Defining parameters
Level: | \( N \) | \(=\) | \( 92 = 2^{2} \cdot 23 \) |
Weight: | \( k \) | \(=\) | \( 5 \) |
Character orbit: | \([\chi]\) | \(=\) | 92.f (of order \(22\) and degree \(10\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 23 \) |
Character field: | \(\Q(\zeta_{22})\) | ||
Newform subspaces: | \( 1 \) | ||
Sturm bound: | \(60\) | ||
Trace bound: | \(0\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{5}(92, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 510 | 80 | 430 |
Cusp forms | 450 | 80 | 370 |
Eisenstein series | 60 | 0 | 60 |
Trace form
Decomposition of \(S_{5}^{\mathrm{new}}(92, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
92.5.f.a | $80$ | $9.510$ | None | \(0\) | \(10\) | \(0\) | \(0\) |
Decomposition of \(S_{5}^{\mathrm{old}}(92, [\chi])\) into lower level spaces
\( S_{5}^{\mathrm{old}}(92, [\chi]) \simeq \) \(S_{5}^{\mathrm{new}}(23, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{5}^{\mathrm{new}}(46, [\chi])\)\(^{\oplus 2}\)