Properties

Label 9280.2.a.ct.1.6
Level $9280$
Weight $2$
Character 9280.1
Self dual yes
Analytic conductor $74.101$
Analytic rank $0$
Dimension $10$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [9280,2,Mod(1,9280)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("9280.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(9280, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 9280 = 2^{6} \cdot 5 \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 9280.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [10,0,0,0,-10,0,0,0,32,0,0,0,-18,0,0,0,18,0,0,0,-16] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(21)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(74.1011730757\)
Analytic rank: \(0\)
Dimension: \(10\)
Coefficient field: \(\mathbb{Q}[x]/(x^{10} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{10} - 31x^{8} + 353x^{6} - 1760x^{4} + 3412x^{2} - 1152 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{17}]\)
Coefficient ring index: \( 2^{5} \)
Twist minimal: no (minimal twist has level 4640)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.6
Root \(0.649617\) of defining polynomial
Character \(\chi\) \(=\) 9280.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.649617 q^{3} -1.00000 q^{5} -1.74317 q^{7} -2.57800 q^{9} +6.54379 q^{11} -6.26444 q^{13} -0.649617 q^{15} +2.27867 q^{17} +7.79921 q^{19} -1.13239 q^{21} +4.43505 q^{23} +1.00000 q^{25} -3.62356 q^{27} -1.00000 q^{29} -0.487747 q^{31} +4.25096 q^{33} +1.74317 q^{35} -4.85338 q^{37} -4.06949 q^{39} -10.7798 q^{41} +5.57241 q^{43} +2.57800 q^{45} +2.71455 q^{47} -3.96135 q^{49} +1.48026 q^{51} +7.64779 q^{53} -6.54379 q^{55} +5.06650 q^{57} -2.10874 q^{59} -4.89156 q^{61} +4.49389 q^{63} +6.26444 q^{65} -6.49998 q^{67} +2.88108 q^{69} +11.1010 q^{71} -3.34517 q^{73} +0.649617 q^{75} -11.4070 q^{77} +3.17962 q^{79} +5.38006 q^{81} -8.73090 q^{83} -2.27867 q^{85} -0.649617 q^{87} -6.52887 q^{89} +10.9200 q^{91} -0.316849 q^{93} -7.79921 q^{95} +10.5671 q^{97} -16.8699 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 10 q - 10 q^{5} + 32 q^{9} - 18 q^{13} + 18 q^{17} - 16 q^{21} + 10 q^{25} - 10 q^{29} + 8 q^{33} - 4 q^{37} + 16 q^{41} - 32 q^{45} + 48 q^{49} + 2 q^{53} + 52 q^{57} + 22 q^{61} + 18 q^{65} + 14 q^{69}+ \cdots - 10 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.649617 0.375057 0.187528 0.982259i \(-0.439952\pi\)
0.187528 + 0.982259i \(0.439952\pi\)
\(4\) 0 0
\(5\) −1.00000 −0.447214
\(6\) 0 0
\(7\) −1.74317 −0.658857 −0.329429 0.944180i \(-0.606856\pi\)
−0.329429 + 0.944180i \(0.606856\pi\)
\(8\) 0 0
\(9\) −2.57800 −0.859333
\(10\) 0 0
\(11\) 6.54379 1.97303 0.986513 0.163682i \(-0.0523371\pi\)
0.986513 + 0.163682i \(0.0523371\pi\)
\(12\) 0 0
\(13\) −6.26444 −1.73744 −0.868721 0.495302i \(-0.835058\pi\)
−0.868721 + 0.495302i \(0.835058\pi\)
\(14\) 0 0
\(15\) −0.649617 −0.167730
\(16\) 0 0
\(17\) 2.27867 0.552658 0.276329 0.961063i \(-0.410882\pi\)
0.276329 + 0.961063i \(0.410882\pi\)
\(18\) 0 0
\(19\) 7.79921 1.78926 0.894631 0.446805i \(-0.147438\pi\)
0.894631 + 0.446805i \(0.147438\pi\)
\(20\) 0 0
\(21\) −1.13239 −0.247109
\(22\) 0 0
\(23\) 4.43505 0.924772 0.462386 0.886679i \(-0.346993\pi\)
0.462386 + 0.886679i \(0.346993\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) 0 0
\(27\) −3.62356 −0.697355
\(28\) 0 0
\(29\) −1.00000 −0.185695
\(30\) 0 0
\(31\) −0.487747 −0.0876019 −0.0438010 0.999040i \(-0.513947\pi\)
−0.0438010 + 0.999040i \(0.513947\pi\)
\(32\) 0 0
\(33\) 4.25096 0.739997
\(34\) 0 0
\(35\) 1.74317 0.294650
\(36\) 0 0
\(37\) −4.85338 −0.797890 −0.398945 0.916975i \(-0.630624\pi\)
−0.398945 + 0.916975i \(0.630624\pi\)
\(38\) 0 0
\(39\) −4.06949 −0.651639
\(40\) 0 0
\(41\) −10.7798 −1.68353 −0.841763 0.539847i \(-0.818482\pi\)
−0.841763 + 0.539847i \(0.818482\pi\)
\(42\) 0 0
\(43\) 5.57241 0.849785 0.424893 0.905244i \(-0.360312\pi\)
0.424893 + 0.905244i \(0.360312\pi\)
\(44\) 0 0
\(45\) 2.57800 0.384305
\(46\) 0 0
\(47\) 2.71455 0.395957 0.197979 0.980206i \(-0.436562\pi\)
0.197979 + 0.980206i \(0.436562\pi\)
\(48\) 0 0
\(49\) −3.96135 −0.565907
\(50\) 0 0
\(51\) 1.48026 0.207278
\(52\) 0 0
\(53\) 7.64779 1.05050 0.525252 0.850947i \(-0.323971\pi\)
0.525252 + 0.850947i \(0.323971\pi\)
\(54\) 0 0
\(55\) −6.54379 −0.882364
\(56\) 0 0
\(57\) 5.06650 0.671075
\(58\) 0 0
\(59\) −2.10874 −0.274534 −0.137267 0.990534i \(-0.543832\pi\)
−0.137267 + 0.990534i \(0.543832\pi\)
\(60\) 0 0
\(61\) −4.89156 −0.626300 −0.313150 0.949704i \(-0.601384\pi\)
−0.313150 + 0.949704i \(0.601384\pi\)
\(62\) 0 0
\(63\) 4.49389 0.566178
\(64\) 0 0
\(65\) 6.26444 0.777008
\(66\) 0 0
\(67\) −6.49998 −0.794099 −0.397049 0.917797i \(-0.629966\pi\)
−0.397049 + 0.917797i \(0.629966\pi\)
\(68\) 0 0
\(69\) 2.88108 0.346842
\(70\) 0 0
\(71\) 11.1010 1.31745 0.658724 0.752384i \(-0.271096\pi\)
0.658724 + 0.752384i \(0.271096\pi\)
\(72\) 0 0
\(73\) −3.34517 −0.391522 −0.195761 0.980652i \(-0.562718\pi\)
−0.195761 + 0.980652i \(0.562718\pi\)
\(74\) 0 0
\(75\) 0.649617 0.0750113
\(76\) 0 0
\(77\) −11.4070 −1.29994
\(78\) 0 0
\(79\) 3.17962 0.357736 0.178868 0.983873i \(-0.442757\pi\)
0.178868 + 0.983873i \(0.442757\pi\)
\(80\) 0 0
\(81\) 5.38006 0.597785
\(82\) 0 0
\(83\) −8.73090 −0.958341 −0.479170 0.877722i \(-0.659062\pi\)
−0.479170 + 0.877722i \(0.659062\pi\)
\(84\) 0 0
\(85\) −2.27867 −0.247156
\(86\) 0 0
\(87\) −0.649617 −0.0696463
\(88\) 0 0
\(89\) −6.52887 −0.692059 −0.346030 0.938224i \(-0.612470\pi\)
−0.346030 + 0.938224i \(0.612470\pi\)
\(90\) 0 0
\(91\) 10.9200 1.14473
\(92\) 0 0
\(93\) −0.316849 −0.0328557
\(94\) 0 0
\(95\) −7.79921 −0.800182
\(96\) 0 0
\(97\) 10.5671 1.07292 0.536461 0.843925i \(-0.319761\pi\)
0.536461 + 0.843925i \(0.319761\pi\)
\(98\) 0 0
\(99\) −16.8699 −1.69549
\(100\) 0 0
\(101\) −19.0443 −1.89498 −0.947488 0.319792i \(-0.896387\pi\)
−0.947488 + 0.319792i \(0.896387\pi\)
\(102\) 0 0
\(103\) 6.58760 0.649095 0.324548 0.945869i \(-0.394788\pi\)
0.324548 + 0.945869i \(0.394788\pi\)
\(104\) 0 0
\(105\) 1.13239 0.110510
\(106\) 0 0
\(107\) −16.3018 −1.57595 −0.787976 0.615707i \(-0.788871\pi\)
−0.787976 + 0.615707i \(0.788871\pi\)
\(108\) 0 0
\(109\) 11.5322 1.10458 0.552290 0.833652i \(-0.313754\pi\)
0.552290 + 0.833652i \(0.313754\pi\)
\(110\) 0 0
\(111\) −3.15284 −0.299254
\(112\) 0 0
\(113\) 10.5671 0.994065 0.497032 0.867732i \(-0.334423\pi\)
0.497032 + 0.867732i \(0.334423\pi\)
\(114\) 0 0
\(115\) −4.43505 −0.413571
\(116\) 0 0
\(117\) 16.1497 1.49304
\(118\) 0 0
\(119\) −3.97211 −0.364123
\(120\) 0 0
\(121\) 31.8212 2.89283
\(122\) 0 0
\(123\) −7.00276 −0.631418
\(124\) 0 0
\(125\) −1.00000 −0.0894427
\(126\) 0 0
\(127\) 14.7473 1.30861 0.654303 0.756232i \(-0.272962\pi\)
0.654303 + 0.756232i \(0.272962\pi\)
\(128\) 0 0
\(129\) 3.61994 0.318718
\(130\) 0 0
\(131\) 17.4004 1.52028 0.760142 0.649757i \(-0.225129\pi\)
0.760142 + 0.649757i \(0.225129\pi\)
\(132\) 0 0
\(133\) −13.5954 −1.17887
\(134\) 0 0
\(135\) 3.62356 0.311867
\(136\) 0 0
\(137\) −9.36877 −0.800428 −0.400214 0.916422i \(-0.631064\pi\)
−0.400214 + 0.916422i \(0.631064\pi\)
\(138\) 0 0
\(139\) 3.50138 0.296983 0.148492 0.988914i \(-0.452558\pi\)
0.148492 + 0.988914i \(0.452558\pi\)
\(140\) 0 0
\(141\) 1.76342 0.148506
\(142\) 0 0
\(143\) −40.9931 −3.42802
\(144\) 0 0
\(145\) 1.00000 0.0830455
\(146\) 0 0
\(147\) −2.57336 −0.212247
\(148\) 0 0
\(149\) 17.1275 1.40314 0.701571 0.712599i \(-0.252482\pi\)
0.701571 + 0.712599i \(0.252482\pi\)
\(150\) 0 0
\(151\) −2.82910 −0.230229 −0.115114 0.993352i \(-0.536723\pi\)
−0.115114 + 0.993352i \(0.536723\pi\)
\(152\) 0 0
\(153\) −5.87439 −0.474917
\(154\) 0 0
\(155\) 0.487747 0.0391768
\(156\) 0 0
\(157\) −11.9265 −0.951835 −0.475917 0.879490i \(-0.657884\pi\)
−0.475917 + 0.879490i \(0.657884\pi\)
\(158\) 0 0
\(159\) 4.96813 0.393999
\(160\) 0 0
\(161\) −7.73106 −0.609293
\(162\) 0 0
\(163\) 14.7473 1.15509 0.577547 0.816357i \(-0.304010\pi\)
0.577547 + 0.816357i \(0.304010\pi\)
\(164\) 0 0
\(165\) −4.25096 −0.330937
\(166\) 0 0
\(167\) −15.7624 −1.21973 −0.609867 0.792504i \(-0.708777\pi\)
−0.609867 + 0.792504i \(0.708777\pi\)
\(168\) 0 0
\(169\) 26.2432 2.01870
\(170\) 0 0
\(171\) −20.1064 −1.53757
\(172\) 0 0
\(173\) −9.08656 −0.690838 −0.345419 0.938449i \(-0.612263\pi\)
−0.345419 + 0.938449i \(0.612263\pi\)
\(174\) 0 0
\(175\) −1.74317 −0.131771
\(176\) 0 0
\(177\) −1.36987 −0.102966
\(178\) 0 0
\(179\) 6.14945 0.459632 0.229816 0.973234i \(-0.426188\pi\)
0.229816 + 0.973234i \(0.426188\pi\)
\(180\) 0 0
\(181\) −4.18117 −0.310784 −0.155392 0.987853i \(-0.549664\pi\)
−0.155392 + 0.987853i \(0.549664\pi\)
\(182\) 0 0
\(183\) −3.17764 −0.234898
\(184\) 0 0
\(185\) 4.85338 0.356827
\(186\) 0 0
\(187\) 14.9111 1.09041
\(188\) 0 0
\(189\) 6.31650 0.459457
\(190\) 0 0
\(191\) 14.0996 1.02021 0.510106 0.860111i \(-0.329606\pi\)
0.510106 + 0.860111i \(0.329606\pi\)
\(192\) 0 0
\(193\) 19.9674 1.43729 0.718644 0.695379i \(-0.244763\pi\)
0.718644 + 0.695379i \(0.244763\pi\)
\(194\) 0 0
\(195\) 4.06949 0.291422
\(196\) 0 0
\(197\) 3.42529 0.244042 0.122021 0.992528i \(-0.461063\pi\)
0.122021 + 0.992528i \(0.461063\pi\)
\(198\) 0 0
\(199\) 23.3007 1.65174 0.825872 0.563857i \(-0.190683\pi\)
0.825872 + 0.563857i \(0.190683\pi\)
\(200\) 0 0
\(201\) −4.22250 −0.297832
\(202\) 0 0
\(203\) 1.74317 0.122347
\(204\) 0 0
\(205\) 10.7798 0.752896
\(206\) 0 0
\(207\) −11.4335 −0.794687
\(208\) 0 0
\(209\) 51.0364 3.53026
\(210\) 0 0
\(211\) −6.54379 −0.450493 −0.225246 0.974302i \(-0.572319\pi\)
−0.225246 + 0.974302i \(0.572319\pi\)
\(212\) 0 0
\(213\) 7.21141 0.494118
\(214\) 0 0
\(215\) −5.57241 −0.380035
\(216\) 0 0
\(217\) 0.850227 0.0577172
\(218\) 0 0
\(219\) −2.17308 −0.146843
\(220\) 0 0
\(221\) −14.2746 −0.960211
\(222\) 0 0
\(223\) 25.1811 1.68625 0.843126 0.537716i \(-0.180713\pi\)
0.843126 + 0.537716i \(0.180713\pi\)
\(224\) 0 0
\(225\) −2.57800 −0.171867
\(226\) 0 0
\(227\) −11.2856 −0.749049 −0.374524 0.927217i \(-0.622194\pi\)
−0.374524 + 0.927217i \(0.622194\pi\)
\(228\) 0 0
\(229\) 25.6055 1.69206 0.846029 0.533136i \(-0.178987\pi\)
0.846029 + 0.533136i \(0.178987\pi\)
\(230\) 0 0
\(231\) −7.41015 −0.487552
\(232\) 0 0
\(233\) 19.8463 1.30018 0.650088 0.759859i \(-0.274732\pi\)
0.650088 + 0.759859i \(0.274732\pi\)
\(234\) 0 0
\(235\) −2.71455 −0.177077
\(236\) 0 0
\(237\) 2.06554 0.134171
\(238\) 0 0
\(239\) 26.3757 1.70610 0.853051 0.521827i \(-0.174749\pi\)
0.853051 + 0.521827i \(0.174749\pi\)
\(240\) 0 0
\(241\) 13.1979 0.850154 0.425077 0.905157i \(-0.360247\pi\)
0.425077 + 0.905157i \(0.360247\pi\)
\(242\) 0 0
\(243\) 14.3657 0.921558
\(244\) 0 0
\(245\) 3.96135 0.253081
\(246\) 0 0
\(247\) −48.8577 −3.10874
\(248\) 0 0
\(249\) −5.67174 −0.359432
\(250\) 0 0
\(251\) 19.9551 1.25956 0.629778 0.776776i \(-0.283146\pi\)
0.629778 + 0.776776i \(0.283146\pi\)
\(252\) 0 0
\(253\) 29.0220 1.82460
\(254\) 0 0
\(255\) −1.48026 −0.0926975
\(256\) 0 0
\(257\) 5.66517 0.353383 0.176692 0.984266i \(-0.443460\pi\)
0.176692 + 0.984266i \(0.443460\pi\)
\(258\) 0 0
\(259\) 8.46027 0.525696
\(260\) 0 0
\(261\) 2.57800 0.159574
\(262\) 0 0
\(263\) 9.77485 0.602743 0.301372 0.953507i \(-0.402556\pi\)
0.301372 + 0.953507i \(0.402556\pi\)
\(264\) 0 0
\(265\) −7.64779 −0.469800
\(266\) 0 0
\(267\) −4.24127 −0.259561
\(268\) 0 0
\(269\) −1.43842 −0.0877018 −0.0438509 0.999038i \(-0.513963\pi\)
−0.0438509 + 0.999038i \(0.513963\pi\)
\(270\) 0 0
\(271\) 20.1995 1.22703 0.613515 0.789683i \(-0.289755\pi\)
0.613515 + 0.789683i \(0.289755\pi\)
\(272\) 0 0
\(273\) 7.09382 0.429337
\(274\) 0 0
\(275\) 6.54379 0.394605
\(276\) 0 0
\(277\) 2.08292 0.125150 0.0625752 0.998040i \(-0.480069\pi\)
0.0625752 + 0.998040i \(0.480069\pi\)
\(278\) 0 0
\(279\) 1.25741 0.0752792
\(280\) 0 0
\(281\) 3.26601 0.194834 0.0974168 0.995244i \(-0.468942\pi\)
0.0974168 + 0.995244i \(0.468942\pi\)
\(282\) 0 0
\(283\) −17.8809 −1.06291 −0.531456 0.847086i \(-0.678355\pi\)
−0.531456 + 0.847086i \(0.678355\pi\)
\(284\) 0 0
\(285\) −5.06650 −0.300114
\(286\) 0 0
\(287\) 18.7911 1.10920
\(288\) 0 0
\(289\) −11.8077 −0.694570
\(290\) 0 0
\(291\) 6.86454 0.402406
\(292\) 0 0
\(293\) −3.36912 −0.196826 −0.0984131 0.995146i \(-0.531377\pi\)
−0.0984131 + 0.995146i \(0.531377\pi\)
\(294\) 0 0
\(295\) 2.10874 0.122775
\(296\) 0 0
\(297\) −23.7118 −1.37590
\(298\) 0 0
\(299\) −27.7831 −1.60674
\(300\) 0 0
\(301\) −9.71368 −0.559887
\(302\) 0 0
\(303\) −12.3715 −0.710723
\(304\) 0 0
\(305\) 4.89156 0.280090
\(306\) 0 0
\(307\) −10.3730 −0.592020 −0.296010 0.955185i \(-0.595656\pi\)
−0.296010 + 0.955185i \(0.595656\pi\)
\(308\) 0 0
\(309\) 4.27942 0.243447
\(310\) 0 0
\(311\) −2.16032 −0.122501 −0.0612503 0.998122i \(-0.519509\pi\)
−0.0612503 + 0.998122i \(0.519509\pi\)
\(312\) 0 0
\(313\) −21.4702 −1.21357 −0.606783 0.794868i \(-0.707540\pi\)
−0.606783 + 0.794868i \(0.707540\pi\)
\(314\) 0 0
\(315\) −4.49389 −0.253202
\(316\) 0 0
\(317\) 18.8315 1.05768 0.528841 0.848721i \(-0.322627\pi\)
0.528841 + 0.848721i \(0.322627\pi\)
\(318\) 0 0
\(319\) −6.54379 −0.366382
\(320\) 0 0
\(321\) −10.5899 −0.591071
\(322\) 0 0
\(323\) 17.7718 0.988850
\(324\) 0 0
\(325\) −6.26444 −0.347488
\(326\) 0 0
\(327\) 7.49149 0.414280
\(328\) 0 0
\(329\) −4.73192 −0.260879
\(330\) 0 0
\(331\) 14.7266 0.809445 0.404723 0.914439i \(-0.367368\pi\)
0.404723 + 0.914439i \(0.367368\pi\)
\(332\) 0 0
\(333\) 12.5120 0.685653
\(334\) 0 0
\(335\) 6.49998 0.355132
\(336\) 0 0
\(337\) −10.5012 −0.572035 −0.286017 0.958224i \(-0.592332\pi\)
−0.286017 + 0.958224i \(0.592332\pi\)
\(338\) 0 0
\(339\) 6.86454 0.372831
\(340\) 0 0
\(341\) −3.19171 −0.172841
\(342\) 0 0
\(343\) 19.1075 1.03171
\(344\) 0 0
\(345\) −2.88108 −0.155112
\(346\) 0 0
\(347\) 36.9602 1.98413 0.992064 0.125734i \(-0.0401287\pi\)
0.992064 + 0.125734i \(0.0401287\pi\)
\(348\) 0 0
\(349\) −21.0721 −1.12796 −0.563982 0.825787i \(-0.690731\pi\)
−0.563982 + 0.825787i \(0.690731\pi\)
\(350\) 0 0
\(351\) 22.6996 1.21161
\(352\) 0 0
\(353\) −12.0973 −0.643874 −0.321937 0.946761i \(-0.604334\pi\)
−0.321937 + 0.946761i \(0.604334\pi\)
\(354\) 0 0
\(355\) −11.1010 −0.589181
\(356\) 0 0
\(357\) −2.58035 −0.136567
\(358\) 0 0
\(359\) 8.00901 0.422700 0.211350 0.977410i \(-0.432214\pi\)
0.211350 + 0.977410i \(0.432214\pi\)
\(360\) 0 0
\(361\) 41.8277 2.20146
\(362\) 0 0
\(363\) 20.6716 1.08498
\(364\) 0 0
\(365\) 3.34517 0.175094
\(366\) 0 0
\(367\) −9.16141 −0.478222 −0.239111 0.970992i \(-0.576856\pi\)
−0.239111 + 0.970992i \(0.576856\pi\)
\(368\) 0 0
\(369\) 27.7904 1.44671
\(370\) 0 0
\(371\) −13.3314 −0.692133
\(372\) 0 0
\(373\) −23.5357 −1.21863 −0.609316 0.792927i \(-0.708556\pi\)
−0.609316 + 0.792927i \(0.708556\pi\)
\(374\) 0 0
\(375\) −0.649617 −0.0335461
\(376\) 0 0
\(377\) 6.26444 0.322635
\(378\) 0 0
\(379\) 24.0056 1.23308 0.616542 0.787322i \(-0.288533\pi\)
0.616542 + 0.787322i \(0.288533\pi\)
\(380\) 0 0
\(381\) 9.58007 0.490802
\(382\) 0 0
\(383\) −6.20501 −0.317061 −0.158531 0.987354i \(-0.550676\pi\)
−0.158531 + 0.987354i \(0.550676\pi\)
\(384\) 0 0
\(385\) 11.4070 0.581352
\(386\) 0 0
\(387\) −14.3657 −0.730248
\(388\) 0 0
\(389\) 16.5157 0.837382 0.418691 0.908129i \(-0.362489\pi\)
0.418691 + 0.908129i \(0.362489\pi\)
\(390\) 0 0
\(391\) 10.1060 0.511082
\(392\) 0 0
\(393\) 11.3036 0.570193
\(394\) 0 0
\(395\) −3.17962 −0.159984
\(396\) 0 0
\(397\) −20.8454 −1.04620 −0.523100 0.852272i \(-0.675224\pi\)
−0.523100 + 0.852272i \(0.675224\pi\)
\(398\) 0 0
\(399\) −8.83179 −0.442142
\(400\) 0 0
\(401\) −19.9427 −0.995892 −0.497946 0.867208i \(-0.665912\pi\)
−0.497946 + 0.867208i \(0.665912\pi\)
\(402\) 0 0
\(403\) 3.05546 0.152203
\(404\) 0 0
\(405\) −5.38006 −0.267338
\(406\) 0 0
\(407\) −31.7595 −1.57426
\(408\) 0 0
\(409\) 11.9577 0.591271 0.295635 0.955301i \(-0.404469\pi\)
0.295635 + 0.955301i \(0.404469\pi\)
\(410\) 0 0
\(411\) −6.08611 −0.300206
\(412\) 0 0
\(413\) 3.67589 0.180879
\(414\) 0 0
\(415\) 8.73090 0.428583
\(416\) 0 0
\(417\) 2.27456 0.111386
\(418\) 0 0
\(419\) −9.03183 −0.441234 −0.220617 0.975361i \(-0.570807\pi\)
−0.220617 + 0.975361i \(0.570807\pi\)
\(420\) 0 0
\(421\) 1.63041 0.0794613 0.0397307 0.999210i \(-0.487350\pi\)
0.0397307 + 0.999210i \(0.487350\pi\)
\(422\) 0 0
\(423\) −6.99809 −0.340259
\(424\) 0 0
\(425\) 2.27867 0.110532
\(426\) 0 0
\(427\) 8.52683 0.412642
\(428\) 0 0
\(429\) −26.6298 −1.28570
\(430\) 0 0
\(431\) −19.2716 −0.928280 −0.464140 0.885762i \(-0.653637\pi\)
−0.464140 + 0.885762i \(0.653637\pi\)
\(432\) 0 0
\(433\) 22.4422 1.07850 0.539252 0.842145i \(-0.318707\pi\)
0.539252 + 0.842145i \(0.318707\pi\)
\(434\) 0 0
\(435\) 0.649617 0.0311468
\(436\) 0 0
\(437\) 34.5899 1.65466
\(438\) 0 0
\(439\) −6.40306 −0.305601 −0.152801 0.988257i \(-0.548829\pi\)
−0.152801 + 0.988257i \(0.548829\pi\)
\(440\) 0 0
\(441\) 10.2123 0.486302
\(442\) 0 0
\(443\) −19.0787 −0.906455 −0.453227 0.891395i \(-0.649727\pi\)
−0.453227 + 0.891395i \(0.649727\pi\)
\(444\) 0 0
\(445\) 6.52887 0.309498
\(446\) 0 0
\(447\) 11.1263 0.526258
\(448\) 0 0
\(449\) 7.06650 0.333489 0.166744 0.986000i \(-0.446675\pi\)
0.166744 + 0.986000i \(0.446675\pi\)
\(450\) 0 0
\(451\) −70.5409 −3.32164
\(452\) 0 0
\(453\) −1.83783 −0.0863487
\(454\) 0 0
\(455\) −10.9200 −0.511937
\(456\) 0 0
\(457\) −41.6492 −1.94827 −0.974133 0.225977i \(-0.927442\pi\)
−0.974133 + 0.225977i \(0.927442\pi\)
\(458\) 0 0
\(459\) −8.25689 −0.385399
\(460\) 0 0
\(461\) −6.55283 −0.305196 −0.152598 0.988288i \(-0.548764\pi\)
−0.152598 + 0.988288i \(0.548764\pi\)
\(462\) 0 0
\(463\) 18.3005 0.850498 0.425249 0.905076i \(-0.360187\pi\)
0.425249 + 0.905076i \(0.360187\pi\)
\(464\) 0 0
\(465\) 0.316849 0.0146935
\(466\) 0 0
\(467\) 5.94149 0.274939 0.137470 0.990506i \(-0.456103\pi\)
0.137470 + 0.990506i \(0.456103\pi\)
\(468\) 0 0
\(469\) 11.3306 0.523198
\(470\) 0 0
\(471\) −7.74763 −0.356992
\(472\) 0 0
\(473\) 36.4647 1.67665
\(474\) 0 0
\(475\) 7.79921 0.357852
\(476\) 0 0
\(477\) −19.7160 −0.902733
\(478\) 0 0
\(479\) 4.44084 0.202907 0.101454 0.994840i \(-0.467651\pi\)
0.101454 + 0.994840i \(0.467651\pi\)
\(480\) 0 0
\(481\) 30.4037 1.38629
\(482\) 0 0
\(483\) −5.02223 −0.228519
\(484\) 0 0
\(485\) −10.5671 −0.479825
\(486\) 0 0
\(487\) 12.7809 0.579156 0.289578 0.957154i \(-0.406485\pi\)
0.289578 + 0.957154i \(0.406485\pi\)
\(488\) 0 0
\(489\) 9.58007 0.433226
\(490\) 0 0
\(491\) −16.6693 −0.752276 −0.376138 0.926564i \(-0.622748\pi\)
−0.376138 + 0.926564i \(0.622748\pi\)
\(492\) 0 0
\(493\) −2.27867 −0.102626
\(494\) 0 0
\(495\) 16.8699 0.758244
\(496\) 0 0
\(497\) −19.3510 −0.868011
\(498\) 0 0
\(499\) 36.3791 1.62855 0.814275 0.580479i \(-0.197135\pi\)
0.814275 + 0.580479i \(0.197135\pi\)
\(500\) 0 0
\(501\) −10.2395 −0.457469
\(502\) 0 0
\(503\) 14.8349 0.661454 0.330727 0.943726i \(-0.392706\pi\)
0.330727 + 0.943726i \(0.392706\pi\)
\(504\) 0 0
\(505\) 19.0443 0.847459
\(506\) 0 0
\(507\) 17.0480 0.757129
\(508\) 0 0
\(509\) −21.8442 −0.968225 −0.484112 0.875006i \(-0.660857\pi\)
−0.484112 + 0.875006i \(0.660857\pi\)
\(510\) 0 0
\(511\) 5.83121 0.257957
\(512\) 0 0
\(513\) −28.2609 −1.24775
\(514\) 0 0
\(515\) −6.58760 −0.290284
\(516\) 0 0
\(517\) 17.7634 0.781234
\(518\) 0 0
\(519\) −5.90278 −0.259103
\(520\) 0 0
\(521\) 35.5277 1.55649 0.778247 0.627958i \(-0.216109\pi\)
0.778247 + 0.627958i \(0.216109\pi\)
\(522\) 0 0
\(523\) −25.9468 −1.13457 −0.567287 0.823520i \(-0.692007\pi\)
−0.567287 + 0.823520i \(0.692007\pi\)
\(524\) 0 0
\(525\) −1.13239 −0.0494218
\(526\) 0 0
\(527\) −1.11141 −0.0484139
\(528\) 0 0
\(529\) −3.33033 −0.144797
\(530\) 0 0
\(531\) 5.43632 0.235916
\(532\) 0 0
\(533\) 67.5296 2.92503
\(534\) 0 0
\(535\) 16.3018 0.704787
\(536\) 0 0
\(537\) 3.99479 0.172388
\(538\) 0 0
\(539\) −25.9222 −1.11655
\(540\) 0 0
\(541\) −36.2596 −1.55892 −0.779461 0.626451i \(-0.784507\pi\)
−0.779461 + 0.626451i \(0.784507\pi\)
\(542\) 0 0
\(543\) −2.71616 −0.116561
\(544\) 0 0
\(545\) −11.5322 −0.493983
\(546\) 0 0
\(547\) −22.4660 −0.960575 −0.480287 0.877111i \(-0.659468\pi\)
−0.480287 + 0.877111i \(0.659468\pi\)
\(548\) 0 0
\(549\) 12.6104 0.538200
\(550\) 0 0
\(551\) −7.79921 −0.332258
\(552\) 0 0
\(553\) −5.54263 −0.235697
\(554\) 0 0
\(555\) 3.15284 0.133830
\(556\) 0 0
\(557\) 12.2506 0.519075 0.259537 0.965733i \(-0.416430\pi\)
0.259537 + 0.965733i \(0.416430\pi\)
\(558\) 0 0
\(559\) −34.9080 −1.47645
\(560\) 0 0
\(561\) 9.68651 0.408965
\(562\) 0 0
\(563\) 11.7862 0.496729 0.248365 0.968667i \(-0.420107\pi\)
0.248365 + 0.968667i \(0.420107\pi\)
\(564\) 0 0
\(565\) −10.5671 −0.444559
\(566\) 0 0
\(567\) −9.37838 −0.393855
\(568\) 0 0
\(569\) −5.49863 −0.230514 −0.115257 0.993336i \(-0.536769\pi\)
−0.115257 + 0.993336i \(0.536769\pi\)
\(570\) 0 0
\(571\) 38.9775 1.63116 0.815579 0.578645i \(-0.196418\pi\)
0.815579 + 0.578645i \(0.196418\pi\)
\(572\) 0 0
\(573\) 9.15935 0.382638
\(574\) 0 0
\(575\) 4.43505 0.184954
\(576\) 0 0
\(577\) −3.58833 −0.149384 −0.0746920 0.997207i \(-0.523797\pi\)
−0.0746920 + 0.997207i \(0.523797\pi\)
\(578\) 0 0
\(579\) 12.9712 0.539064
\(580\) 0 0
\(581\) 15.2195 0.631410
\(582\) 0 0
\(583\) 50.0455 2.07267
\(584\) 0 0
\(585\) −16.1497 −0.667708
\(586\) 0 0
\(587\) −9.74196 −0.402094 −0.201047 0.979582i \(-0.564434\pi\)
−0.201047 + 0.979582i \(0.564434\pi\)
\(588\) 0 0
\(589\) −3.80404 −0.156743
\(590\) 0 0
\(591\) 2.22513 0.0915295
\(592\) 0 0
\(593\) 38.4647 1.57956 0.789778 0.613393i \(-0.210196\pi\)
0.789778 + 0.613393i \(0.210196\pi\)
\(594\) 0 0
\(595\) 3.97211 0.162841
\(596\) 0 0
\(597\) 15.1365 0.619498
\(598\) 0 0
\(599\) −35.8129 −1.46328 −0.731638 0.681693i \(-0.761244\pi\)
−0.731638 + 0.681693i \(0.761244\pi\)
\(600\) 0 0
\(601\) 29.4070 1.19953 0.599767 0.800174i \(-0.295260\pi\)
0.599767 + 0.800174i \(0.295260\pi\)
\(602\) 0 0
\(603\) 16.7569 0.682395
\(604\) 0 0
\(605\) −31.8212 −1.29371
\(606\) 0 0
\(607\) −28.4823 −1.15606 −0.578031 0.816015i \(-0.696179\pi\)
−0.578031 + 0.816015i \(0.696179\pi\)
\(608\) 0 0
\(609\) 1.13239 0.0458870
\(610\) 0 0
\(611\) −17.0051 −0.687953
\(612\) 0 0
\(613\) 41.2904 1.66770 0.833851 0.551989i \(-0.186131\pi\)
0.833851 + 0.551989i \(0.186131\pi\)
\(614\) 0 0
\(615\) 7.00276 0.282379
\(616\) 0 0
\(617\) −20.5077 −0.825610 −0.412805 0.910819i \(-0.635451\pi\)
−0.412805 + 0.910819i \(0.635451\pi\)
\(618\) 0 0
\(619\) 10.5860 0.425488 0.212744 0.977108i \(-0.431760\pi\)
0.212744 + 0.977108i \(0.431760\pi\)
\(620\) 0 0
\(621\) −16.0707 −0.644894
\(622\) 0 0
\(623\) 11.3810 0.455968
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 0 0
\(627\) 33.1541 1.32405
\(628\) 0 0
\(629\) −11.0592 −0.440960
\(630\) 0 0
\(631\) 25.7638 1.02564 0.512820 0.858496i \(-0.328601\pi\)
0.512820 + 0.858496i \(0.328601\pi\)
\(632\) 0 0
\(633\) −4.25096 −0.168960
\(634\) 0 0
\(635\) −14.7473 −0.585227
\(636\) 0 0
\(637\) 24.8156 0.983231
\(638\) 0 0
\(639\) −28.6184 −1.13213
\(640\) 0 0
\(641\) 16.1737 0.638821 0.319410 0.947616i \(-0.396515\pi\)
0.319410 + 0.947616i \(0.396515\pi\)
\(642\) 0 0
\(643\) 12.1281 0.478286 0.239143 0.970984i \(-0.423134\pi\)
0.239143 + 0.970984i \(0.423134\pi\)
\(644\) 0 0
\(645\) −3.61994 −0.142535
\(646\) 0 0
\(647\) 25.2595 0.993053 0.496526 0.868022i \(-0.334609\pi\)
0.496526 + 0.868022i \(0.334609\pi\)
\(648\) 0 0
\(649\) −13.7991 −0.541663
\(650\) 0 0
\(651\) 0.552322 0.0216472
\(652\) 0 0
\(653\) −48.7532 −1.90786 −0.953931 0.300027i \(-0.903004\pi\)
−0.953931 + 0.300027i \(0.903004\pi\)
\(654\) 0 0
\(655\) −17.4004 −0.679892
\(656\) 0 0
\(657\) 8.62384 0.336448
\(658\) 0 0
\(659\) −38.3526 −1.49400 −0.747002 0.664822i \(-0.768507\pi\)
−0.747002 + 0.664822i \(0.768507\pi\)
\(660\) 0 0
\(661\) 8.15271 0.317104 0.158552 0.987351i \(-0.449318\pi\)
0.158552 + 0.987351i \(0.449318\pi\)
\(662\) 0 0
\(663\) −9.27300 −0.360133
\(664\) 0 0
\(665\) 13.5954 0.527206
\(666\) 0 0
\(667\) −4.43505 −0.171726
\(668\) 0 0
\(669\) 16.3581 0.632440
\(670\) 0 0
\(671\) −32.0093 −1.23571
\(672\) 0 0
\(673\) −21.8237 −0.841243 −0.420622 0.907236i \(-0.638188\pi\)
−0.420622 + 0.907236i \(0.638188\pi\)
\(674\) 0 0
\(675\) −3.62356 −0.139471
\(676\) 0 0
\(677\) 10.9873 0.422278 0.211139 0.977456i \(-0.432283\pi\)
0.211139 + 0.977456i \(0.432283\pi\)
\(678\) 0 0
\(679\) −18.4202 −0.706902
\(680\) 0 0
\(681\) −7.33129 −0.280936
\(682\) 0 0
\(683\) 10.1731 0.389265 0.194632 0.980876i \(-0.437649\pi\)
0.194632 + 0.980876i \(0.437649\pi\)
\(684\) 0 0
\(685\) 9.36877 0.357962
\(686\) 0 0
\(687\) 16.6338 0.634618
\(688\) 0 0
\(689\) −47.9091 −1.82519
\(690\) 0 0
\(691\) −28.3457 −1.07832 −0.539161 0.842203i \(-0.681258\pi\)
−0.539161 + 0.842203i \(0.681258\pi\)
\(692\) 0 0
\(693\) 29.4071 1.11708
\(694\) 0 0
\(695\) −3.50138 −0.132815
\(696\) 0 0
\(697\) −24.5636 −0.930414
\(698\) 0 0
\(699\) 12.8925 0.487640
\(700\) 0 0
\(701\) 43.6620 1.64909 0.824546 0.565795i \(-0.191431\pi\)
0.824546 + 0.565795i \(0.191431\pi\)
\(702\) 0 0
\(703\) −37.8525 −1.42763
\(704\) 0 0
\(705\) −1.76342 −0.0664141
\(706\) 0 0
\(707\) 33.1974 1.24852
\(708\) 0 0
\(709\) −4.65462 −0.174808 −0.0874040 0.996173i \(-0.527857\pi\)
−0.0874040 + 0.996173i \(0.527857\pi\)
\(710\) 0 0
\(711\) −8.19706 −0.307414
\(712\) 0 0
\(713\) −2.16318 −0.0810118
\(714\) 0 0
\(715\) 40.9931 1.53306
\(716\) 0 0
\(717\) 17.1341 0.639885
\(718\) 0 0
\(719\) −9.56963 −0.356887 −0.178443 0.983950i \(-0.557106\pi\)
−0.178443 + 0.983950i \(0.557106\pi\)
\(720\) 0 0
\(721\) −11.4833 −0.427661
\(722\) 0 0
\(723\) 8.57360 0.318856
\(724\) 0 0
\(725\) −1.00000 −0.0371391
\(726\) 0 0
\(727\) −2.23406 −0.0828567 −0.0414283 0.999141i \(-0.513191\pi\)
−0.0414283 + 0.999141i \(0.513191\pi\)
\(728\) 0 0
\(729\) −6.80801 −0.252148
\(730\) 0 0
\(731\) 12.6977 0.469640
\(732\) 0 0
\(733\) −14.1083 −0.521103 −0.260551 0.965460i \(-0.583904\pi\)
−0.260551 + 0.965460i \(0.583904\pi\)
\(734\) 0 0
\(735\) 2.57336 0.0949198
\(736\) 0 0
\(737\) −42.5345 −1.56678
\(738\) 0 0
\(739\) 0.335788 0.0123522 0.00617609 0.999981i \(-0.498034\pi\)
0.00617609 + 0.999981i \(0.498034\pi\)
\(740\) 0 0
\(741\) −31.7388 −1.16595
\(742\) 0 0
\(743\) 27.1460 0.995889 0.497945 0.867209i \(-0.334088\pi\)
0.497945 + 0.867209i \(0.334088\pi\)
\(744\) 0 0
\(745\) −17.1275 −0.627504
\(746\) 0 0
\(747\) 22.5082 0.823533
\(748\) 0 0
\(749\) 28.4168 1.03833
\(750\) 0 0
\(751\) −49.2190 −1.79603 −0.898013 0.439969i \(-0.854990\pi\)
−0.898013 + 0.439969i \(0.854990\pi\)
\(752\) 0 0
\(753\) 12.9632 0.472404
\(754\) 0 0
\(755\) 2.82910 0.102961
\(756\) 0 0
\(757\) −3.87855 −0.140968 −0.0704841 0.997513i \(-0.522454\pi\)
−0.0704841 + 0.997513i \(0.522454\pi\)
\(758\) 0 0
\(759\) 18.8532 0.684328
\(760\) 0 0
\(761\) −21.3742 −0.774816 −0.387408 0.921908i \(-0.626629\pi\)
−0.387408 + 0.921908i \(0.626629\pi\)
\(762\) 0 0
\(763\) −20.1025 −0.727761
\(764\) 0 0
\(765\) 5.87439 0.212389
\(766\) 0 0
\(767\) 13.2101 0.476987
\(768\) 0 0
\(769\) 1.18445 0.0427125 0.0213562 0.999772i \(-0.493202\pi\)
0.0213562 + 0.999772i \(0.493202\pi\)
\(770\) 0 0
\(771\) 3.68019 0.132539
\(772\) 0 0
\(773\) 35.2570 1.26811 0.634054 0.773289i \(-0.281390\pi\)
0.634054 + 0.773289i \(0.281390\pi\)
\(774\) 0 0
\(775\) −0.487747 −0.0175204
\(776\) 0 0
\(777\) 5.49594 0.197166
\(778\) 0 0
\(779\) −84.0742 −3.01227
\(780\) 0 0
\(781\) 72.6427 2.59936
\(782\) 0 0
\(783\) 3.62356 0.129496
\(784\) 0 0
\(785\) 11.9265 0.425673
\(786\) 0 0
\(787\) −12.7853 −0.455748 −0.227874 0.973691i \(-0.573178\pi\)
−0.227874 + 0.973691i \(0.573178\pi\)
\(788\) 0 0
\(789\) 6.34991 0.226063
\(790\) 0 0
\(791\) −18.4202 −0.654947
\(792\) 0 0
\(793\) 30.6429 1.08816
\(794\) 0 0
\(795\) −4.96813 −0.176202
\(796\) 0 0
\(797\) 13.1522 0.465876 0.232938 0.972492i \(-0.425166\pi\)
0.232938 + 0.972492i \(0.425166\pi\)
\(798\) 0 0
\(799\) 6.18554 0.218829
\(800\) 0 0
\(801\) 16.8314 0.594709
\(802\) 0 0
\(803\) −21.8901 −0.772484
\(804\) 0 0
\(805\) 7.73106 0.272484
\(806\) 0 0
\(807\) −0.934420 −0.0328931
\(808\) 0 0
\(809\) −16.7667 −0.589486 −0.294743 0.955577i \(-0.595234\pi\)
−0.294743 + 0.955577i \(0.595234\pi\)
\(810\) 0 0
\(811\) 24.1298 0.847310 0.423655 0.905824i \(-0.360747\pi\)
0.423655 + 0.905824i \(0.360747\pi\)
\(812\) 0 0
\(813\) 13.1219 0.460206
\(814\) 0 0
\(815\) −14.7473 −0.516574
\(816\) 0 0
\(817\) 43.4605 1.52049
\(818\) 0 0
\(819\) −28.1517 −0.983701
\(820\) 0 0
\(821\) 32.0698 1.11924 0.559622 0.828748i \(-0.310946\pi\)
0.559622 + 0.828748i \(0.310946\pi\)
\(822\) 0 0
\(823\) 30.0712 1.04822 0.524109 0.851651i \(-0.324399\pi\)
0.524109 + 0.851651i \(0.324399\pi\)
\(824\) 0 0
\(825\) 4.25096 0.147999
\(826\) 0 0
\(827\) −25.8235 −0.897970 −0.448985 0.893539i \(-0.648214\pi\)
−0.448985 + 0.893539i \(0.648214\pi\)
\(828\) 0 0
\(829\) 19.3689 0.672710 0.336355 0.941735i \(-0.390806\pi\)
0.336355 + 0.941735i \(0.390806\pi\)
\(830\) 0 0
\(831\) 1.35310 0.0469385
\(832\) 0 0
\(833\) −9.02659 −0.312753
\(834\) 0 0
\(835\) 15.7624 0.545482
\(836\) 0 0
\(837\) 1.76738 0.0610896
\(838\) 0 0
\(839\) −48.0628 −1.65931 −0.829655 0.558276i \(-0.811463\pi\)
−0.829655 + 0.558276i \(0.811463\pi\)
\(840\) 0 0
\(841\) 1.00000 0.0344828
\(842\) 0 0
\(843\) 2.12165 0.0730737
\(844\) 0 0
\(845\) −26.2432 −0.902792
\(846\) 0 0
\(847\) −55.4698 −1.90596
\(848\) 0 0
\(849\) −11.6158 −0.398652
\(850\) 0 0
\(851\) −21.5250 −0.737866
\(852\) 0 0
\(853\) 31.9540 1.09408 0.547041 0.837106i \(-0.315754\pi\)
0.547041 + 0.837106i \(0.315754\pi\)
\(854\) 0 0
\(855\) 20.1064 0.687623
\(856\) 0 0
\(857\) −22.6612 −0.774092 −0.387046 0.922060i \(-0.626504\pi\)
−0.387046 + 0.922060i \(0.626504\pi\)
\(858\) 0 0
\(859\) 44.9878 1.53496 0.767481 0.641071i \(-0.221510\pi\)
0.767481 + 0.641071i \(0.221510\pi\)
\(860\) 0 0
\(861\) 12.2070 0.416014
\(862\) 0 0
\(863\) −55.8537 −1.90128 −0.950641 0.310294i \(-0.899572\pi\)
−0.950641 + 0.310294i \(0.899572\pi\)
\(864\) 0 0
\(865\) 9.08656 0.308952
\(866\) 0 0
\(867\) −7.67047 −0.260503
\(868\) 0 0
\(869\) 20.8068 0.705822
\(870\) 0 0
\(871\) 40.7187 1.37970
\(872\) 0 0
\(873\) −27.2418 −0.921997
\(874\) 0 0
\(875\) 1.74317 0.0589300
\(876\) 0 0
\(877\) −40.7999 −1.37771 −0.688857 0.724897i \(-0.741887\pi\)
−0.688857 + 0.724897i \(0.741887\pi\)
\(878\) 0 0
\(879\) −2.18864 −0.0738210
\(880\) 0 0
\(881\) 34.7986 1.17239 0.586197 0.810169i \(-0.300625\pi\)
0.586197 + 0.810169i \(0.300625\pi\)
\(882\) 0 0
\(883\) −53.9991 −1.81721 −0.908607 0.417653i \(-0.862853\pi\)
−0.908607 + 0.417653i \(0.862853\pi\)
\(884\) 0 0
\(885\) 1.36987 0.0460477
\(886\) 0 0
\(887\) 31.5913 1.06073 0.530367 0.847768i \(-0.322054\pi\)
0.530367 + 0.847768i \(0.322054\pi\)
\(888\) 0 0
\(889\) −25.7070 −0.862185
\(890\) 0 0
\(891\) 35.2060 1.17945
\(892\) 0 0
\(893\) 21.1713 0.708471
\(894\) 0 0
\(895\) −6.14945 −0.205553
\(896\) 0 0
\(897\) −18.0484 −0.602618
\(898\) 0 0
\(899\) 0.487747 0.0162673
\(900\) 0 0
\(901\) 17.4268 0.580569
\(902\) 0 0
\(903\) −6.31017 −0.209989
\(904\) 0 0
\(905\) 4.18117 0.138987
\(906\) 0 0
\(907\) −7.34817 −0.243992 −0.121996 0.992531i \(-0.538929\pi\)
−0.121996 + 0.992531i \(0.538929\pi\)
\(908\) 0 0
\(909\) 49.0961 1.62841
\(910\) 0 0
\(911\) −2.29724 −0.0761111 −0.0380556 0.999276i \(-0.512116\pi\)
−0.0380556 + 0.999276i \(0.512116\pi\)
\(912\) 0 0
\(913\) −57.1332 −1.89083
\(914\) 0 0
\(915\) 3.17764 0.105050
\(916\) 0 0
\(917\) −30.3320 −1.00165
\(918\) 0 0
\(919\) 12.0683 0.398096 0.199048 0.979990i \(-0.436215\pi\)
0.199048 + 0.979990i \(0.436215\pi\)
\(920\) 0 0
\(921\) −6.73850 −0.222041
\(922\) 0 0
\(923\) −69.5416 −2.28899
\(924\) 0 0
\(925\) −4.85338 −0.159578
\(926\) 0 0
\(927\) −16.9828 −0.557789
\(928\) 0 0
\(929\) 2.00301 0.0657165 0.0328582 0.999460i \(-0.489539\pi\)
0.0328582 + 0.999460i \(0.489539\pi\)
\(930\) 0 0
\(931\) −30.8954 −1.01256
\(932\) 0 0
\(933\) −1.40338 −0.0459447
\(934\) 0 0
\(935\) −14.9111 −0.487645
\(936\) 0 0
\(937\) −49.5937 −1.62016 −0.810078 0.586322i \(-0.800575\pi\)
−0.810078 + 0.586322i \(0.800575\pi\)
\(938\) 0 0
\(939\) −13.9474 −0.455156
\(940\) 0 0
\(941\) 2.07487 0.0676387 0.0338194 0.999428i \(-0.489233\pi\)
0.0338194 + 0.999428i \(0.489233\pi\)
\(942\) 0 0
\(943\) −47.8091 −1.55688
\(944\) 0 0
\(945\) −6.31650 −0.205476
\(946\) 0 0
\(947\) −3.92167 −0.127437 −0.0637186 0.997968i \(-0.520296\pi\)
−0.0637186 + 0.997968i \(0.520296\pi\)
\(948\) 0 0
\(949\) 20.9556 0.680247
\(950\) 0 0
\(951\) 12.2333 0.396691
\(952\) 0 0
\(953\) 7.42008 0.240360 0.120180 0.992752i \(-0.461653\pi\)
0.120180 + 0.992752i \(0.461653\pi\)
\(954\) 0 0
\(955\) −14.0996 −0.456253
\(956\) 0 0
\(957\) −4.25096 −0.137414
\(958\) 0 0
\(959\) 16.3314 0.527368
\(960\) 0 0
\(961\) −30.7621 −0.992326
\(962\) 0 0
\(963\) 42.0259 1.35427
\(964\) 0 0
\(965\) −19.9674 −0.642774
\(966\) 0 0
\(967\) 51.0617 1.64203 0.821016 0.570905i \(-0.193407\pi\)
0.821016 + 0.570905i \(0.193407\pi\)
\(968\) 0 0
\(969\) 11.5449 0.370875
\(970\) 0 0
\(971\) 37.1710 1.19287 0.596437 0.802660i \(-0.296582\pi\)
0.596437 + 0.802660i \(0.296582\pi\)
\(972\) 0 0
\(973\) −6.10351 −0.195670
\(974\) 0 0
\(975\) −4.06949 −0.130328
\(976\) 0 0
\(977\) −11.7627 −0.376322 −0.188161 0.982138i \(-0.560253\pi\)
−0.188161 + 0.982138i \(0.560253\pi\)
\(978\) 0 0
\(979\) −42.7236 −1.36545
\(980\) 0 0
\(981\) −29.7299 −0.949202
\(982\) 0 0
\(983\) 21.1859 0.675725 0.337862 0.941196i \(-0.390296\pi\)
0.337862 + 0.941196i \(0.390296\pi\)
\(984\) 0 0
\(985\) −3.42529 −0.109139
\(986\) 0 0
\(987\) −3.07394 −0.0978445
\(988\) 0 0
\(989\) 24.7139 0.785858
\(990\) 0 0
\(991\) 28.5546 0.907066 0.453533 0.891239i \(-0.350163\pi\)
0.453533 + 0.891239i \(0.350163\pi\)
\(992\) 0 0
\(993\) 9.56663 0.303588
\(994\) 0 0
\(995\) −23.3007 −0.738682
\(996\) 0 0
\(997\) −57.5493 −1.82261 −0.911303 0.411737i \(-0.864922\pi\)
−0.911303 + 0.411737i \(0.864922\pi\)
\(998\) 0 0
\(999\) 17.5865 0.556413
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 9280.2.a.ct.1.6 10
4.3 odd 2 inner 9280.2.a.ct.1.5 10
8.3 odd 2 4640.2.a.ba.1.6 yes 10
8.5 even 2 4640.2.a.ba.1.5 10
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
4640.2.a.ba.1.5 10 8.5 even 2
4640.2.a.ba.1.6 yes 10 8.3 odd 2
9280.2.a.ct.1.5 10 4.3 odd 2 inner
9280.2.a.ct.1.6 10 1.1 even 1 trivial