Properties

Label 92.5.f
Level $92$
Weight $5$
Character orbit 92.f
Rep. character $\chi_{92}(5,\cdot)$
Character field $\Q(\zeta_{22})$
Dimension $80$
Newform subspaces $1$
Sturm bound $60$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 92 = 2^{2} \cdot 23 \)
Weight: \( k \) \(=\) \( 5 \)
Character orbit: \([\chi]\) \(=\) 92.f (of order \(22\) and degree \(10\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 23 \)
Character field: \(\Q(\zeta_{22})\)
Newform subspaces: \( 1 \)
Sturm bound: \(60\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{5}(92, [\chi])\).

Total New Old
Modular forms 510 80 430
Cusp forms 450 80 370
Eisenstein series 60 0 60

Trace form

\( 80 q + 10 q^{3} - 318 q^{9} + 2 q^{13} + 1463 q^{15} - 495 q^{17} - 957 q^{19} - 1353 q^{21} + 1614 q^{23} + 1890 q^{25} + 4723 q^{27} - 1617 q^{29} - 3271 q^{31} - 6655 q^{33} - 5280 q^{35} + 3520 q^{37}+ \cdots - 48477 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{5}^{\mathrm{new}}(92, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
92.5.f.a 92.f 23.d $80$ $9.510$ None 92.5.f.a \(0\) \(10\) \(0\) \(0\) $\mathrm{SU}(2)[C_{22}]$

Decomposition of \(S_{5}^{\mathrm{old}}(92, [\chi])\) into lower level spaces

\( S_{5}^{\mathrm{old}}(92, [\chi]) \simeq \) \(S_{5}^{\mathrm{new}}(23, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{5}^{\mathrm{new}}(46, [\chi])\)\(^{\oplus 2}\)