Properties

Label 9225.2.a.be.1.1
Level $9225$
Weight $2$
Character 9225.1
Self dual yes
Analytic conductor $73.662$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [9225,2,Mod(1,9225)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("9225.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(9225, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 9225 = 3^{2} \cdot 5^{2} \cdot 41 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 9225.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [1,2,0,2,0,0,1,0,0,0,-6,0,5,2,0,-4,6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(17)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(73.6619958646\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 9225.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.00000 q^{2} +2.00000 q^{4} +1.00000 q^{7} -6.00000 q^{11} +5.00000 q^{13} +2.00000 q^{14} -4.00000 q^{16} +6.00000 q^{17} -3.00000 q^{19} -12.0000 q^{22} -8.00000 q^{23} +10.0000 q^{26} +2.00000 q^{28} -3.00000 q^{31} -8.00000 q^{32} +12.0000 q^{34} +6.00000 q^{37} -6.00000 q^{38} -1.00000 q^{41} -1.00000 q^{43} -12.0000 q^{44} -16.0000 q^{46} +2.00000 q^{47} -6.00000 q^{49} +10.0000 q^{52} -6.00000 q^{53} -2.00000 q^{59} -13.0000 q^{61} -6.00000 q^{62} -8.00000 q^{64} +5.00000 q^{67} +12.0000 q^{68} -12.0000 q^{71} +6.00000 q^{73} +12.0000 q^{74} -6.00000 q^{76} -6.00000 q^{77} -4.00000 q^{79} -2.00000 q^{82} +10.0000 q^{83} -2.00000 q^{86} -12.0000 q^{89} +5.00000 q^{91} -16.0000 q^{92} +4.00000 q^{94} -3.00000 q^{97} -12.0000 q^{98} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.00000 1.41421 0.707107 0.707107i \(-0.250000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(3\) 0 0
\(4\) 2.00000 1.00000
\(5\) 0 0
\(6\) 0 0
\(7\) 1.00000 0.377964 0.188982 0.981981i \(-0.439481\pi\)
0.188982 + 0.981981i \(0.439481\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −6.00000 −1.80907 −0.904534 0.426401i \(-0.859781\pi\)
−0.904534 + 0.426401i \(0.859781\pi\)
\(12\) 0 0
\(13\) 5.00000 1.38675 0.693375 0.720577i \(-0.256123\pi\)
0.693375 + 0.720577i \(0.256123\pi\)
\(14\) 2.00000 0.534522
\(15\) 0 0
\(16\) −4.00000 −1.00000
\(17\) 6.00000 1.45521 0.727607 0.685994i \(-0.240633\pi\)
0.727607 + 0.685994i \(0.240633\pi\)
\(18\) 0 0
\(19\) −3.00000 −0.688247 −0.344124 0.938924i \(-0.611824\pi\)
−0.344124 + 0.938924i \(0.611824\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) −12.0000 −2.55841
\(23\) −8.00000 −1.66812 −0.834058 0.551677i \(-0.813988\pi\)
−0.834058 + 0.551677i \(0.813988\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 10.0000 1.96116
\(27\) 0 0
\(28\) 2.00000 0.377964
\(29\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(30\) 0 0
\(31\) −3.00000 −0.538816 −0.269408 0.963026i \(-0.586828\pi\)
−0.269408 + 0.963026i \(0.586828\pi\)
\(32\) −8.00000 −1.41421
\(33\) 0 0
\(34\) 12.0000 2.05798
\(35\) 0 0
\(36\) 0 0
\(37\) 6.00000 0.986394 0.493197 0.869918i \(-0.335828\pi\)
0.493197 + 0.869918i \(0.335828\pi\)
\(38\) −6.00000 −0.973329
\(39\) 0 0
\(40\) 0 0
\(41\) −1.00000 −0.156174
\(42\) 0 0
\(43\) −1.00000 −0.152499 −0.0762493 0.997089i \(-0.524294\pi\)
−0.0762493 + 0.997089i \(0.524294\pi\)
\(44\) −12.0000 −1.80907
\(45\) 0 0
\(46\) −16.0000 −2.35907
\(47\) 2.00000 0.291730 0.145865 0.989305i \(-0.453403\pi\)
0.145865 + 0.989305i \(0.453403\pi\)
\(48\) 0 0
\(49\) −6.00000 −0.857143
\(50\) 0 0
\(51\) 0 0
\(52\) 10.0000 1.38675
\(53\) −6.00000 −0.824163 −0.412082 0.911147i \(-0.635198\pi\)
−0.412082 + 0.911147i \(0.635198\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −2.00000 −0.260378 −0.130189 0.991489i \(-0.541558\pi\)
−0.130189 + 0.991489i \(0.541558\pi\)
\(60\) 0 0
\(61\) −13.0000 −1.66448 −0.832240 0.554416i \(-0.812942\pi\)
−0.832240 + 0.554416i \(0.812942\pi\)
\(62\) −6.00000 −0.762001
\(63\) 0 0
\(64\) −8.00000 −1.00000
\(65\) 0 0
\(66\) 0 0
\(67\) 5.00000 0.610847 0.305424 0.952217i \(-0.401202\pi\)
0.305424 + 0.952217i \(0.401202\pi\)
\(68\) 12.0000 1.45521
\(69\) 0 0
\(70\) 0 0
\(71\) −12.0000 −1.42414 −0.712069 0.702109i \(-0.752242\pi\)
−0.712069 + 0.702109i \(0.752242\pi\)
\(72\) 0 0
\(73\) 6.00000 0.702247 0.351123 0.936329i \(-0.385800\pi\)
0.351123 + 0.936329i \(0.385800\pi\)
\(74\) 12.0000 1.39497
\(75\) 0 0
\(76\) −6.00000 −0.688247
\(77\) −6.00000 −0.683763
\(78\) 0 0
\(79\) −4.00000 −0.450035 −0.225018 0.974355i \(-0.572244\pi\)
−0.225018 + 0.974355i \(0.572244\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) −2.00000 −0.220863
\(83\) 10.0000 1.09764 0.548821 0.835940i \(-0.315077\pi\)
0.548821 + 0.835940i \(0.315077\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) −2.00000 −0.215666
\(87\) 0 0
\(88\) 0 0
\(89\) −12.0000 −1.27200 −0.635999 0.771690i \(-0.719412\pi\)
−0.635999 + 0.771690i \(0.719412\pi\)
\(90\) 0 0
\(91\) 5.00000 0.524142
\(92\) −16.0000 −1.66812
\(93\) 0 0
\(94\) 4.00000 0.412568
\(95\) 0 0
\(96\) 0 0
\(97\) −3.00000 −0.304604 −0.152302 0.988334i \(-0.548669\pi\)
−0.152302 + 0.988334i \(0.548669\pi\)
\(98\) −12.0000 −1.21218
\(99\) 0 0
\(100\) 0 0
\(101\) −16.0000 −1.59206 −0.796030 0.605257i \(-0.793070\pi\)
−0.796030 + 0.605257i \(0.793070\pi\)
\(102\) 0 0
\(103\) 16.0000 1.57653 0.788263 0.615338i \(-0.210980\pi\)
0.788263 + 0.615338i \(0.210980\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) −12.0000 −1.16554
\(107\) −4.00000 −0.386695 −0.193347 0.981130i \(-0.561934\pi\)
−0.193347 + 0.981130i \(0.561934\pi\)
\(108\) 0 0
\(109\) −1.00000 −0.0957826 −0.0478913 0.998853i \(-0.515250\pi\)
−0.0478913 + 0.998853i \(0.515250\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) −4.00000 −0.377964
\(113\) −2.00000 −0.188144 −0.0940721 0.995565i \(-0.529988\pi\)
−0.0940721 + 0.995565i \(0.529988\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 0 0
\(118\) −4.00000 −0.368230
\(119\) 6.00000 0.550019
\(120\) 0 0
\(121\) 25.0000 2.27273
\(122\) −26.0000 −2.35393
\(123\) 0 0
\(124\) −6.00000 −0.538816
\(125\) 0 0
\(126\) 0 0
\(127\) −4.00000 −0.354943 −0.177471 0.984126i \(-0.556792\pi\)
−0.177471 + 0.984126i \(0.556792\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 2.00000 0.174741 0.0873704 0.996176i \(-0.472154\pi\)
0.0873704 + 0.996176i \(0.472154\pi\)
\(132\) 0 0
\(133\) −3.00000 −0.260133
\(134\) 10.0000 0.863868
\(135\) 0 0
\(136\) 0 0
\(137\) −12.0000 −1.02523 −0.512615 0.858619i \(-0.671323\pi\)
−0.512615 + 0.858619i \(0.671323\pi\)
\(138\) 0 0
\(139\) −12.0000 −1.01783 −0.508913 0.860818i \(-0.669953\pi\)
−0.508913 + 0.860818i \(0.669953\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) −24.0000 −2.01404
\(143\) −30.0000 −2.50873
\(144\) 0 0
\(145\) 0 0
\(146\) 12.0000 0.993127
\(147\) 0 0
\(148\) 12.0000 0.986394
\(149\) 18.0000 1.47462 0.737309 0.675556i \(-0.236096\pi\)
0.737309 + 0.675556i \(0.236096\pi\)
\(150\) 0 0
\(151\) 1.00000 0.0813788 0.0406894 0.999172i \(-0.487045\pi\)
0.0406894 + 0.999172i \(0.487045\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) −12.0000 −0.966988
\(155\) 0 0
\(156\) 0 0
\(157\) 7.00000 0.558661 0.279330 0.960195i \(-0.409888\pi\)
0.279330 + 0.960195i \(0.409888\pi\)
\(158\) −8.00000 −0.636446
\(159\) 0 0
\(160\) 0 0
\(161\) −8.00000 −0.630488
\(162\) 0 0
\(163\) 13.0000 1.01824 0.509119 0.860696i \(-0.329971\pi\)
0.509119 + 0.860696i \(0.329971\pi\)
\(164\) −2.00000 −0.156174
\(165\) 0 0
\(166\) 20.0000 1.55230
\(167\) −12.0000 −0.928588 −0.464294 0.885681i \(-0.653692\pi\)
−0.464294 + 0.885681i \(0.653692\pi\)
\(168\) 0 0
\(169\) 12.0000 0.923077
\(170\) 0 0
\(171\) 0 0
\(172\) −2.00000 −0.152499
\(173\) −16.0000 −1.21646 −0.608229 0.793762i \(-0.708120\pi\)
−0.608229 + 0.793762i \(0.708120\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 24.0000 1.80907
\(177\) 0 0
\(178\) −24.0000 −1.79888
\(179\) −26.0000 −1.94333 −0.971666 0.236360i \(-0.924046\pi\)
−0.971666 + 0.236360i \(0.924046\pi\)
\(180\) 0 0
\(181\) −25.0000 −1.85824 −0.929118 0.369784i \(-0.879432\pi\)
−0.929118 + 0.369784i \(0.879432\pi\)
\(182\) 10.0000 0.741249
\(183\) 0 0
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) −36.0000 −2.63258
\(188\) 4.00000 0.291730
\(189\) 0 0
\(190\) 0 0
\(191\) 6.00000 0.434145 0.217072 0.976156i \(-0.430349\pi\)
0.217072 + 0.976156i \(0.430349\pi\)
\(192\) 0 0
\(193\) −5.00000 −0.359908 −0.179954 0.983675i \(-0.557595\pi\)
−0.179954 + 0.983675i \(0.557595\pi\)
\(194\) −6.00000 −0.430775
\(195\) 0 0
\(196\) −12.0000 −0.857143
\(197\) −18.0000 −1.28245 −0.641223 0.767354i \(-0.721573\pi\)
−0.641223 + 0.767354i \(0.721573\pi\)
\(198\) 0 0
\(199\) −23.0000 −1.63043 −0.815213 0.579161i \(-0.803380\pi\)
−0.815213 + 0.579161i \(0.803380\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) −32.0000 −2.25151
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) 32.0000 2.22955
\(207\) 0 0
\(208\) −20.0000 −1.38675
\(209\) 18.0000 1.24509
\(210\) 0 0
\(211\) −11.0000 −0.757271 −0.378636 0.925546i \(-0.623607\pi\)
−0.378636 + 0.925546i \(0.623607\pi\)
\(212\) −12.0000 −0.824163
\(213\) 0 0
\(214\) −8.00000 −0.546869
\(215\) 0 0
\(216\) 0 0
\(217\) −3.00000 −0.203653
\(218\) −2.00000 −0.135457
\(219\) 0 0
\(220\) 0 0
\(221\) 30.0000 2.01802
\(222\) 0 0
\(223\) 7.00000 0.468755 0.234377 0.972146i \(-0.424695\pi\)
0.234377 + 0.972146i \(0.424695\pi\)
\(224\) −8.00000 −0.534522
\(225\) 0 0
\(226\) −4.00000 −0.266076
\(227\) 18.0000 1.19470 0.597351 0.801980i \(-0.296220\pi\)
0.597351 + 0.801980i \(0.296220\pi\)
\(228\) 0 0
\(229\) 23.0000 1.51988 0.759941 0.649992i \(-0.225228\pi\)
0.759941 + 0.649992i \(0.225228\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 16.0000 1.04819 0.524097 0.851658i \(-0.324403\pi\)
0.524097 + 0.851658i \(0.324403\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) −4.00000 −0.260378
\(237\) 0 0
\(238\) 12.0000 0.777844
\(239\) 6.00000 0.388108 0.194054 0.980991i \(-0.437836\pi\)
0.194054 + 0.980991i \(0.437836\pi\)
\(240\) 0 0
\(241\) −3.00000 −0.193247 −0.0966235 0.995321i \(-0.530804\pi\)
−0.0966235 + 0.995321i \(0.530804\pi\)
\(242\) 50.0000 3.21412
\(243\) 0 0
\(244\) −26.0000 −1.66448
\(245\) 0 0
\(246\) 0 0
\(247\) −15.0000 −0.954427
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 12.0000 0.757433 0.378717 0.925513i \(-0.376365\pi\)
0.378717 + 0.925513i \(0.376365\pi\)
\(252\) 0 0
\(253\) 48.0000 3.01773
\(254\) −8.00000 −0.501965
\(255\) 0 0
\(256\) 16.0000 1.00000
\(257\) −18.0000 −1.12281 −0.561405 0.827541i \(-0.689739\pi\)
−0.561405 + 0.827541i \(0.689739\pi\)
\(258\) 0 0
\(259\) 6.00000 0.372822
\(260\) 0 0
\(261\) 0 0
\(262\) 4.00000 0.247121
\(263\) 12.0000 0.739952 0.369976 0.929041i \(-0.379366\pi\)
0.369976 + 0.929041i \(0.379366\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) −6.00000 −0.367884
\(267\) 0 0
\(268\) 10.0000 0.610847
\(269\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(270\) 0 0
\(271\) −28.0000 −1.70088 −0.850439 0.526073i \(-0.823664\pi\)
−0.850439 + 0.526073i \(0.823664\pi\)
\(272\) −24.0000 −1.45521
\(273\) 0 0
\(274\) −24.0000 −1.44989
\(275\) 0 0
\(276\) 0 0
\(277\) −17.0000 −1.02143 −0.510716 0.859750i \(-0.670619\pi\)
−0.510716 + 0.859750i \(0.670619\pi\)
\(278\) −24.0000 −1.43942
\(279\) 0 0
\(280\) 0 0
\(281\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(282\) 0 0
\(283\) 1.00000 0.0594438 0.0297219 0.999558i \(-0.490538\pi\)
0.0297219 + 0.999558i \(0.490538\pi\)
\(284\) −24.0000 −1.42414
\(285\) 0 0
\(286\) −60.0000 −3.54787
\(287\) −1.00000 −0.0590281
\(288\) 0 0
\(289\) 19.0000 1.11765
\(290\) 0 0
\(291\) 0 0
\(292\) 12.0000 0.702247
\(293\) 30.0000 1.75262 0.876309 0.481749i \(-0.159998\pi\)
0.876309 + 0.481749i \(0.159998\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 36.0000 2.08542
\(299\) −40.0000 −2.31326
\(300\) 0 0
\(301\) −1.00000 −0.0576390
\(302\) 2.00000 0.115087
\(303\) 0 0
\(304\) 12.0000 0.688247
\(305\) 0 0
\(306\) 0 0
\(307\) −19.0000 −1.08439 −0.542194 0.840254i \(-0.682406\pi\)
−0.542194 + 0.840254i \(0.682406\pi\)
\(308\) −12.0000 −0.683763
\(309\) 0 0
\(310\) 0 0
\(311\) −16.0000 −0.907277 −0.453638 0.891186i \(-0.649874\pi\)
−0.453638 + 0.891186i \(0.649874\pi\)
\(312\) 0 0
\(313\) 11.0000 0.621757 0.310878 0.950450i \(-0.399377\pi\)
0.310878 + 0.950450i \(0.399377\pi\)
\(314\) 14.0000 0.790066
\(315\) 0 0
\(316\) −8.00000 −0.450035
\(317\) 12.0000 0.673987 0.336994 0.941507i \(-0.390590\pi\)
0.336994 + 0.941507i \(0.390590\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 0 0
\(322\) −16.0000 −0.891645
\(323\) −18.0000 −1.00155
\(324\) 0 0
\(325\) 0 0
\(326\) 26.0000 1.44001
\(327\) 0 0
\(328\) 0 0
\(329\) 2.00000 0.110264
\(330\) 0 0
\(331\) 28.0000 1.53902 0.769510 0.638635i \(-0.220501\pi\)
0.769510 + 0.638635i \(0.220501\pi\)
\(332\) 20.0000 1.09764
\(333\) 0 0
\(334\) −24.0000 −1.31322
\(335\) 0 0
\(336\) 0 0
\(337\) 35.0000 1.90657 0.953286 0.302070i \(-0.0976776\pi\)
0.953286 + 0.302070i \(0.0976776\pi\)
\(338\) 24.0000 1.30543
\(339\) 0 0
\(340\) 0 0
\(341\) 18.0000 0.974755
\(342\) 0 0
\(343\) −13.0000 −0.701934
\(344\) 0 0
\(345\) 0 0
\(346\) −32.0000 −1.72033
\(347\) −18.0000 −0.966291 −0.483145 0.875540i \(-0.660506\pi\)
−0.483145 + 0.875540i \(0.660506\pi\)
\(348\) 0 0
\(349\) 2.00000 0.107058 0.0535288 0.998566i \(-0.482953\pi\)
0.0535288 + 0.998566i \(0.482953\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 48.0000 2.55841
\(353\) −10.0000 −0.532246 −0.266123 0.963939i \(-0.585743\pi\)
−0.266123 + 0.963939i \(0.585743\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) −24.0000 −1.27200
\(357\) 0 0
\(358\) −52.0000 −2.74829
\(359\) 30.0000 1.58334 0.791670 0.610949i \(-0.209212\pi\)
0.791670 + 0.610949i \(0.209212\pi\)
\(360\) 0 0
\(361\) −10.0000 −0.526316
\(362\) −50.0000 −2.62794
\(363\) 0 0
\(364\) 10.0000 0.524142
\(365\) 0 0
\(366\) 0 0
\(367\) 17.0000 0.887393 0.443696 0.896177i \(-0.353667\pi\)
0.443696 + 0.896177i \(0.353667\pi\)
\(368\) 32.0000 1.66812
\(369\) 0 0
\(370\) 0 0
\(371\) −6.00000 −0.311504
\(372\) 0 0
\(373\) 25.0000 1.29445 0.647225 0.762299i \(-0.275929\pi\)
0.647225 + 0.762299i \(0.275929\pi\)
\(374\) −72.0000 −3.72303
\(375\) 0 0
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 21.0000 1.07870 0.539349 0.842082i \(-0.318670\pi\)
0.539349 + 0.842082i \(0.318670\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 12.0000 0.613973
\(383\) −12.0000 −0.613171 −0.306586 0.951843i \(-0.599187\pi\)
−0.306586 + 0.951843i \(0.599187\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) −10.0000 −0.508987
\(387\) 0 0
\(388\) −6.00000 −0.304604
\(389\) 8.00000 0.405616 0.202808 0.979219i \(-0.434993\pi\)
0.202808 + 0.979219i \(0.434993\pi\)
\(390\) 0 0
\(391\) −48.0000 −2.42746
\(392\) 0 0
\(393\) 0 0
\(394\) −36.0000 −1.81365
\(395\) 0 0
\(396\) 0 0
\(397\) −25.0000 −1.25471 −0.627357 0.778732i \(-0.715863\pi\)
−0.627357 + 0.778732i \(0.715863\pi\)
\(398\) −46.0000 −2.30577
\(399\) 0 0
\(400\) 0 0
\(401\) 18.0000 0.898877 0.449439 0.893311i \(-0.351624\pi\)
0.449439 + 0.893311i \(0.351624\pi\)
\(402\) 0 0
\(403\) −15.0000 −0.747203
\(404\) −32.0000 −1.59206
\(405\) 0 0
\(406\) 0 0
\(407\) −36.0000 −1.78445
\(408\) 0 0
\(409\) 25.0000 1.23617 0.618085 0.786111i \(-0.287909\pi\)
0.618085 + 0.786111i \(0.287909\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 32.0000 1.57653
\(413\) −2.00000 −0.0984136
\(414\) 0 0
\(415\) 0 0
\(416\) −40.0000 −1.96116
\(417\) 0 0
\(418\) 36.0000 1.76082
\(419\) −14.0000 −0.683945 −0.341972 0.939710i \(-0.611095\pi\)
−0.341972 + 0.939710i \(0.611095\pi\)
\(420\) 0 0
\(421\) 10.0000 0.487370 0.243685 0.969854i \(-0.421644\pi\)
0.243685 + 0.969854i \(0.421644\pi\)
\(422\) −22.0000 −1.07094
\(423\) 0 0
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) −13.0000 −0.629114
\(428\) −8.00000 −0.386695
\(429\) 0 0
\(430\) 0 0
\(431\) −18.0000 −0.867029 −0.433515 0.901146i \(-0.642727\pi\)
−0.433515 + 0.901146i \(0.642727\pi\)
\(432\) 0 0
\(433\) −27.0000 −1.29754 −0.648769 0.760986i \(-0.724716\pi\)
−0.648769 + 0.760986i \(0.724716\pi\)
\(434\) −6.00000 −0.288009
\(435\) 0 0
\(436\) −2.00000 −0.0957826
\(437\) 24.0000 1.14808
\(438\) 0 0
\(439\) 3.00000 0.143182 0.0715911 0.997434i \(-0.477192\pi\)
0.0715911 + 0.997434i \(0.477192\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 60.0000 2.85391
\(443\) −18.0000 −0.855206 −0.427603 0.903967i \(-0.640642\pi\)
−0.427603 + 0.903967i \(0.640642\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 14.0000 0.662919
\(447\) 0 0
\(448\) −8.00000 −0.377964
\(449\) −2.00000 −0.0943858 −0.0471929 0.998886i \(-0.515028\pi\)
−0.0471929 + 0.998886i \(0.515028\pi\)
\(450\) 0 0
\(451\) 6.00000 0.282529
\(452\) −4.00000 −0.188144
\(453\) 0 0
\(454\) 36.0000 1.68956
\(455\) 0 0
\(456\) 0 0
\(457\) −14.0000 −0.654892 −0.327446 0.944870i \(-0.606188\pi\)
−0.327446 + 0.944870i \(0.606188\pi\)
\(458\) 46.0000 2.14944
\(459\) 0 0
\(460\) 0 0
\(461\) −28.0000 −1.30409 −0.652045 0.758180i \(-0.726089\pi\)
−0.652045 + 0.758180i \(0.726089\pi\)
\(462\) 0 0
\(463\) −40.0000 −1.85896 −0.929479 0.368875i \(-0.879743\pi\)
−0.929479 + 0.368875i \(0.879743\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 32.0000 1.48237
\(467\) −6.00000 −0.277647 −0.138823 0.990317i \(-0.544332\pi\)
−0.138823 + 0.990317i \(0.544332\pi\)
\(468\) 0 0
\(469\) 5.00000 0.230879
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 6.00000 0.275880
\(474\) 0 0
\(475\) 0 0
\(476\) 12.0000 0.550019
\(477\) 0 0
\(478\) 12.0000 0.548867
\(479\) 2.00000 0.0913823 0.0456912 0.998956i \(-0.485451\pi\)
0.0456912 + 0.998956i \(0.485451\pi\)
\(480\) 0 0
\(481\) 30.0000 1.36788
\(482\) −6.00000 −0.273293
\(483\) 0 0
\(484\) 50.0000 2.27273
\(485\) 0 0
\(486\) 0 0
\(487\) −43.0000 −1.94852 −0.974258 0.225436i \(-0.927619\pi\)
−0.974258 + 0.225436i \(0.927619\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 36.0000 1.62466 0.812329 0.583200i \(-0.198200\pi\)
0.812329 + 0.583200i \(0.198200\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) −30.0000 −1.34976
\(495\) 0 0
\(496\) 12.0000 0.538816
\(497\) −12.0000 −0.538274
\(498\) 0 0
\(499\) −39.0000 −1.74588 −0.872940 0.487828i \(-0.837789\pi\)
−0.872940 + 0.487828i \(0.837789\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 24.0000 1.07117
\(503\) −14.0000 −0.624229 −0.312115 0.950044i \(-0.601037\pi\)
−0.312115 + 0.950044i \(0.601037\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 96.0000 4.26772
\(507\) 0 0
\(508\) −8.00000 −0.354943
\(509\) −24.0000 −1.06378 −0.531891 0.846813i \(-0.678518\pi\)
−0.531891 + 0.846813i \(0.678518\pi\)
\(510\) 0 0
\(511\) 6.00000 0.265424
\(512\) 32.0000 1.41421
\(513\) 0 0
\(514\) −36.0000 −1.58789
\(515\) 0 0
\(516\) 0 0
\(517\) −12.0000 −0.527759
\(518\) 12.0000 0.527250
\(519\) 0 0
\(520\) 0 0
\(521\) −4.00000 −0.175243 −0.0876216 0.996154i \(-0.527927\pi\)
−0.0876216 + 0.996154i \(0.527927\pi\)
\(522\) 0 0
\(523\) 41.0000 1.79280 0.896402 0.443241i \(-0.146171\pi\)
0.896402 + 0.443241i \(0.146171\pi\)
\(524\) 4.00000 0.174741
\(525\) 0 0
\(526\) 24.0000 1.04645
\(527\) −18.0000 −0.784092
\(528\) 0 0
\(529\) 41.0000 1.78261
\(530\) 0 0
\(531\) 0 0
\(532\) −6.00000 −0.260133
\(533\) −5.00000 −0.216574
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 36.0000 1.55063
\(540\) 0 0
\(541\) 25.0000 1.07483 0.537417 0.843317i \(-0.319400\pi\)
0.537417 + 0.843317i \(0.319400\pi\)
\(542\) −56.0000 −2.40541
\(543\) 0 0
\(544\) −48.0000 −2.05798
\(545\) 0 0
\(546\) 0 0
\(547\) −4.00000 −0.171028 −0.0855138 0.996337i \(-0.527253\pi\)
−0.0855138 + 0.996337i \(0.527253\pi\)
\(548\) −24.0000 −1.02523
\(549\) 0 0
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) −4.00000 −0.170097
\(554\) −34.0000 −1.44452
\(555\) 0 0
\(556\) −24.0000 −1.01783
\(557\) 32.0000 1.35588 0.677942 0.735116i \(-0.262872\pi\)
0.677942 + 0.735116i \(0.262872\pi\)
\(558\) 0 0
\(559\) −5.00000 −0.211477
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 8.00000 0.337160 0.168580 0.985688i \(-0.446082\pi\)
0.168580 + 0.985688i \(0.446082\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 2.00000 0.0840663
\(567\) 0 0
\(568\) 0 0
\(569\) 34.0000 1.42535 0.712677 0.701492i \(-0.247483\pi\)
0.712677 + 0.701492i \(0.247483\pi\)
\(570\) 0 0
\(571\) −23.0000 −0.962520 −0.481260 0.876578i \(-0.659821\pi\)
−0.481260 + 0.876578i \(0.659821\pi\)
\(572\) −60.0000 −2.50873
\(573\) 0 0
\(574\) −2.00000 −0.0834784
\(575\) 0 0
\(576\) 0 0
\(577\) 43.0000 1.79011 0.895057 0.445952i \(-0.147135\pi\)
0.895057 + 0.445952i \(0.147135\pi\)
\(578\) 38.0000 1.58059
\(579\) 0 0
\(580\) 0 0
\(581\) 10.0000 0.414870
\(582\) 0 0
\(583\) 36.0000 1.49097
\(584\) 0 0
\(585\) 0 0
\(586\) 60.0000 2.47858
\(587\) 18.0000 0.742940 0.371470 0.928445i \(-0.378854\pi\)
0.371470 + 0.928445i \(0.378854\pi\)
\(588\) 0 0
\(589\) 9.00000 0.370839
\(590\) 0 0
\(591\) 0 0
\(592\) −24.0000 −0.986394
\(593\) 30.0000 1.23195 0.615976 0.787765i \(-0.288762\pi\)
0.615976 + 0.787765i \(0.288762\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 36.0000 1.47462
\(597\) 0 0
\(598\) −80.0000 −3.27144
\(599\) −32.0000 −1.30748 −0.653742 0.756717i \(-0.726802\pi\)
−0.653742 + 0.756717i \(0.726802\pi\)
\(600\) 0 0
\(601\) 13.0000 0.530281 0.265141 0.964210i \(-0.414582\pi\)
0.265141 + 0.964210i \(0.414582\pi\)
\(602\) −2.00000 −0.0815139
\(603\) 0 0
\(604\) 2.00000 0.0813788
\(605\) 0 0
\(606\) 0 0
\(607\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(608\) 24.0000 0.973329
\(609\) 0 0
\(610\) 0 0
\(611\) 10.0000 0.404557
\(612\) 0 0
\(613\) 6.00000 0.242338 0.121169 0.992632i \(-0.461336\pi\)
0.121169 + 0.992632i \(0.461336\pi\)
\(614\) −38.0000 −1.53356
\(615\) 0 0
\(616\) 0 0
\(617\) 14.0000 0.563619 0.281809 0.959470i \(-0.409065\pi\)
0.281809 + 0.959470i \(0.409065\pi\)
\(618\) 0 0
\(619\) 15.0000 0.602901 0.301450 0.953482i \(-0.402529\pi\)
0.301450 + 0.953482i \(0.402529\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) −32.0000 −1.28308
\(623\) −12.0000 −0.480770
\(624\) 0 0
\(625\) 0 0
\(626\) 22.0000 0.879297
\(627\) 0 0
\(628\) 14.0000 0.558661
\(629\) 36.0000 1.43541
\(630\) 0 0
\(631\) 5.00000 0.199047 0.0995234 0.995035i \(-0.468268\pi\)
0.0995234 + 0.995035i \(0.468268\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 24.0000 0.953162
\(635\) 0 0
\(636\) 0 0
\(637\) −30.0000 −1.18864
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 30.0000 1.18493 0.592464 0.805597i \(-0.298155\pi\)
0.592464 + 0.805597i \(0.298155\pi\)
\(642\) 0 0
\(643\) 4.00000 0.157745 0.0788723 0.996885i \(-0.474868\pi\)
0.0788723 + 0.996885i \(0.474868\pi\)
\(644\) −16.0000 −0.630488
\(645\) 0 0
\(646\) −36.0000 −1.41640
\(647\) 42.0000 1.65119 0.825595 0.564263i \(-0.190840\pi\)
0.825595 + 0.564263i \(0.190840\pi\)
\(648\) 0 0
\(649\) 12.0000 0.471041
\(650\) 0 0
\(651\) 0 0
\(652\) 26.0000 1.01824
\(653\) −8.00000 −0.313064 −0.156532 0.987673i \(-0.550031\pi\)
−0.156532 + 0.987673i \(0.550031\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 4.00000 0.156174
\(657\) 0 0
\(658\) 4.00000 0.155936
\(659\) −34.0000 −1.32445 −0.662226 0.749304i \(-0.730388\pi\)
−0.662226 + 0.749304i \(0.730388\pi\)
\(660\) 0 0
\(661\) −38.0000 −1.47803 −0.739014 0.673690i \(-0.764708\pi\)
−0.739014 + 0.673690i \(0.764708\pi\)
\(662\) 56.0000 2.17650
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) −24.0000 −0.928588
\(669\) 0 0
\(670\) 0 0
\(671\) 78.0000 3.01116
\(672\) 0 0
\(673\) 46.0000 1.77317 0.886585 0.462566i \(-0.153071\pi\)
0.886585 + 0.462566i \(0.153071\pi\)
\(674\) 70.0000 2.69630
\(675\) 0 0
\(676\) 24.0000 0.923077
\(677\) −10.0000 −0.384331 −0.192166 0.981363i \(-0.561551\pi\)
−0.192166 + 0.981363i \(0.561551\pi\)
\(678\) 0 0
\(679\) −3.00000 −0.115129
\(680\) 0 0
\(681\) 0 0
\(682\) 36.0000 1.37851
\(683\) 10.0000 0.382639 0.191320 0.981528i \(-0.438723\pi\)
0.191320 + 0.981528i \(0.438723\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) −26.0000 −0.992685
\(687\) 0 0
\(688\) 4.00000 0.152499
\(689\) −30.0000 −1.14291
\(690\) 0 0
\(691\) 28.0000 1.06517 0.532585 0.846376i \(-0.321221\pi\)
0.532585 + 0.846376i \(0.321221\pi\)
\(692\) −32.0000 −1.21646
\(693\) 0 0
\(694\) −36.0000 −1.36654
\(695\) 0 0
\(696\) 0 0
\(697\) −6.00000 −0.227266
\(698\) 4.00000 0.151402
\(699\) 0 0
\(700\) 0 0
\(701\) −38.0000 −1.43524 −0.717620 0.696435i \(-0.754769\pi\)
−0.717620 + 0.696435i \(0.754769\pi\)
\(702\) 0 0
\(703\) −18.0000 −0.678883
\(704\) 48.0000 1.80907
\(705\) 0 0
\(706\) −20.0000 −0.752710
\(707\) −16.0000 −0.601742
\(708\) 0 0
\(709\) 35.0000 1.31445 0.657226 0.753693i \(-0.271730\pi\)
0.657226 + 0.753693i \(0.271730\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 24.0000 0.898807
\(714\) 0 0
\(715\) 0 0
\(716\) −52.0000 −1.94333
\(717\) 0 0
\(718\) 60.0000 2.23918
\(719\) −4.00000 −0.149175 −0.0745874 0.997214i \(-0.523764\pi\)
−0.0745874 + 0.997214i \(0.523764\pi\)
\(720\) 0 0
\(721\) 16.0000 0.595871
\(722\) −20.0000 −0.744323
\(723\) 0 0
\(724\) −50.0000 −1.85824
\(725\) 0 0
\(726\) 0 0
\(727\) −7.00000 −0.259616 −0.129808 0.991539i \(-0.541436\pi\)
−0.129808 + 0.991539i \(0.541436\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −6.00000 −0.221918
\(732\) 0 0
\(733\) −22.0000 −0.812589 −0.406294 0.913742i \(-0.633179\pi\)
−0.406294 + 0.913742i \(0.633179\pi\)
\(734\) 34.0000 1.25496
\(735\) 0 0
\(736\) 64.0000 2.35907
\(737\) −30.0000 −1.10506
\(738\) 0 0
\(739\) 16.0000 0.588570 0.294285 0.955718i \(-0.404919\pi\)
0.294285 + 0.955718i \(0.404919\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) −12.0000 −0.440534
\(743\) −30.0000 −1.10059 −0.550297 0.834969i \(-0.685485\pi\)
−0.550297 + 0.834969i \(0.685485\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 50.0000 1.83063
\(747\) 0 0
\(748\) −72.0000 −2.63258
\(749\) −4.00000 −0.146157
\(750\) 0 0
\(751\) 40.0000 1.45962 0.729810 0.683650i \(-0.239608\pi\)
0.729810 + 0.683650i \(0.239608\pi\)
\(752\) −8.00000 −0.291730
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 33.0000 1.19941 0.599703 0.800223i \(-0.295286\pi\)
0.599703 + 0.800223i \(0.295286\pi\)
\(758\) 42.0000 1.52551
\(759\) 0 0
\(760\) 0 0
\(761\) −2.00000 −0.0724999 −0.0362500 0.999343i \(-0.511541\pi\)
−0.0362500 + 0.999343i \(0.511541\pi\)
\(762\) 0 0
\(763\) −1.00000 −0.0362024
\(764\) 12.0000 0.434145
\(765\) 0 0
\(766\) −24.0000 −0.867155
\(767\) −10.0000 −0.361079
\(768\) 0 0
\(769\) 23.0000 0.829401 0.414701 0.909958i \(-0.363886\pi\)
0.414701 + 0.909958i \(0.363886\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −10.0000 −0.359908
\(773\) 4.00000 0.143870 0.0719350 0.997409i \(-0.477083\pi\)
0.0719350 + 0.997409i \(0.477083\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) 16.0000 0.573628
\(779\) 3.00000 0.107486
\(780\) 0 0
\(781\) 72.0000 2.57636
\(782\) −96.0000 −3.43295
\(783\) 0 0
\(784\) 24.0000 0.857143
\(785\) 0 0
\(786\) 0 0
\(787\) −3.00000 −0.106938 −0.0534692 0.998569i \(-0.517028\pi\)
−0.0534692 + 0.998569i \(0.517028\pi\)
\(788\) −36.0000 −1.28245
\(789\) 0 0
\(790\) 0 0
\(791\) −2.00000 −0.0711118
\(792\) 0 0
\(793\) −65.0000 −2.30822
\(794\) −50.0000 −1.77443
\(795\) 0 0
\(796\) −46.0000 −1.63043
\(797\) −6.00000 −0.212531 −0.106265 0.994338i \(-0.533889\pi\)
−0.106265 + 0.994338i \(0.533889\pi\)
\(798\) 0 0
\(799\) 12.0000 0.424529
\(800\) 0 0
\(801\) 0 0
\(802\) 36.0000 1.27120
\(803\) −36.0000 −1.27041
\(804\) 0 0
\(805\) 0 0
\(806\) −30.0000 −1.05670
\(807\) 0 0
\(808\) 0 0
\(809\) −30.0000 −1.05474 −0.527372 0.849635i \(-0.676823\pi\)
−0.527372 + 0.849635i \(0.676823\pi\)
\(810\) 0 0
\(811\) 35.0000 1.22902 0.614508 0.788911i \(-0.289355\pi\)
0.614508 + 0.788911i \(0.289355\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) −72.0000 −2.52360
\(815\) 0 0
\(816\) 0 0
\(817\) 3.00000 0.104957
\(818\) 50.0000 1.74821
\(819\) 0 0
\(820\) 0 0
\(821\) −30.0000 −1.04701 −0.523504 0.852023i \(-0.675375\pi\)
−0.523504 + 0.852023i \(0.675375\pi\)
\(822\) 0 0
\(823\) −35.0000 −1.22002 −0.610012 0.792392i \(-0.708835\pi\)
−0.610012 + 0.792392i \(0.708835\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) −4.00000 −0.139178
\(827\) −22.0000 −0.765015 −0.382507 0.923952i \(-0.624939\pi\)
−0.382507 + 0.923952i \(0.624939\pi\)
\(828\) 0 0
\(829\) −2.00000 −0.0694629 −0.0347314 0.999397i \(-0.511058\pi\)
−0.0347314 + 0.999397i \(0.511058\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) −40.0000 −1.38675
\(833\) −36.0000 −1.24733
\(834\) 0 0
\(835\) 0 0
\(836\) 36.0000 1.24509
\(837\) 0 0
\(838\) −28.0000 −0.967244
\(839\) 12.0000 0.414286 0.207143 0.978311i \(-0.433583\pi\)
0.207143 + 0.978311i \(0.433583\pi\)
\(840\) 0 0
\(841\) −29.0000 −1.00000
\(842\) 20.0000 0.689246
\(843\) 0 0
\(844\) −22.0000 −0.757271
\(845\) 0 0
\(846\) 0 0
\(847\) 25.0000 0.859010
\(848\) 24.0000 0.824163
\(849\) 0 0
\(850\) 0 0
\(851\) −48.0000 −1.64542
\(852\) 0 0
\(853\) −3.00000 −0.102718 −0.0513590 0.998680i \(-0.516355\pi\)
−0.0513590 + 0.998680i \(0.516355\pi\)
\(854\) −26.0000 −0.889702
\(855\) 0 0
\(856\) 0 0
\(857\) 52.0000 1.77629 0.888143 0.459567i \(-0.151995\pi\)
0.888143 + 0.459567i \(0.151995\pi\)
\(858\) 0 0
\(859\) 20.0000 0.682391 0.341196 0.939992i \(-0.389168\pi\)
0.341196 + 0.939992i \(0.389168\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) −36.0000 −1.22616
\(863\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) −54.0000 −1.83499
\(867\) 0 0
\(868\) −6.00000 −0.203653
\(869\) 24.0000 0.814144
\(870\) 0 0
\(871\) 25.0000 0.847093
\(872\) 0 0
\(873\) 0 0
\(874\) 48.0000 1.62362
\(875\) 0 0
\(876\) 0 0
\(877\) 45.0000 1.51954 0.759771 0.650191i \(-0.225311\pi\)
0.759771 + 0.650191i \(0.225311\pi\)
\(878\) 6.00000 0.202490
\(879\) 0 0
\(880\) 0 0
\(881\) −32.0000 −1.07811 −0.539054 0.842271i \(-0.681218\pi\)
−0.539054 + 0.842271i \(0.681218\pi\)
\(882\) 0 0
\(883\) 17.0000 0.572096 0.286048 0.958215i \(-0.407658\pi\)
0.286048 + 0.958215i \(0.407658\pi\)
\(884\) 60.0000 2.01802
\(885\) 0 0
\(886\) −36.0000 −1.20944
\(887\) 42.0000 1.41022 0.705111 0.709097i \(-0.250897\pi\)
0.705111 + 0.709097i \(0.250897\pi\)
\(888\) 0 0
\(889\) −4.00000 −0.134156
\(890\) 0 0
\(891\) 0 0
\(892\) 14.0000 0.468755
\(893\) −6.00000 −0.200782
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) −4.00000 −0.133482
\(899\) 0 0
\(900\) 0 0
\(901\) −36.0000 −1.19933
\(902\) 12.0000 0.399556
\(903\) 0 0
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) −20.0000 −0.664089 −0.332045 0.943264i \(-0.607738\pi\)
−0.332045 + 0.943264i \(0.607738\pi\)
\(908\) 36.0000 1.19470
\(909\) 0 0
\(910\) 0 0
\(911\) 18.0000 0.596367 0.298183 0.954509i \(-0.403619\pi\)
0.298183 + 0.954509i \(0.403619\pi\)
\(912\) 0 0
\(913\) −60.0000 −1.98571
\(914\) −28.0000 −0.926158
\(915\) 0 0
\(916\) 46.0000 1.51988
\(917\) 2.00000 0.0660458
\(918\) 0 0
\(919\) −51.0000 −1.68233 −0.841167 0.540775i \(-0.818131\pi\)
−0.841167 + 0.540775i \(0.818131\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) −56.0000 −1.84426
\(923\) −60.0000 −1.97492
\(924\) 0 0
\(925\) 0 0
\(926\) −80.0000 −2.62896
\(927\) 0 0
\(928\) 0 0
\(929\) 30.0000 0.984268 0.492134 0.870519i \(-0.336217\pi\)
0.492134 + 0.870519i \(0.336217\pi\)
\(930\) 0 0
\(931\) 18.0000 0.589926
\(932\) 32.0000 1.04819
\(933\) 0 0
\(934\) −12.0000 −0.392652
\(935\) 0 0
\(936\) 0 0
\(937\) −17.0000 −0.555366 −0.277683 0.960673i \(-0.589566\pi\)
−0.277683 + 0.960673i \(0.589566\pi\)
\(938\) 10.0000 0.326512
\(939\) 0 0
\(940\) 0 0
\(941\) −12.0000 −0.391189 −0.195594 0.980685i \(-0.562664\pi\)
−0.195594 + 0.980685i \(0.562664\pi\)
\(942\) 0 0
\(943\) 8.00000 0.260516
\(944\) 8.00000 0.260378
\(945\) 0 0
\(946\) 12.0000 0.390154
\(947\) −38.0000 −1.23483 −0.617417 0.786636i \(-0.711821\pi\)
−0.617417 + 0.786636i \(0.711821\pi\)
\(948\) 0 0
\(949\) 30.0000 0.973841
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 36.0000 1.16615 0.583077 0.812417i \(-0.301849\pi\)
0.583077 + 0.812417i \(0.301849\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 12.0000 0.388108
\(957\) 0 0
\(958\) 4.00000 0.129234
\(959\) −12.0000 −0.387500
\(960\) 0 0
\(961\) −22.0000 −0.709677
\(962\) 60.0000 1.93448
\(963\) 0 0
\(964\) −6.00000 −0.193247
\(965\) 0 0
\(966\) 0 0
\(967\) 16.0000 0.514525 0.257263 0.966342i \(-0.417179\pi\)
0.257263 + 0.966342i \(0.417179\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −20.0000 −0.641831 −0.320915 0.947108i \(-0.603990\pi\)
−0.320915 + 0.947108i \(0.603990\pi\)
\(972\) 0 0
\(973\) −12.0000 −0.384702
\(974\) −86.0000 −2.75562
\(975\) 0 0
\(976\) 52.0000 1.66448
\(977\) −56.0000 −1.79160 −0.895799 0.444459i \(-0.853396\pi\)
−0.895799 + 0.444459i \(0.853396\pi\)
\(978\) 0 0
\(979\) 72.0000 2.30113
\(980\) 0 0
\(981\) 0 0
\(982\) 72.0000 2.29761
\(983\) −18.0000 −0.574111 −0.287055 0.957914i \(-0.592676\pi\)
−0.287055 + 0.957914i \(0.592676\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) −30.0000 −0.954427
\(989\) 8.00000 0.254385
\(990\) 0 0
\(991\) 55.0000 1.74713 0.873566 0.486705i \(-0.161801\pi\)
0.873566 + 0.486705i \(0.161801\pi\)
\(992\) 24.0000 0.762001
\(993\) 0 0
\(994\) −24.0000 −0.761234
\(995\) 0 0
\(996\) 0 0
\(997\) 22.0000 0.696747 0.348373 0.937356i \(-0.386734\pi\)
0.348373 + 0.937356i \(0.386734\pi\)
\(998\) −78.0000 −2.46905
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 9225.2.a.be.1.1 yes 1
3.2 odd 2 9225.2.a.b.1.1 yes 1
5.4 even 2 9225.2.a.a.1.1 1
15.14 odd 2 9225.2.a.bd.1.1 yes 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
9225.2.a.a.1.1 1 5.4 even 2
9225.2.a.b.1.1 yes 1 3.2 odd 2
9225.2.a.bd.1.1 yes 1 15.14 odd 2
9225.2.a.be.1.1 yes 1 1.1 even 1 trivial