Properties

Label 93.2.f
Level $93$
Weight $2$
Character orbit 93.f
Rep. character $\chi_{93}(4,\cdot)$
Character field $\Q(\zeta_{5})$
Dimension $24$
Newform subspaces $2$
Sturm bound $21$
Trace bound $1$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 93 = 3 \cdot 31 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 93.f (of order \(5\) and degree \(4\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 31 \)
Character field: \(\Q(\zeta_{5})\)
Newform subspaces: \( 2 \)
Sturm bound: \(21\)
Trace bound: \(1\)
Distinguishing \(T_p\): \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(93, [\chi])\).

Total New Old
Modular forms 48 24 24
Cusp forms 32 24 8
Eisenstein series 16 0 16

Trace form

\( 24 q - 2 q^{3} - 12 q^{4} + 4 q^{6} + 2 q^{7} - 6 q^{8} - 6 q^{9} - 14 q^{10} + 6 q^{11} - 6 q^{12} - 6 q^{13} - 10 q^{14} - 8 q^{15} - 20 q^{16} + 8 q^{17} + 4 q^{19} + 8 q^{20} + 14 q^{21} + 16 q^{22}+ \cdots - 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(93, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
93.2.f.a 93.f 31.d $8$ $0.743$ \(\Q(\zeta_{15})\) None 93.2.f.a \(3\) \(2\) \(-6\) \(9\) $\mathrm{SU}(2)[C_{5}]$ \(q+(\beta_{3}-\beta_1+1)q^{2}+(\beta_{5}+\beta_{4}+\beta_{2}+1)q^{3}+\cdots\)
93.2.f.b 93.f 31.d $16$ $0.743$ \(\mathbb{Q}[x]/(x^{16} - \cdots)\) None 93.2.f.b \(-3\) \(-4\) \(6\) \(-7\) $\mathrm{SU}(2)[C_{5}]$ \(q-\beta _{1}q^{2}+\beta _{8}q^{3}+(-1-\beta _{8}-\beta _{9}+\cdots)q^{4}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(93, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(93, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(31, [\chi])\)\(^{\oplus 2}\)