Defining parameters
Level: | \( N \) | = | \( 92 = 2^{2} \cdot 23 \) |
Weight: | \( k \) | = | \( 5 \) |
Nonzero newspaces: | \( 4 \) | ||
Newform subspaces: | \( 4 \) | ||
Sturm bound: | \(2640\) | ||
Trace bound: | \(1\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{5}(\Gamma_1(92))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 1111 | 632 | 479 |
Cusp forms | 1001 | 592 | 409 |
Eisenstein series | 110 | 40 | 70 |
Trace form
Decomposition of \(S_{5}^{\mathrm{new}}(\Gamma_1(92))\)
We only show spaces with odd parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.
Decomposition of \(S_{5}^{\mathrm{old}}(\Gamma_1(92))\) into lower level spaces
\( S_{5}^{\mathrm{old}}(\Gamma_1(92)) \cong \) \(S_{5}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 6}\)\(\oplus\)\(S_{5}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 4}\)\(\oplus\)\(S_{5}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 2}\)\(\oplus\)\(S_{5}^{\mathrm{new}}(\Gamma_1(23))\)\(^{\oplus 3}\)\(\oplus\)\(S_{5}^{\mathrm{new}}(\Gamma_1(46))\)\(^{\oplus 2}\)