Properties

Label 9280.2.a.bz.1.4
Level $9280$
Weight $2$
Character 9280.1
Self dual yes
Analytic conductor $74.101$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [9280,2,Mod(1,9280)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("9280.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(9280, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 9280 = 2^{6} \cdot 5 \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 9280.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,-2,0,4,0,-2,0,8,0,2,0,-4,0,-2,0,-4,0,-6,0,20] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(21)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(74.1011730757\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: 4.4.11344.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 2x^{3} - 4x^{2} + 4x + 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{17}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 4640)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(-0.552409\) of defining polynomial
Character \(\chi\) \(=\) 9280.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.87834 q^{3} +1.00000 q^{5} +2.87834 q^{7} +5.28487 q^{9} +1.77353 q^{11} +2.28487 q^{13} +2.87834 q^{15} -5.06185 q^{17} +5.16321 q^{19} +8.28487 q^{21} +8.05839 q^{23} +1.00000 q^{25} +6.57664 q^{27} -1.00000 q^{29} +9.16321 q^{31} +5.10482 q^{33} +2.87834 q^{35} +2.48521 q^{37} +6.57664 q^{39} -8.86151 q^{41} -6.87834 q^{43} +5.28487 q^{45} -3.69830 q^{47} +1.28487 q^{49} -14.5697 q^{51} +2.65187 q^{53} +1.77353 q^{55} +14.8615 q^{57} +10.9367 q^{59} -9.83192 q^{61} +15.2117 q^{63} +2.28487 q^{65} -7.90793 q^{67} +23.1948 q^{69} -7.75669 q^{71} -11.1034 q^{73} +2.87834 q^{75} +5.10482 q^{77} -3.61616 q^{79} +3.07523 q^{81} -4.66871 q^{83} -5.06185 q^{85} -2.87834 q^{87} -6.93674 q^{89} +6.57664 q^{91} +26.3749 q^{93} +5.16321 q^{95} -5.43266 q^{97} +9.37285 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 2 q^{3} + 4 q^{5} - 2 q^{7} + 8 q^{9} + 2 q^{11} - 4 q^{13} - 2 q^{15} - 4 q^{17} - 6 q^{19} + 20 q^{21} + 14 q^{23} + 4 q^{25} + 4 q^{27} - 4 q^{29} + 10 q^{31} + 12 q^{33} - 2 q^{35} + 16 q^{37}+ \cdots - 6 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 2.87834 1.66181 0.830907 0.556412i \(-0.187822\pi\)
0.830907 + 0.556412i \(0.187822\pi\)
\(4\) 0 0
\(5\) 1.00000 0.447214
\(6\) 0 0
\(7\) 2.87834 1.08791 0.543956 0.839114i \(-0.316926\pi\)
0.543956 + 0.839114i \(0.316926\pi\)
\(8\) 0 0
\(9\) 5.28487 1.76162
\(10\) 0 0
\(11\) 1.77353 0.534738 0.267369 0.963594i \(-0.413846\pi\)
0.267369 + 0.963594i \(0.413846\pi\)
\(12\) 0 0
\(13\) 2.28487 0.633709 0.316854 0.948474i \(-0.397373\pi\)
0.316854 + 0.948474i \(0.397373\pi\)
\(14\) 0 0
\(15\) 2.87834 0.743185
\(16\) 0 0
\(17\) −5.06185 −1.22768 −0.613839 0.789431i \(-0.710376\pi\)
−0.613839 + 0.789431i \(0.710376\pi\)
\(18\) 0 0
\(19\) 5.16321 1.18452 0.592261 0.805746i \(-0.298235\pi\)
0.592261 + 0.805746i \(0.298235\pi\)
\(20\) 0 0
\(21\) 8.28487 1.80791
\(22\) 0 0
\(23\) 8.05839 1.68029 0.840146 0.542361i \(-0.182469\pi\)
0.840146 + 0.542361i \(0.182469\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) 0 0
\(27\) 6.57664 1.26567
\(28\) 0 0
\(29\) −1.00000 −0.185695
\(30\) 0 0
\(31\) 9.16321 1.64576 0.822881 0.568214i \(-0.192365\pi\)
0.822881 + 0.568214i \(0.192365\pi\)
\(32\) 0 0
\(33\) 5.10482 0.888635
\(34\) 0 0
\(35\) 2.87834 0.486529
\(36\) 0 0
\(37\) 2.48521 0.408565 0.204283 0.978912i \(-0.434514\pi\)
0.204283 + 0.978912i \(0.434514\pi\)
\(38\) 0 0
\(39\) 6.57664 1.05311
\(40\) 0 0
\(41\) −8.86151 −1.38394 −0.691968 0.721929i \(-0.743256\pi\)
−0.691968 + 0.721929i \(0.743256\pi\)
\(42\) 0 0
\(43\) −6.87834 −1.04894 −0.524469 0.851430i \(-0.675736\pi\)
−0.524469 + 0.851430i \(0.675736\pi\)
\(44\) 0 0
\(45\) 5.28487 0.787822
\(46\) 0 0
\(47\) −3.69830 −0.539452 −0.269726 0.962937i \(-0.586933\pi\)
−0.269726 + 0.962937i \(0.586933\pi\)
\(48\) 0 0
\(49\) 1.28487 0.183553
\(50\) 0 0
\(51\) −14.5697 −2.04017
\(52\) 0 0
\(53\) 2.65187 0.364262 0.182131 0.983274i \(-0.441700\pi\)
0.182131 + 0.983274i \(0.441700\pi\)
\(54\) 0 0
\(55\) 1.77353 0.239142
\(56\) 0 0
\(57\) 14.8615 1.96845
\(58\) 0 0
\(59\) 10.9367 1.42384 0.711921 0.702259i \(-0.247825\pi\)
0.711921 + 0.702259i \(0.247825\pi\)
\(60\) 0 0
\(61\) −9.83192 −1.25885 −0.629424 0.777062i \(-0.716709\pi\)
−0.629424 + 0.777062i \(0.716709\pi\)
\(62\) 0 0
\(63\) 15.2117 1.91649
\(64\) 0 0
\(65\) 2.28487 0.283403
\(66\) 0 0
\(67\) −7.90793 −0.966108 −0.483054 0.875591i \(-0.660472\pi\)
−0.483054 + 0.875591i \(0.660472\pi\)
\(68\) 0 0
\(69\) 23.1948 2.79233
\(70\) 0 0
\(71\) −7.75669 −0.920550 −0.460275 0.887776i \(-0.652249\pi\)
−0.460275 + 0.887776i \(0.652249\pi\)
\(72\) 0 0
\(73\) −11.1034 −1.29956 −0.649778 0.760124i \(-0.725138\pi\)
−0.649778 + 0.760124i \(0.725138\pi\)
\(74\) 0 0
\(75\) 2.87834 0.332363
\(76\) 0 0
\(77\) 5.10482 0.581748
\(78\) 0 0
\(79\) −3.61616 −0.406850 −0.203425 0.979091i \(-0.565207\pi\)
−0.203425 + 0.979091i \(0.565207\pi\)
\(80\) 0 0
\(81\) 3.07523 0.341692
\(82\) 0 0
\(83\) −4.66871 −0.512457 −0.256229 0.966616i \(-0.582480\pi\)
−0.256229 + 0.966616i \(0.582480\pi\)
\(84\) 0 0
\(85\) −5.06185 −0.549034
\(86\) 0 0
\(87\) −2.87834 −0.308591
\(88\) 0 0
\(89\) −6.93674 −0.735293 −0.367646 0.929966i \(-0.619836\pi\)
−0.367646 + 0.929966i \(0.619836\pi\)
\(90\) 0 0
\(91\) 6.57664 0.689419
\(92\) 0 0
\(93\) 26.3749 2.73495
\(94\) 0 0
\(95\) 5.16321 0.529735
\(96\) 0 0
\(97\) −5.43266 −0.551603 −0.275802 0.961215i \(-0.588943\pi\)
−0.275802 + 0.961215i \(0.588943\pi\)
\(98\) 0 0
\(99\) 9.37285 0.942007
\(100\) 0 0
\(101\) −7.38969 −0.735301 −0.367651 0.929964i \(-0.619838\pi\)
−0.367651 + 0.929964i \(0.619838\pi\)
\(102\) 0 0
\(103\) −5.81508 −0.572977 −0.286489 0.958084i \(-0.592488\pi\)
−0.286489 + 0.958084i \(0.592488\pi\)
\(104\) 0 0
\(105\) 8.28487 0.808520
\(106\) 0 0
\(107\) −12.7210 −1.22978 −0.614892 0.788611i \(-0.710800\pi\)
−0.614892 + 0.788611i \(0.710800\pi\)
\(108\) 0 0
\(109\) −16.4945 −1.57989 −0.789944 0.613180i \(-0.789890\pi\)
−0.789944 + 0.613180i \(0.789890\pi\)
\(110\) 0 0
\(111\) 7.15328 0.678959
\(112\) 0 0
\(113\) 4.56044 0.429010 0.214505 0.976723i \(-0.431186\pi\)
0.214505 + 0.976723i \(0.431186\pi\)
\(114\) 0 0
\(115\) 8.05839 0.751449
\(116\) 0 0
\(117\) 12.0752 1.11636
\(118\) 0 0
\(119\) −14.5697 −1.33561
\(120\) 0 0
\(121\) −7.85461 −0.714055
\(122\) 0 0
\(123\) −25.5065 −2.29984
\(124\) 0 0
\(125\) 1.00000 0.0894427
\(126\) 0 0
\(127\) 8.66871 0.769223 0.384612 0.923078i \(-0.374335\pi\)
0.384612 + 0.923078i \(0.374335\pi\)
\(128\) 0 0
\(129\) −19.7982 −1.74314
\(130\) 0 0
\(131\) 20.1591 1.76131 0.880656 0.473757i \(-0.157102\pi\)
0.880656 + 0.473757i \(0.157102\pi\)
\(132\) 0 0
\(133\) 14.8615 1.28866
\(134\) 0 0
\(135\) 6.57664 0.566027
\(136\) 0 0
\(137\) 16.0914 1.37478 0.687392 0.726287i \(-0.258755\pi\)
0.687392 + 0.726287i \(0.258755\pi\)
\(138\) 0 0
\(139\) −2.00690 −0.170223 −0.0851116 0.996371i \(-0.527125\pi\)
−0.0851116 + 0.996371i \(0.527125\pi\)
\(140\) 0 0
\(141\) −10.6450 −0.896468
\(142\) 0 0
\(143\) 4.05227 0.338868
\(144\) 0 0
\(145\) −1.00000 −0.0830455
\(146\) 0 0
\(147\) 3.69830 0.305030
\(148\) 0 0
\(149\) 10.1168 0.828800 0.414400 0.910095i \(-0.363992\pi\)
0.414400 + 0.910095i \(0.363992\pi\)
\(150\) 0 0
\(151\) −5.14638 −0.418806 −0.209403 0.977829i \(-0.567152\pi\)
−0.209403 + 0.977829i \(0.567152\pi\)
\(152\) 0 0
\(153\) −26.7512 −2.16271
\(154\) 0 0
\(155\) 9.16321 0.736007
\(156\) 0 0
\(157\) −10.3694 −0.827568 −0.413784 0.910375i \(-0.635793\pi\)
−0.413784 + 0.910375i \(0.635793\pi\)
\(158\) 0 0
\(159\) 7.63300 0.605336
\(160\) 0 0
\(161\) 23.1948 1.82801
\(162\) 0 0
\(163\) 16.3848 1.28336 0.641679 0.766973i \(-0.278238\pi\)
0.641679 + 0.766973i \(0.278238\pi\)
\(164\) 0 0
\(165\) 5.10482 0.397410
\(166\) 0 0
\(167\) 22.6350 1.75155 0.875776 0.482718i \(-0.160350\pi\)
0.875776 + 0.482718i \(0.160350\pi\)
\(168\) 0 0
\(169\) −7.77938 −0.598413
\(170\) 0 0
\(171\) 27.2869 2.08668
\(172\) 0 0
\(173\) 5.26218 0.400076 0.200038 0.979788i \(-0.435893\pi\)
0.200038 + 0.979788i \(0.435893\pi\)
\(174\) 0 0
\(175\) 2.87834 0.217582
\(176\) 0 0
\(177\) 31.4797 2.36616
\(178\) 0 0
\(179\) −2.61031 −0.195104 −0.0975520 0.995230i \(-0.531101\pi\)
−0.0975520 + 0.995230i \(0.531101\pi\)
\(180\) 0 0
\(181\) −8.77556 −0.652282 −0.326141 0.945321i \(-0.605748\pi\)
−0.326141 + 0.945321i \(0.605748\pi\)
\(182\) 0 0
\(183\) −28.2997 −2.09197
\(184\) 0 0
\(185\) 2.48521 0.182716
\(186\) 0 0
\(187\) −8.97731 −0.656486
\(188\) 0 0
\(189\) 18.9298 1.37694
\(190\) 0 0
\(191\) 20.3165 1.47005 0.735025 0.678040i \(-0.237170\pi\)
0.735025 + 0.678040i \(0.237170\pi\)
\(192\) 0 0
\(193\) −18.1490 −1.30640 −0.653198 0.757187i \(-0.726573\pi\)
−0.653198 + 0.757187i \(0.726573\pi\)
\(194\) 0 0
\(195\) 6.57664 0.470963
\(196\) 0 0
\(197\) 10.2165 0.727898 0.363949 0.931419i \(-0.381428\pi\)
0.363949 + 0.931419i \(0.381428\pi\)
\(198\) 0 0
\(199\) 17.3966 1.23321 0.616606 0.787272i \(-0.288507\pi\)
0.616606 + 0.787272i \(0.288507\pi\)
\(200\) 0 0
\(201\) −22.7618 −1.60549
\(202\) 0 0
\(203\) −2.87834 −0.202020
\(204\) 0 0
\(205\) −8.86151 −0.618915
\(206\) 0 0
\(207\) 42.5876 2.96004
\(208\) 0 0
\(209\) 9.15709 0.633409
\(210\) 0 0
\(211\) −26.7625 −1.84241 −0.921205 0.389079i \(-0.872793\pi\)
−0.921205 + 0.389079i \(0.872793\pi\)
\(212\) 0 0
\(213\) −22.3264 −1.52978
\(214\) 0 0
\(215\) −6.87834 −0.469099
\(216\) 0 0
\(217\) 26.3749 1.79044
\(218\) 0 0
\(219\) −31.9594 −2.15962
\(220\) 0 0
\(221\) −11.5657 −0.777990
\(222\) 0 0
\(223\) 23.2384 1.55616 0.778081 0.628164i \(-0.216193\pi\)
0.778081 + 0.628164i \(0.216193\pi\)
\(224\) 0 0
\(225\) 5.28487 0.352325
\(226\) 0 0
\(227\) −16.0584 −1.06583 −0.532917 0.846168i \(-0.678904\pi\)
−0.532917 + 0.846168i \(0.678904\pi\)
\(228\) 0 0
\(229\) 15.1533 1.00136 0.500678 0.865633i \(-0.333084\pi\)
0.500678 + 0.865633i \(0.333084\pi\)
\(230\) 0 0
\(231\) 14.6934 0.966757
\(232\) 0 0
\(233\) 9.96633 0.652916 0.326458 0.945212i \(-0.394145\pi\)
0.326458 + 0.945212i \(0.394145\pi\)
\(234\) 0 0
\(235\) −3.69830 −0.241250
\(236\) 0 0
\(237\) −10.4086 −0.676109
\(238\) 0 0
\(239\) 9.14638 0.591630 0.295815 0.955245i \(-0.404409\pi\)
0.295815 + 0.955245i \(0.404409\pi\)
\(240\) 0 0
\(241\) 4.92984 0.317559 0.158779 0.987314i \(-0.449244\pi\)
0.158779 + 0.987314i \(0.449244\pi\)
\(242\) 0 0
\(243\) −10.8783 −0.697846
\(244\) 0 0
\(245\) 1.28487 0.0820872
\(246\) 0 0
\(247\) 11.7973 0.750642
\(248\) 0 0
\(249\) −13.4381 −0.851608
\(250\) 0 0
\(251\) −5.99007 −0.378090 −0.189045 0.981968i \(-0.560539\pi\)
−0.189045 + 0.981968i \(0.560539\pi\)
\(252\) 0 0
\(253\) 14.2918 0.898516
\(254\) 0 0
\(255\) −14.5697 −0.912392
\(256\) 0 0
\(257\) 1.41264 0.0881184 0.0440592 0.999029i \(-0.485971\pi\)
0.0440592 + 0.999029i \(0.485971\pi\)
\(258\) 0 0
\(259\) 7.15328 0.444483
\(260\) 0 0
\(261\) −5.28487 −0.327125
\(262\) 0 0
\(263\) 13.4412 0.828819 0.414409 0.910091i \(-0.363988\pi\)
0.414409 + 0.910091i \(0.363988\pi\)
\(264\) 0 0
\(265\) 2.65187 0.162903
\(266\) 0 0
\(267\) −19.9663 −1.22192
\(268\) 0 0
\(269\) −0.928854 −0.0566332 −0.0283166 0.999599i \(-0.509015\pi\)
−0.0283166 + 0.999599i \(0.509015\pi\)
\(270\) 0 0
\(271\) −24.5529 −1.49148 −0.745741 0.666236i \(-0.767904\pi\)
−0.745741 + 0.666236i \(0.767904\pi\)
\(272\) 0 0
\(273\) 18.9298 1.14569
\(274\) 0 0
\(275\) 1.77353 0.106948
\(276\) 0 0
\(277\) −25.6786 −1.54288 −0.771440 0.636303i \(-0.780463\pi\)
−0.771440 + 0.636303i \(0.780463\pi\)
\(278\) 0 0
\(279\) 48.4264 2.89921
\(280\) 0 0
\(281\) 3.58861 0.214079 0.107039 0.994255i \(-0.465863\pi\)
0.107039 + 0.994255i \(0.465863\pi\)
\(282\) 0 0
\(283\) −20.1752 −1.19929 −0.599645 0.800266i \(-0.704692\pi\)
−0.599645 + 0.800266i \(0.704692\pi\)
\(284\) 0 0
\(285\) 14.8615 0.880320
\(286\) 0 0
\(287\) −25.5065 −1.50560
\(288\) 0 0
\(289\) 8.62228 0.507193
\(290\) 0 0
\(291\) −15.6371 −0.916661
\(292\) 0 0
\(293\) −2.98661 −0.174480 −0.0872400 0.996187i \(-0.527805\pi\)
−0.0872400 + 0.996187i \(0.527805\pi\)
\(294\) 0 0
\(295\) 10.9367 0.636762
\(296\) 0 0
\(297\) 11.6638 0.676805
\(298\) 0 0
\(299\) 18.4124 1.06482
\(300\) 0 0
\(301\) −19.7982 −1.14115
\(302\) 0 0
\(303\) −21.2701 −1.22193
\(304\) 0 0
\(305\) −9.83192 −0.562974
\(306\) 0 0
\(307\) −5.57460 −0.318159 −0.159080 0.987266i \(-0.550853\pi\)
−0.159080 + 0.987266i \(0.550853\pi\)
\(308\) 0 0
\(309\) −16.7378 −0.952181
\(310\) 0 0
\(311\) −1.21069 −0.0686520 −0.0343260 0.999411i \(-0.510928\pi\)
−0.0343260 + 0.999411i \(0.510928\pi\)
\(312\) 0 0
\(313\) 27.8574 1.57459 0.787297 0.616574i \(-0.211480\pi\)
0.787297 + 0.616574i \(0.211480\pi\)
\(314\) 0 0
\(315\) 15.2117 0.857081
\(316\) 0 0
\(317\) −26.7512 −1.50250 −0.751248 0.660020i \(-0.770548\pi\)
−0.751248 + 0.660020i \(0.770548\pi\)
\(318\) 0 0
\(319\) −1.77353 −0.0992984
\(320\) 0 0
\(321\) −36.6154 −2.04367
\(322\) 0 0
\(323\) −26.1354 −1.45421
\(324\) 0 0
\(325\) 2.28487 0.126742
\(326\) 0 0
\(327\) −47.4769 −2.62548
\(328\) 0 0
\(329\) −10.6450 −0.586876
\(330\) 0 0
\(331\) −1.89722 −0.104280 −0.0521402 0.998640i \(-0.516604\pi\)
−0.0521402 + 0.998640i \(0.516604\pi\)
\(332\) 0 0
\(333\) 13.1340 0.719738
\(334\) 0 0
\(335\) −7.90793 −0.432057
\(336\) 0 0
\(337\) 34.5831 1.88386 0.941931 0.335806i \(-0.109009\pi\)
0.941931 + 0.335806i \(0.109009\pi\)
\(338\) 0 0
\(339\) 13.1265 0.712934
\(340\) 0 0
\(341\) 16.2512 0.880052
\(342\) 0 0
\(343\) −16.4501 −0.888223
\(344\) 0 0
\(345\) 23.1948 1.24877
\(346\) 0 0
\(347\) 22.4777 1.20666 0.603332 0.797490i \(-0.293839\pi\)
0.603332 + 0.797490i \(0.293839\pi\)
\(348\) 0 0
\(349\) −6.24738 −0.334415 −0.167207 0.985922i \(-0.553475\pi\)
−0.167207 + 0.985922i \(0.553475\pi\)
\(350\) 0 0
\(351\) 15.0268 0.802069
\(352\) 0 0
\(353\) 15.3859 0.818907 0.409454 0.912331i \(-0.365719\pi\)
0.409454 + 0.912331i \(0.365719\pi\)
\(354\) 0 0
\(355\) −7.75669 −0.411682
\(356\) 0 0
\(357\) −41.9367 −2.21953
\(358\) 0 0
\(359\) −26.5006 −1.39865 −0.699325 0.714804i \(-0.746516\pi\)
−0.699325 + 0.714804i \(0.746516\pi\)
\(360\) 0 0
\(361\) 7.65877 0.403093
\(362\) 0 0
\(363\) −22.6083 −1.18663
\(364\) 0 0
\(365\) −11.1034 −0.581179
\(366\) 0 0
\(367\) 7.97935 0.416519 0.208259 0.978074i \(-0.433220\pi\)
0.208259 + 0.978074i \(0.433220\pi\)
\(368\) 0 0
\(369\) −46.8319 −2.43797
\(370\) 0 0
\(371\) 7.63300 0.396286
\(372\) 0 0
\(373\) 4.44605 0.230208 0.115104 0.993353i \(-0.463280\pi\)
0.115104 + 0.993353i \(0.463280\pi\)
\(374\) 0 0
\(375\) 2.87834 0.148637
\(376\) 0 0
\(377\) −2.28487 −0.117677
\(378\) 0 0
\(379\) −15.4519 −0.793711 −0.396855 0.917881i \(-0.629899\pi\)
−0.396855 + 0.917881i \(0.629899\pi\)
\(380\) 0 0
\(381\) 24.9515 1.27831
\(382\) 0 0
\(383\) 10.5251 0.537810 0.268905 0.963167i \(-0.413338\pi\)
0.268905 + 0.963167i \(0.413338\pi\)
\(384\) 0 0
\(385\) 5.10482 0.260166
\(386\) 0 0
\(387\) −36.3511 −1.84783
\(388\) 0 0
\(389\) 13.0120 0.659733 0.329867 0.944028i \(-0.392996\pi\)
0.329867 + 0.944028i \(0.392996\pi\)
\(390\) 0 0
\(391\) −40.7904 −2.06286
\(392\) 0 0
\(393\) 58.0249 2.92697
\(394\) 0 0
\(395\) −3.61616 −0.181949
\(396\) 0 0
\(397\) −36.3236 −1.82303 −0.911515 0.411268i \(-0.865086\pi\)
−0.911515 + 0.411268i \(0.865086\pi\)
\(398\) 0 0
\(399\) 42.7765 2.14151
\(400\) 0 0
\(401\) 32.7082 1.63337 0.816685 0.577083i \(-0.195809\pi\)
0.816685 + 0.577083i \(0.195809\pi\)
\(402\) 0 0
\(403\) 20.9367 1.04293
\(404\) 0 0
\(405\) 3.07523 0.152809
\(406\) 0 0
\(407\) 4.40758 0.218475
\(408\) 0 0
\(409\) 4.35629 0.215405 0.107702 0.994183i \(-0.465651\pi\)
0.107702 + 0.994183i \(0.465651\pi\)
\(410\) 0 0
\(411\) 46.3167 2.28463
\(412\) 0 0
\(413\) 31.4797 1.54902
\(414\) 0 0
\(415\) −4.66871 −0.229178
\(416\) 0 0
\(417\) −5.77656 −0.282879
\(418\) 0 0
\(419\) 12.2742 0.599632 0.299816 0.953997i \(-0.403075\pi\)
0.299816 + 0.953997i \(0.403075\pi\)
\(420\) 0 0
\(421\) −17.6478 −0.860100 −0.430050 0.902805i \(-0.641504\pi\)
−0.430050 + 0.902805i \(0.641504\pi\)
\(422\) 0 0
\(423\) −19.5450 −0.950311
\(424\) 0 0
\(425\) −5.06185 −0.245536
\(426\) 0 0
\(427\) −28.2997 −1.36952
\(428\) 0 0
\(429\) 11.6638 0.563136
\(430\) 0 0
\(431\) 0.164267 0.00791244 0.00395622 0.999992i \(-0.498741\pi\)
0.00395622 + 0.999992i \(0.498741\pi\)
\(432\) 0 0
\(433\) −0.361514 −0.0173733 −0.00868664 0.999962i \(-0.502765\pi\)
−0.00868664 + 0.999962i \(0.502765\pi\)
\(434\) 0 0
\(435\) −2.87834 −0.138006
\(436\) 0 0
\(437\) 41.6072 1.99034
\(438\) 0 0
\(439\) 29.8329 1.42385 0.711923 0.702257i \(-0.247824\pi\)
0.711923 + 0.702257i \(0.247824\pi\)
\(440\) 0 0
\(441\) 6.79036 0.323351
\(442\) 0 0
\(443\) 10.3946 0.493860 0.246930 0.969033i \(-0.420578\pi\)
0.246930 + 0.969033i \(0.420578\pi\)
\(444\) 0 0
\(445\) −6.93674 −0.328833
\(446\) 0 0
\(447\) 29.1196 1.37731
\(448\) 0 0
\(449\) −11.3214 −0.534288 −0.267144 0.963657i \(-0.586080\pi\)
−0.267144 + 0.963657i \(0.586080\pi\)
\(450\) 0 0
\(451\) −15.7161 −0.740043
\(452\) 0 0
\(453\) −14.8130 −0.695978
\(454\) 0 0
\(455\) 6.57664 0.308318
\(456\) 0 0
\(457\) 2.06833 0.0967523 0.0483762 0.998829i \(-0.484595\pi\)
0.0483762 + 0.998829i \(0.484595\pi\)
\(458\) 0 0
\(459\) −33.2899 −1.55384
\(460\) 0 0
\(461\) −6.31952 −0.294330 −0.147165 0.989112i \(-0.547015\pi\)
−0.147165 + 0.989112i \(0.547015\pi\)
\(462\) 0 0
\(463\) 5.36497 0.249331 0.124666 0.992199i \(-0.460214\pi\)
0.124666 + 0.992199i \(0.460214\pi\)
\(464\) 0 0
\(465\) 26.3749 1.22311
\(466\) 0 0
\(467\) 37.9574 1.75646 0.878229 0.478240i \(-0.158725\pi\)
0.878229 + 0.478240i \(0.158725\pi\)
\(468\) 0 0
\(469\) −22.7618 −1.05104
\(470\) 0 0
\(471\) −29.8467 −1.37526
\(472\) 0 0
\(473\) −12.1989 −0.560907
\(474\) 0 0
\(475\) 5.16321 0.236904
\(476\) 0 0
\(477\) 14.0148 0.641693
\(478\) 0 0
\(479\) 22.3234 1.01998 0.509991 0.860180i \(-0.329649\pi\)
0.509991 + 0.860180i \(0.329649\pi\)
\(480\) 0 0
\(481\) 5.67837 0.258911
\(482\) 0 0
\(483\) 66.7627 3.03781
\(484\) 0 0
\(485\) −5.43266 −0.246684
\(486\) 0 0
\(487\) −34.2721 −1.55302 −0.776509 0.630107i \(-0.783011\pi\)
−0.776509 + 0.630107i \(0.783011\pi\)
\(488\) 0 0
\(489\) 47.1612 2.13270
\(490\) 0 0
\(491\) −1.98316 −0.0894989 −0.0447495 0.998998i \(-0.514249\pi\)
−0.0447495 + 0.998998i \(0.514249\pi\)
\(492\) 0 0
\(493\) 5.06185 0.227974
\(494\) 0 0
\(495\) 9.37285 0.421278
\(496\) 0 0
\(497\) −22.3264 −1.00148
\(498\) 0 0
\(499\) 24.0831 1.07811 0.539054 0.842271i \(-0.318782\pi\)
0.539054 + 0.842271i \(0.318782\pi\)
\(500\) 0 0
\(501\) 65.1514 2.91075
\(502\) 0 0
\(503\) −42.9801 −1.91639 −0.958193 0.286122i \(-0.907634\pi\)
−0.958193 + 0.286122i \(0.907634\pi\)
\(504\) 0 0
\(505\) −7.38969 −0.328837
\(506\) 0 0
\(507\) −22.3917 −0.994451
\(508\) 0 0
\(509\) 35.2739 1.56349 0.781744 0.623600i \(-0.214331\pi\)
0.781744 + 0.623600i \(0.214331\pi\)
\(510\) 0 0
\(511\) −31.9594 −1.41380
\(512\) 0 0
\(513\) 33.9566 1.49922
\(514\) 0 0
\(515\) −5.81508 −0.256243
\(516\) 0 0
\(517\) −6.55902 −0.288465
\(518\) 0 0
\(519\) 15.1464 0.664852
\(520\) 0 0
\(521\) 15.9248 0.697677 0.348838 0.937183i \(-0.386576\pi\)
0.348838 + 0.937183i \(0.386576\pi\)
\(522\) 0 0
\(523\) −5.72914 −0.250518 −0.125259 0.992124i \(-0.539976\pi\)
−0.125259 + 0.992124i \(0.539976\pi\)
\(524\) 0 0
\(525\) 8.28487 0.361581
\(526\) 0 0
\(527\) −46.3828 −2.02047
\(528\) 0 0
\(529\) 41.9377 1.82338
\(530\) 0 0
\(531\) 57.7992 2.50827
\(532\) 0 0
\(533\) −20.2474 −0.877012
\(534\) 0 0
\(535\) −12.7210 −0.549976
\(536\) 0 0
\(537\) −7.51338 −0.324226
\(538\) 0 0
\(539\) 2.27875 0.0981526
\(540\) 0 0
\(541\) 38.0308 1.63507 0.817537 0.575876i \(-0.195339\pi\)
0.817537 + 0.575876i \(0.195339\pi\)
\(542\) 0 0
\(543\) −25.2591 −1.08397
\(544\) 0 0
\(545\) −16.4945 −0.706547
\(546\) 0 0
\(547\) 0.504440 0.0215683 0.0107842 0.999942i \(-0.496567\pi\)
0.0107842 + 0.999942i \(0.496567\pi\)
\(548\) 0 0
\(549\) −51.9604 −2.21762
\(550\) 0 0
\(551\) −5.16321 −0.219960
\(552\) 0 0
\(553\) −10.4086 −0.442617
\(554\) 0 0
\(555\) 7.15328 0.303640
\(556\) 0 0
\(557\) −5.81587 −0.246426 −0.123213 0.992380i \(-0.539320\pi\)
−0.123213 + 0.992380i \(0.539320\pi\)
\(558\) 0 0
\(559\) −15.7161 −0.664721
\(560\) 0 0
\(561\) −25.8398 −1.09096
\(562\) 0 0
\(563\) −36.4371 −1.53564 −0.767820 0.640665i \(-0.778659\pi\)
−0.767820 + 0.640665i \(0.778659\pi\)
\(564\) 0 0
\(565\) 4.56044 0.191859
\(566\) 0 0
\(567\) 8.85157 0.371731
\(568\) 0 0
\(569\) 7.91096 0.331645 0.165822 0.986156i \(-0.446972\pi\)
0.165822 + 0.986156i \(0.446972\pi\)
\(570\) 0 0
\(571\) −41.6419 −1.74266 −0.871329 0.490699i \(-0.836741\pi\)
−0.871329 + 0.490699i \(0.836741\pi\)
\(572\) 0 0
\(573\) 58.4779 2.44295
\(574\) 0 0
\(575\) 8.05839 0.336058
\(576\) 0 0
\(577\) 11.8887 0.494933 0.247466 0.968896i \(-0.420402\pi\)
0.247466 + 0.968896i \(0.420402\pi\)
\(578\) 0 0
\(579\) −52.2392 −2.17099
\(580\) 0 0
\(581\) −13.4381 −0.557508
\(582\) 0 0
\(583\) 4.70316 0.194785
\(584\) 0 0
\(585\) 12.0752 0.499249
\(586\) 0 0
\(587\) −10.3464 −0.427040 −0.213520 0.976939i \(-0.568493\pi\)
−0.213520 + 0.976939i \(0.568493\pi\)
\(588\) 0 0
\(589\) 47.3116 1.94944
\(590\) 0 0
\(591\) 29.4067 1.20963
\(592\) 0 0
\(593\) −40.3412 −1.65662 −0.828308 0.560274i \(-0.810696\pi\)
−0.828308 + 0.560274i \(0.810696\pi\)
\(594\) 0 0
\(595\) −14.5697 −0.597301
\(596\) 0 0
\(597\) 50.0734 2.04937
\(598\) 0 0
\(599\) 9.43737 0.385600 0.192800 0.981238i \(-0.438243\pi\)
0.192800 + 0.981238i \(0.438243\pi\)
\(600\) 0 0
\(601\) 35.2216 1.43672 0.718360 0.695672i \(-0.244893\pi\)
0.718360 + 0.695672i \(0.244893\pi\)
\(602\) 0 0
\(603\) −41.7924 −1.70192
\(604\) 0 0
\(605\) −7.85461 −0.319335
\(606\) 0 0
\(607\) 35.3285 1.43394 0.716969 0.697105i \(-0.245529\pi\)
0.716969 + 0.697105i \(0.245529\pi\)
\(608\) 0 0
\(609\) −8.28487 −0.335720
\(610\) 0 0
\(611\) −8.45012 −0.341855
\(612\) 0 0
\(613\) −42.0831 −1.69972 −0.849861 0.527008i \(-0.823314\pi\)
−0.849861 + 0.527008i \(0.823314\pi\)
\(614\) 0 0
\(615\) −25.5065 −1.02852
\(616\) 0 0
\(617\) 33.1963 1.33643 0.668215 0.743968i \(-0.267058\pi\)
0.668215 + 0.743968i \(0.267058\pi\)
\(618\) 0 0
\(619\) −10.5123 −0.422526 −0.211263 0.977429i \(-0.567758\pi\)
−0.211263 + 0.977429i \(0.567758\pi\)
\(620\) 0 0
\(621\) 52.9972 2.12670
\(622\) 0 0
\(623\) −19.9663 −0.799934
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 0 0
\(627\) 26.3573 1.05261
\(628\) 0 0
\(629\) −12.5797 −0.501587
\(630\) 0 0
\(631\) −21.1841 −0.843327 −0.421663 0.906752i \(-0.638554\pi\)
−0.421663 + 0.906752i \(0.638554\pi\)
\(632\) 0 0
\(633\) −77.0318 −3.06174
\(634\) 0 0
\(635\) 8.66871 0.344007
\(636\) 0 0
\(637\) 2.93576 0.116319
\(638\) 0 0
\(639\) −40.9931 −1.62166
\(640\) 0 0
\(641\) −2.92068 −0.115360 −0.0576801 0.998335i \(-0.518370\pi\)
−0.0576801 + 0.998335i \(0.518370\pi\)
\(642\) 0 0
\(643\) 3.32439 0.131101 0.0655506 0.997849i \(-0.479120\pi\)
0.0655506 + 0.997849i \(0.479120\pi\)
\(644\) 0 0
\(645\) −19.7982 −0.779555
\(646\) 0 0
\(647\) −33.2693 −1.30795 −0.653975 0.756516i \(-0.726900\pi\)
−0.653975 + 0.756516i \(0.726900\pi\)
\(648\) 0 0
\(649\) 19.3966 0.761383
\(650\) 0 0
\(651\) 75.9160 2.97538
\(652\) 0 0
\(653\) −28.6436 −1.12091 −0.560454 0.828185i \(-0.689374\pi\)
−0.560454 + 0.828185i \(0.689374\pi\)
\(654\) 0 0
\(655\) 20.1591 0.787682
\(656\) 0 0
\(657\) −58.6800 −2.28933
\(658\) 0 0
\(659\) −9.03262 −0.351861 −0.175930 0.984403i \(-0.556293\pi\)
−0.175930 + 0.984403i \(0.556293\pi\)
\(660\) 0 0
\(661\) 8.30881 0.323175 0.161588 0.986858i \(-0.448339\pi\)
0.161588 + 0.986858i \(0.448339\pi\)
\(662\) 0 0
\(663\) −33.2899 −1.29287
\(664\) 0 0
\(665\) 14.8615 0.576305
\(666\) 0 0
\(667\) −8.05839 −0.312022
\(668\) 0 0
\(669\) 66.8883 2.58605
\(670\) 0 0
\(671\) −17.4372 −0.673154
\(672\) 0 0
\(673\) −33.9635 −1.30920 −0.654598 0.755977i \(-0.727162\pi\)
−0.654598 + 0.755977i \(0.727162\pi\)
\(674\) 0 0
\(675\) 6.57664 0.253135
\(676\) 0 0
\(677\) −23.2202 −0.892425 −0.446212 0.894927i \(-0.647227\pi\)
−0.446212 + 0.894927i \(0.647227\pi\)
\(678\) 0 0
\(679\) −15.6371 −0.600096
\(680\) 0 0
\(681\) −46.2216 −1.77122
\(682\) 0 0
\(683\) 20.7279 0.793130 0.396565 0.918007i \(-0.370202\pi\)
0.396565 + 0.918007i \(0.370202\pi\)
\(684\) 0 0
\(685\) 16.0914 0.614822
\(686\) 0 0
\(687\) 43.6164 1.66407
\(688\) 0 0
\(689\) 6.05918 0.230836
\(690\) 0 0
\(691\) −29.1910 −1.11048 −0.555239 0.831691i \(-0.687373\pi\)
−0.555239 + 0.831691i \(0.687373\pi\)
\(692\) 0 0
\(693\) 26.9783 1.02482
\(694\) 0 0
\(695\) −2.00690 −0.0761261
\(696\) 0 0
\(697\) 44.8556 1.69903
\(698\) 0 0
\(699\) 28.6865 1.08502
\(700\) 0 0
\(701\) 29.2285 1.10395 0.551973 0.833862i \(-0.313875\pi\)
0.551973 + 0.833862i \(0.313875\pi\)
\(702\) 0 0
\(703\) 12.8316 0.483955
\(704\) 0 0
\(705\) −10.6450 −0.400913
\(706\) 0 0
\(707\) −21.2701 −0.799943
\(708\) 0 0
\(709\) −14.1206 −0.530310 −0.265155 0.964206i \(-0.585423\pi\)
−0.265155 + 0.964206i \(0.585423\pi\)
\(710\) 0 0
\(711\) −19.1109 −0.716716
\(712\) 0 0
\(713\) 73.8408 2.76536
\(714\) 0 0
\(715\) 4.05227 0.151546
\(716\) 0 0
\(717\) 26.3264 0.983178
\(718\) 0 0
\(719\) −21.8159 −0.813595 −0.406797 0.913518i \(-0.633354\pi\)
−0.406797 + 0.913518i \(0.633354\pi\)
\(720\) 0 0
\(721\) −16.7378 −0.623349
\(722\) 0 0
\(723\) 14.1898 0.527723
\(724\) 0 0
\(725\) −1.00000 −0.0371391
\(726\) 0 0
\(727\) 37.6102 1.39489 0.697443 0.716640i \(-0.254321\pi\)
0.697443 + 0.716640i \(0.254321\pi\)
\(728\) 0 0
\(729\) −40.5373 −1.50138
\(730\) 0 0
\(731\) 34.8171 1.28776
\(732\) 0 0
\(733\) 32.9731 1.21789 0.608944 0.793213i \(-0.291593\pi\)
0.608944 + 0.793213i \(0.291593\pi\)
\(734\) 0 0
\(735\) 3.69830 0.136414
\(736\) 0 0
\(737\) −14.0249 −0.516615
\(738\) 0 0
\(739\) 31.2841 1.15080 0.575402 0.817871i \(-0.304846\pi\)
0.575402 + 0.817871i \(0.304846\pi\)
\(740\) 0 0
\(741\) 33.9566 1.24743
\(742\) 0 0
\(743\) 23.5787 0.865018 0.432509 0.901630i \(-0.357628\pi\)
0.432509 + 0.901630i \(0.357628\pi\)
\(744\) 0 0
\(745\) 10.1168 0.370650
\(746\) 0 0
\(747\) −24.6735 −0.902756
\(748\) 0 0
\(749\) −36.6154 −1.33790
\(750\) 0 0
\(751\) 14.6697 0.535305 0.267652 0.963516i \(-0.413752\pi\)
0.267652 + 0.963516i \(0.413752\pi\)
\(752\) 0 0
\(753\) −17.2415 −0.628314
\(754\) 0 0
\(755\) −5.14638 −0.187296
\(756\) 0 0
\(757\) 28.0430 1.01924 0.509620 0.860400i \(-0.329786\pi\)
0.509620 + 0.860400i \(0.329786\pi\)
\(758\) 0 0
\(759\) 41.1366 1.49317
\(760\) 0 0
\(761\) 53.4460 1.93742 0.968709 0.248201i \(-0.0798393\pi\)
0.968709 + 0.248201i \(0.0798393\pi\)
\(762\) 0 0
\(763\) −47.4769 −1.71878
\(764\) 0 0
\(765\) −26.7512 −0.967191
\(766\) 0 0
\(767\) 24.9890 0.902301
\(768\) 0 0
\(769\) −34.7174 −1.25194 −0.625970 0.779847i \(-0.715297\pi\)
−0.625970 + 0.779847i \(0.715297\pi\)
\(770\) 0 0
\(771\) 4.06608 0.146436
\(772\) 0 0
\(773\) −13.5485 −0.487304 −0.243652 0.969863i \(-0.578346\pi\)
−0.243652 + 0.969863i \(0.578346\pi\)
\(774\) 0 0
\(775\) 9.16321 0.329152
\(776\) 0 0
\(777\) 20.5896 0.738648
\(778\) 0 0
\(779\) −45.7539 −1.63930
\(780\) 0 0
\(781\) −13.7567 −0.492253
\(782\) 0 0
\(783\) −6.57664 −0.235030
\(784\) 0 0
\(785\) −10.3694 −0.370100
\(786\) 0 0
\(787\) 36.0316 1.28439 0.642194 0.766542i \(-0.278024\pi\)
0.642194 + 0.766542i \(0.278024\pi\)
\(788\) 0 0
\(789\) 38.6883 1.37734
\(790\) 0 0
\(791\) 13.1265 0.466725
\(792\) 0 0
\(793\) −22.4646 −0.797743
\(794\) 0 0
\(795\) 7.63300 0.270715
\(796\) 0 0
\(797\) −1.17765 −0.0417146 −0.0208573 0.999782i \(-0.506640\pi\)
−0.0208573 + 0.999782i \(0.506640\pi\)
\(798\) 0 0
\(799\) 18.7202 0.662273
\(800\) 0 0
\(801\) −36.6598 −1.29531
\(802\) 0 0
\(803\) −19.6922 −0.694922
\(804\) 0 0
\(805\) 23.1948 0.817511
\(806\) 0 0
\(807\) −2.67356 −0.0941138
\(808\) 0 0
\(809\) −50.8020 −1.78610 −0.893052 0.449953i \(-0.851441\pi\)
−0.893052 + 0.449953i \(0.851441\pi\)
\(810\) 0 0
\(811\) −40.7558 −1.43113 −0.715566 0.698546i \(-0.753831\pi\)
−0.715566 + 0.698546i \(0.753831\pi\)
\(812\) 0 0
\(813\) −70.6717 −2.47857
\(814\) 0 0
\(815\) 16.3848 0.573935
\(816\) 0 0
\(817\) −35.5144 −1.24249
\(818\) 0 0
\(819\) 34.7567 1.21450
\(820\) 0 0
\(821\) 3.77812 0.131857 0.0659287 0.997824i \(-0.478999\pi\)
0.0659287 + 0.997824i \(0.478999\pi\)
\(822\) 0 0
\(823\) 1.60828 0.0560610 0.0280305 0.999607i \(-0.491076\pi\)
0.0280305 + 0.999607i \(0.491076\pi\)
\(824\) 0 0
\(825\) 5.10482 0.177727
\(826\) 0 0
\(827\) −44.7320 −1.55548 −0.777741 0.628585i \(-0.783635\pi\)
−0.777741 + 0.628585i \(0.783635\pi\)
\(828\) 0 0
\(829\) 7.54396 0.262013 0.131006 0.991382i \(-0.458179\pi\)
0.131006 + 0.991382i \(0.458179\pi\)
\(830\) 0 0
\(831\) −73.9119 −2.56398
\(832\) 0 0
\(833\) −6.50381 −0.225344
\(834\) 0 0
\(835\) 22.6350 0.783318
\(836\) 0 0
\(837\) 60.2632 2.08300
\(838\) 0 0
\(839\) −12.5343 −0.432732 −0.216366 0.976312i \(-0.569420\pi\)
−0.216366 + 0.976312i \(0.569420\pi\)
\(840\) 0 0
\(841\) 1.00000 0.0344828
\(842\) 0 0
\(843\) 10.3293 0.355758
\(844\) 0 0
\(845\) −7.77938 −0.267619
\(846\) 0 0
\(847\) −22.6083 −0.776829
\(848\) 0 0
\(849\) −58.0711 −1.99300
\(850\) 0 0
\(851\) 20.0268 0.686509
\(852\) 0 0
\(853\) −13.6344 −0.466833 −0.233417 0.972377i \(-0.574991\pi\)
−0.233417 + 0.972377i \(0.574991\pi\)
\(854\) 0 0
\(855\) 27.2869 0.933192
\(856\) 0 0
\(857\) 35.3769 1.20845 0.604225 0.796813i \(-0.293483\pi\)
0.604225 + 0.796813i \(0.293483\pi\)
\(858\) 0 0
\(859\) −5.35708 −0.182781 −0.0913906 0.995815i \(-0.529131\pi\)
−0.0913906 + 0.995815i \(0.529131\pi\)
\(860\) 0 0
\(861\) −73.4164 −2.50203
\(862\) 0 0
\(863\) 0.452167 0.0153919 0.00769597 0.999970i \(-0.497550\pi\)
0.00769597 + 0.999970i \(0.497550\pi\)
\(864\) 0 0
\(865\) 5.26218 0.178920
\(866\) 0 0
\(867\) 24.8179 0.842860
\(868\) 0 0
\(869\) −6.41336 −0.217558
\(870\) 0 0
\(871\) −18.0686 −0.612231
\(872\) 0 0
\(873\) −28.7109 −0.971717
\(874\) 0 0
\(875\) 2.87834 0.0973058
\(876\) 0 0
\(877\) 31.7913 1.07352 0.536759 0.843736i \(-0.319649\pi\)
0.536759 + 0.843736i \(0.319649\pi\)
\(878\) 0 0
\(879\) −8.59651 −0.289953
\(880\) 0 0
\(881\) −24.0107 −0.808942 −0.404471 0.914551i \(-0.632544\pi\)
−0.404471 + 0.914551i \(0.632544\pi\)
\(882\) 0 0
\(883\) −27.2976 −0.918638 −0.459319 0.888271i \(-0.651907\pi\)
−0.459319 + 0.888271i \(0.651907\pi\)
\(884\) 0 0
\(885\) 31.4797 1.05818
\(886\) 0 0
\(887\) −22.3395 −0.750085 −0.375043 0.927008i \(-0.622372\pi\)
−0.375043 + 0.927008i \(0.622372\pi\)
\(888\) 0 0
\(889\) 24.9515 0.836847
\(890\) 0 0
\(891\) 5.45400 0.182716
\(892\) 0 0
\(893\) −19.0951 −0.638993
\(894\) 0 0
\(895\) −2.61031 −0.0872531
\(896\) 0 0
\(897\) 52.9972 1.76952
\(898\) 0 0
\(899\) −9.16321 −0.305610
\(900\) 0 0
\(901\) −13.4234 −0.447197
\(902\) 0 0
\(903\) −56.9862 −1.89638
\(904\) 0 0
\(905\) −8.77556 −0.291710
\(906\) 0 0
\(907\) −29.5195 −0.980179 −0.490089 0.871672i \(-0.663036\pi\)
−0.490089 + 0.871672i \(0.663036\pi\)
\(908\) 0 0
\(909\) −39.0535 −1.29532
\(910\) 0 0
\(911\) −46.3137 −1.53444 −0.767220 0.641384i \(-0.778361\pi\)
−0.767220 + 0.641384i \(0.778361\pi\)
\(912\) 0 0
\(913\) −8.28007 −0.274030
\(914\) 0 0
\(915\) −28.2997 −0.935558
\(916\) 0 0
\(917\) 58.0249 1.91615
\(918\) 0 0
\(919\) 40.1869 1.32564 0.662822 0.748777i \(-0.269358\pi\)
0.662822 + 0.748777i \(0.269358\pi\)
\(920\) 0 0
\(921\) −16.0456 −0.528722
\(922\) 0 0
\(923\) −17.7230 −0.583360
\(924\) 0 0
\(925\) 2.48521 0.0817131
\(926\) 0 0
\(927\) −30.7320 −1.00937
\(928\) 0 0
\(929\) 17.4797 0.573491 0.286745 0.958007i \(-0.407427\pi\)
0.286745 + 0.958007i \(0.407427\pi\)
\(930\) 0 0
\(931\) 6.63405 0.217422
\(932\) 0 0
\(933\) −3.48479 −0.114087
\(934\) 0 0
\(935\) −8.97731 −0.293590
\(936\) 0 0
\(937\) 35.8388 1.17080 0.585402 0.810743i \(-0.300937\pi\)
0.585402 + 0.810743i \(0.300937\pi\)
\(938\) 0 0
\(939\) 80.1833 2.61668
\(940\) 0 0
\(941\) 7.55875 0.246408 0.123204 0.992381i \(-0.460683\pi\)
0.123204 + 0.992381i \(0.460683\pi\)
\(942\) 0 0
\(943\) −71.4095 −2.32541
\(944\) 0 0
\(945\) 18.9298 0.615788
\(946\) 0 0
\(947\) 27.3285 0.888056 0.444028 0.896013i \(-0.353549\pi\)
0.444028 + 0.896013i \(0.353549\pi\)
\(948\) 0 0
\(949\) −25.3698 −0.823539
\(950\) 0 0
\(951\) −76.9991 −2.49687
\(952\) 0 0
\(953\) 42.1586 1.36565 0.682826 0.730581i \(-0.260751\pi\)
0.682826 + 0.730581i \(0.260751\pi\)
\(954\) 0 0
\(955\) 20.3165 0.657426
\(956\) 0 0
\(957\) −5.10482 −0.165015
\(958\) 0 0
\(959\) 46.3167 1.49564
\(960\) 0 0
\(961\) 52.9645 1.70853
\(962\) 0 0
\(963\) −67.2287 −2.16641
\(964\) 0 0
\(965\) −18.1490 −0.584238
\(966\) 0 0
\(967\) 22.8645 0.735274 0.367637 0.929969i \(-0.380167\pi\)
0.367637 + 0.929969i \(0.380167\pi\)
\(968\) 0 0
\(969\) −75.2267 −2.41663
\(970\) 0 0
\(971\) −32.2394 −1.03461 −0.517306 0.855800i \(-0.673065\pi\)
−0.517306 + 0.855800i \(0.673065\pi\)
\(972\) 0 0
\(973\) −5.77656 −0.185188
\(974\) 0 0
\(975\) 6.57664 0.210621
\(976\) 0 0
\(977\) −18.3879 −0.588280 −0.294140 0.955762i \(-0.595033\pi\)
−0.294140 + 0.955762i \(0.595033\pi\)
\(978\) 0 0
\(979\) −12.3025 −0.393189
\(980\) 0 0
\(981\) −87.1713 −2.78317
\(982\) 0 0
\(983\) −19.2838 −0.615058 −0.307529 0.951539i \(-0.599502\pi\)
−0.307529 + 0.951539i \(0.599502\pi\)
\(984\) 0 0
\(985\) 10.2165 0.325526
\(986\) 0 0
\(987\) −30.6399 −0.975278
\(988\) 0 0
\(989\) −55.4284 −1.76252
\(990\) 0 0
\(991\) 54.1971 1.72163 0.860813 0.508921i \(-0.169955\pi\)
0.860813 + 0.508921i \(0.169955\pi\)
\(992\) 0 0
\(993\) −5.46085 −0.173295
\(994\) 0 0
\(995\) 17.3966 0.551509
\(996\) 0 0
\(997\) −36.3288 −1.15055 −0.575273 0.817962i \(-0.695104\pi\)
−0.575273 + 0.817962i \(0.695104\pi\)
\(998\) 0 0
\(999\) 16.3443 0.517111
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 9280.2.a.bz.1.4 4
4.3 odd 2 9280.2.a.cf.1.1 4
8.3 odd 2 4640.2.a.l.1.4 4
8.5 even 2 4640.2.a.r.1.1 yes 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
4640.2.a.l.1.4 4 8.3 odd 2
4640.2.a.r.1.1 yes 4 8.5 even 2
9280.2.a.bz.1.4 4 1.1 even 1 trivial
9280.2.a.cf.1.1 4 4.3 odd 2