Defining parameters
Level: | \( N \) | \(=\) | \( 93 = 3 \cdot 31 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 93.f (of order \(5\) and degree \(4\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 31 \) |
Character field: | \(\Q(\zeta_{5})\) | ||
Newform subspaces: | \( 2 \) | ||
Sturm bound: | \(21\) | ||
Trace bound: | \(1\) | ||
Distinguishing \(T_p\): | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(93, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 48 | 24 | 24 |
Cusp forms | 32 | 24 | 8 |
Eisenstein series | 16 | 0 | 16 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(93, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
93.2.f.a | $8$ | $0.743$ | \(\Q(\zeta_{15})\) | None | \(3\) | \(2\) | \(-6\) | \(9\) | \(q+(\beta_{3}-\beta_1+1)q^{2}+(\beta_{5}+\beta_{4}+\beta_{2}+1)q^{3}+\cdots\) |
93.2.f.b | $16$ | $0.743$ | \(\mathbb{Q}[x]/(x^{16} - \cdots)\) | None | \(-3\) | \(-4\) | \(6\) | \(-7\) | \(q-\beta _{1}q^{2}+\beta _{8}q^{3}+(-1-\beta _{8}-\beta _{9}+\cdots)q^{4}+\cdots\) |
Decomposition of \(S_{2}^{\mathrm{old}}(93, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(93, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(31, [\chi])\)\(^{\oplus 2}\)