Properties

Label 92.5
Level 92
Weight 5
Dimension 592
Nonzero newspaces 4
Newform subspaces 4
Sturm bound 2640
Trace bound 1

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 92 = 2^{2} \cdot 23 \)
Weight: \( k \) = \( 5 \)
Nonzero newspaces: \( 4 \)
Newform subspaces: \( 4 \)
Sturm bound: \(2640\)
Trace bound: \(1\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{5}(\Gamma_1(92))\).

Total New Old
Modular forms 1111 632 479
Cusp forms 1001 592 409
Eisenstein series 110 40 70

Trace form

\( 592 q - 3 q^{2} - 43 q^{4} + 6 q^{5} - 11 q^{6} + 117 q^{8} - 184 q^{9} - 123 q^{10} - 11 q^{12} + 454 q^{13} - 11 q^{14} + 1463 q^{15} - 523 q^{16} - 1161 q^{17} + 637 q^{18} - 957 q^{19} + 437 q^{20}+ \cdots - 48477 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{5}^{\mathrm{new}}(\Gamma_1(92))\)

We only show spaces with odd parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
92.5.c \(\chi_{92}(47, \cdot)\) 92.5.c.a 44 1
92.5.d \(\chi_{92}(45, \cdot)\) 92.5.d.a 8 1
92.5.f \(\chi_{92}(5, \cdot)\) 92.5.f.a 80 10
92.5.g \(\chi_{92}(3, \cdot)\) 92.5.g.a 460 10

Decomposition of \(S_{5}^{\mathrm{old}}(\Gamma_1(92))\) into lower level spaces

\( S_{5}^{\mathrm{old}}(\Gamma_1(92)) \cong \) \(S_{5}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 6}\)\(\oplus\)\(S_{5}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 4}\)\(\oplus\)\(S_{5}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 2}\)\(\oplus\)\(S_{5}^{\mathrm{new}}(\Gamma_1(23))\)\(^{\oplus 3}\)\(\oplus\)\(S_{5}^{\mathrm{new}}(\Gamma_1(46))\)\(^{\oplus 2}\)