T^{3} - 19 T^{2} + \cdots + 2168 \) Copy content Toggle raw display
$11$ \( T^{3} - 59 T^{2} + \cdots - 3184 \) Copy content Toggle raw display
$13$ \( T^{3} - 25 T^{2} + \cdots - 3136 \) Copy content Toggle raw display
$17$ \( T^{3} - 71 T^{2} + \cdots + 93584 \) Copy content Toggle raw display
$19$ \( T^{3} - 52 T^{2} + \cdots + 61516 \) Copy content Toggle raw display
$23$ \( T^{3} - 120 T^{2} + \cdots - 12544 \) Copy content Toggle raw display
$29$ \( T^{3} + 70 T^{2} + \cdots - 124864 \) Copy content Toggle raw display
$31$ \( (T + 31)^{3} \) Copy content Toggle raw display
$37$ \( T^{3} + 198 T^{2} + \cdots - 506488 \) Copy content Toggle raw display
$41$ \( T^{3} - 403 T^{2} + \cdots + 534388 \) Copy content Toggle raw display
$43$ \( T^{3} - 32 T^{2} + \cdots + 2465552 \) Copy content Toggle raw display
$47$ \( T^{3} - 675 T^{2} + \cdots + 9589304 \) Copy content Toggle raw display
$53$ \( T^{3} - 454 T^{2} + \cdots + 103574624 \) Copy content Toggle raw display
$59$ \( T^{3} - 1159 T^{2} + \cdots + 156232684 \) Copy content Toggle raw display
$61$ \( T^{3} + 563 T^{2} + \cdots + 4561216 \) Copy content Toggle raw display
$67$ \( T^{3} - 801 T^{2} + \cdots + 450212528 \) Copy content Toggle raw display
$71$ \( T^{3} - 1306 T^{2} + \cdots + 471768226 \) Copy content Toggle raw display
$73$ \( T^{3} - 282 T^{2} + \cdots + 338525032 \) Copy content Toggle raw display
$79$ \( T^{3} - 1025 T^{2} + \cdots - 25506944 \) Copy content Toggle raw display
$83$ \( T^{3} - 1393 T^{2} + \cdots - 69563504 \) Copy content Toggle raw display
$89$ \( T^{3} + 1452 T^{2} + \cdots - 421613856 \) Copy content Toggle raw display
$97$ \( T^{3} - 148 T^{2} + \cdots - 252557894 \) Copy content Toggle raw display
show more
show less