Properties

Label 92.3.f.a.5.2
Level $92$
Weight $3$
Character 92.5
Analytic conductor $2.507$
Analytic rank $0$
Dimension $40$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [92,3,Mod(5,92)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("92.5"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(92, base_ring=CyclotomicField(22)) chi = DirichletCharacter(H, H._module([0, 1])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 92 = 2^{2} \cdot 23 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 92.f (of order \(22\), degree \(10\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.50681843211\)
Analytic rank: \(0\)
Dimension: \(40\)
Relative dimension: \(4\) over \(\Q(\zeta_{22})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{22}]$

Embedding invariants

Embedding label 5.2
Character \(\chi\) \(=\) 92.5
Dual form 92.3.f.a.37.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.710283 + 0.819710i) q^{3} +(-9.64449 - 1.38667i) q^{5} +(-4.98879 + 2.27830i) q^{7} +(1.11341 + 7.74394i) q^{9} +(-3.69536 - 12.5852i) q^{11} +(0.537204 - 1.17631i) q^{13} +(7.98699 - 6.92076i) q^{15} +(3.26150 + 5.07499i) q^{17} +(-16.9355 + 26.3522i) q^{19} +(1.67590 - 5.70760i) q^{21} +(-15.3675 - 17.1126i) q^{23} +(67.1061 + 19.7041i) q^{25} +(-15.3507 - 9.86528i) q^{27} +(28.7783 - 18.4947i) q^{29} +(-5.00573 - 5.77692i) q^{31} +(12.9410 + 5.90996i) q^{33} +(51.2736 - 15.0553i) q^{35} +(-21.1877 + 3.04634i) q^{37} +(0.582669 + 1.27587i) q^{39} +(-8.71362 + 60.6045i) q^{41} +(-12.7175 - 11.0198i) q^{43} -76.2303i q^{45} -40.1246 q^{47} +(-12.3909 + 14.2998i) q^{49} +(-6.47661 - 0.931196i) q^{51} +(-60.6602 + 27.7026i) q^{53} +(18.1883 + 126.503i) q^{55} +(-9.57214 - 32.5997i) q^{57} +(28.2210 - 61.7953i) q^{59} +(2.76812 - 2.39859i) q^{61} +(-23.1976 - 36.0962i) q^{63} +(-6.81222 + 10.6000i) q^{65} +(3.79860 - 12.9368i) q^{67} +(24.9426 - 0.442086i) q^{69} +(-43.2131 - 12.6885i) q^{71} +(-51.5883 - 33.1538i) q^{73} +(-63.8160 + 41.0121i) q^{75} +(47.1083 + 54.3659i) q^{77} +(15.2696 + 6.97338i) q^{79} +(-48.5700 + 14.2614i) q^{81} +(-109.753 + 15.7802i) q^{83} +(-24.4182 - 53.4684i) q^{85} +(-5.28045 + 36.7263i) q^{87} +(38.5581 + 33.4108i) q^{89} +7.09229i q^{91} +8.29089 q^{93} +(199.876 - 230.669i) q^{95} +(136.770 + 19.6645i) q^{97} +(93.3449 - 42.6292i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 40 q - 2 q^{3} - 6 q^{9} - 2 q^{13} + 77 q^{15} + 55 q^{17} + 33 q^{19} + 33 q^{21} - 50 q^{23} - 54 q^{25} - 191 q^{27} + q^{29} - 53 q^{31} - 121 q^{33} - 156 q^{35} - 352 q^{37} - 306 q^{39} + 6 q^{41}+ \cdots + 1353 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/92\mathbb{Z}\right)^\times\).

\(n\) \(5\) \(47\)
\(\chi(n)\) \(e\left(\frac{1}{22}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.710283 + 0.819710i −0.236761 + 0.273237i −0.861679 0.507454i \(-0.830587\pi\)
0.624918 + 0.780690i \(0.285132\pi\)
\(4\) 0 0
\(5\) −9.64449 1.38667i −1.92890 0.277334i −0.932434 0.361341i \(-0.882319\pi\)
−0.996465 + 0.0840073i \(0.973228\pi\)
\(6\) 0 0
\(7\) −4.98879 + 2.27830i −0.712684 + 0.325472i −0.738555 0.674194i \(-0.764491\pi\)
0.0258711 + 0.999665i \(0.491764\pi\)
\(8\) 0 0
\(9\) 1.11341 + 7.74394i 0.123712 + 0.860438i
\(10\) 0 0
\(11\) −3.69536 12.5852i −0.335942 1.14411i −0.938281 0.345873i \(-0.887583\pi\)
0.602339 0.798240i \(-0.294235\pi\)
\(12\) 0 0
\(13\) 0.537204 1.17631i 0.0413234 0.0904856i −0.887844 0.460144i \(-0.847798\pi\)
0.929168 + 0.369658i \(0.120525\pi\)
\(14\) 0 0
\(15\) 7.98699 6.92076i 0.532466 0.461384i
\(16\) 0 0
\(17\) 3.26150 + 5.07499i 0.191853 + 0.298529i 0.923832 0.382798i \(-0.125040\pi\)
−0.731979 + 0.681327i \(0.761403\pi\)
\(18\) 0 0
\(19\) −16.9355 + 26.3522i −0.891342 + 1.38696i 0.0305598 + 0.999533i \(0.490271\pi\)
−0.921902 + 0.387423i \(0.873365\pi\)
\(20\) 0 0
\(21\) 1.67590 5.70760i 0.0798049 0.271790i
\(22\) 0 0
\(23\) −15.3675 17.1126i −0.668151 0.744026i
\(24\) 0 0
\(25\) 67.1061 + 19.7041i 2.68424 + 0.788165i
\(26\) 0 0
\(27\) −15.3507 9.86528i −0.568544 0.365381i
\(28\) 0 0
\(29\) 28.7783 18.4947i 0.992354 0.637747i 0.0595858 0.998223i \(-0.481022\pi\)
0.932769 + 0.360476i \(0.117386\pi\)
\(30\) 0 0
\(31\) −5.00573 5.77692i −0.161475 0.186352i 0.669246 0.743041i \(-0.266617\pi\)
−0.830721 + 0.556688i \(0.812072\pi\)
\(32\) 0 0
\(33\) 12.9410 + 5.90996i 0.392152 + 0.179090i
\(34\) 0 0
\(35\) 51.2736 15.0553i 1.46496 0.430151i
\(36\) 0 0
\(37\) −21.1877 + 3.04634i −0.572641 + 0.0823334i −0.422551 0.906339i \(-0.638865\pi\)
−0.150090 + 0.988672i \(0.547956\pi\)
\(38\) 0 0
\(39\) 0.582669 + 1.27587i 0.0149402 + 0.0327145i
\(40\) 0 0
\(41\) −8.71362 + 60.6045i −0.212527 + 1.47816i 0.552149 + 0.833745i \(0.313808\pi\)
−0.764677 + 0.644414i \(0.777101\pi\)
\(42\) 0 0
\(43\) −12.7175 11.0198i −0.295756 0.256274i 0.494324 0.869278i \(-0.335416\pi\)
−0.790080 + 0.613004i \(0.789961\pi\)
\(44\) 0 0
\(45\) 76.2303i 1.69401i
\(46\) 0 0
\(47\) −40.1246 −0.853716 −0.426858 0.904319i \(-0.640380\pi\)
−0.426858 + 0.904319i \(0.640380\pi\)
\(48\) 0 0
\(49\) −12.3909 + 14.2998i −0.252875 + 0.291833i
\(50\) 0 0
\(51\) −6.47661 0.931196i −0.126992 0.0182588i
\(52\) 0 0
\(53\) −60.6602 + 27.7026i −1.14453 + 0.522690i −0.895172 0.445721i \(-0.852947\pi\)
−0.249360 + 0.968411i \(0.580220\pi\)
\(54\) 0 0
\(55\) 18.1883 + 126.503i 0.330697 + 2.30005i
\(56\) 0 0
\(57\) −9.57214 32.5997i −0.167932 0.571925i
\(58\) 0 0
\(59\) 28.2210 61.7953i 0.478322 1.04738i −0.504600 0.863353i \(-0.668360\pi\)
0.982922 0.184025i \(-0.0589128\pi\)
\(60\) 0 0
\(61\) 2.76812 2.39859i 0.0453790 0.0393211i −0.631876 0.775069i \(-0.717715\pi\)
0.677255 + 0.735748i \(0.263169\pi\)
\(62\) 0 0
\(63\) −23.1976 36.0962i −0.368216 0.572955i
\(64\) 0 0
\(65\) −6.81222 + 10.6000i −0.104803 + 0.163077i
\(66\) 0 0
\(67\) 3.79860 12.9368i 0.0566955 0.193087i −0.926276 0.376846i \(-0.877008\pi\)
0.982971 + 0.183759i \(0.0588267\pi\)
\(68\) 0 0
\(69\) 24.9426 0.442086i 0.361487 0.00640705i
\(70\) 0 0
\(71\) −43.2131 12.6885i −0.608636 0.178712i −0.0371311 0.999310i \(-0.511822\pi\)
−0.571505 + 0.820599i \(0.693640\pi\)
\(72\) 0 0
\(73\) −51.5883 33.1538i −0.706689 0.454161i 0.137295 0.990530i \(-0.456159\pi\)
−0.843984 + 0.536369i \(0.819796\pi\)
\(74\) 0 0
\(75\) −63.8160 + 41.0121i −0.850880 + 0.546827i
\(76\) 0 0
\(77\) 47.1083 + 54.3659i 0.611797 + 0.706051i
\(78\) 0 0
\(79\) 15.2696 + 6.97338i 0.193286 + 0.0882706i 0.509707 0.860348i \(-0.329754\pi\)
−0.316421 + 0.948619i \(0.602481\pi\)
\(80\) 0 0
\(81\) −48.5700 + 14.2614i −0.599629 + 0.176067i
\(82\) 0 0
\(83\) −109.753 + 15.7802i −1.32233 + 0.190122i −0.767075 0.641557i \(-0.778289\pi\)
−0.555255 + 0.831680i \(0.687379\pi\)
\(84\) 0 0
\(85\) −24.4182 53.4684i −0.287273 0.629040i
\(86\) 0 0
\(87\) −5.28045 + 36.7263i −0.0606948 + 0.422141i
\(88\) 0 0
\(89\) 38.5581 + 33.4108i 0.433238 + 0.375402i 0.844003 0.536339i \(-0.180193\pi\)
−0.410765 + 0.911741i \(0.634738\pi\)
\(90\) 0 0
\(91\) 7.09229i 0.0779372i
\(92\) 0 0
\(93\) 8.29089 0.0891493
\(94\) 0 0
\(95\) 199.876 230.669i 2.10396 2.42810i
\(96\) 0 0
\(97\) 136.770 + 19.6645i 1.41000 + 0.202727i 0.804894 0.593419i \(-0.202222\pi\)
0.605105 + 0.796146i \(0.293131\pi\)
\(98\) 0 0
\(99\) 93.3449 42.6292i 0.942878 0.430598i
\(100\) 0 0
\(101\) −1.03115 7.17178i −0.0102094 0.0710078i 0.984080 0.177727i \(-0.0568744\pi\)
−0.994289 + 0.106719i \(0.965965\pi\)
\(102\) 0 0
\(103\) 44.8592 + 152.776i 0.435526 + 1.48327i 0.826538 + 0.562880i \(0.190307\pi\)
−0.391012 + 0.920386i \(0.627875\pi\)
\(104\) 0 0
\(105\) −24.0778 + 52.7230i −0.229312 + 0.502124i
\(106\) 0 0
\(107\) 42.7593 37.0511i 0.399620 0.346272i −0.431749 0.901994i \(-0.642103\pi\)
0.831369 + 0.555721i \(0.187558\pi\)
\(108\) 0 0
\(109\) 42.9550 + 66.8393i 0.394083 + 0.613205i 0.980433 0.196853i \(-0.0630721\pi\)
−0.586350 + 0.810058i \(0.699436\pi\)
\(110\) 0 0
\(111\) 12.5522 19.5316i 0.113083 0.175960i
\(112\) 0 0
\(113\) 43.5287 148.245i 0.385209 1.31190i −0.507649 0.861564i \(-0.669485\pi\)
0.892858 0.450338i \(-0.148697\pi\)
\(114\) 0 0
\(115\) 124.482 + 186.352i 1.08245 + 1.62045i
\(116\) 0 0
\(117\) 9.70743 + 2.85036i 0.0829695 + 0.0243620i
\(118\) 0 0
\(119\) −27.8333 17.8874i −0.233893 0.150314i
\(120\) 0 0
\(121\) −42.9410 + 27.5965i −0.354884 + 0.228070i
\(122\) 0 0
\(123\) −43.4890 50.1890i −0.353569 0.408041i
\(124\) 0 0
\(125\) −398.302 181.899i −3.18642 1.45519i
\(126\) 0 0
\(127\) −76.8418 + 22.5628i −0.605054 + 0.177660i −0.569889 0.821722i \(-0.693014\pi\)
−0.0351647 + 0.999382i \(0.511196\pi\)
\(128\) 0 0
\(129\) 18.0661 2.59751i 0.140047 0.0201357i
\(130\) 0 0
\(131\) 72.3984 + 158.530i 0.552660 + 1.21016i 0.955529 + 0.294898i \(0.0952858\pi\)
−0.402869 + 0.915258i \(0.631987\pi\)
\(132\) 0 0
\(133\) 24.4494 170.049i 0.183830 1.27857i
\(134\) 0 0
\(135\) 134.370 + 116.432i 0.995331 + 0.862459i
\(136\) 0 0
\(137\) 67.7953i 0.494856i −0.968906 0.247428i \(-0.920415\pi\)
0.968906 0.247428i \(-0.0795854\pi\)
\(138\) 0 0
\(139\) 157.883 1.13585 0.567926 0.823080i \(-0.307746\pi\)
0.567926 + 0.823080i \(0.307746\pi\)
\(140\) 0 0
\(141\) 28.4999 32.8906i 0.202127 0.233267i
\(142\) 0 0
\(143\) −16.7894 2.41394i −0.117408 0.0168807i
\(144\) 0 0
\(145\) −303.198 + 138.466i −2.09102 + 0.954937i
\(146\) 0 0
\(147\) −2.92069 20.3138i −0.0198686 0.138189i
\(148\) 0 0
\(149\) 34.5129 + 117.540i 0.231630 + 0.788861i 0.990487 + 0.137603i \(0.0439399\pi\)
−0.758857 + 0.651257i \(0.774242\pi\)
\(150\) 0 0
\(151\) 74.0365 162.117i 0.490308 1.07363i −0.489191 0.872177i \(-0.662708\pi\)
0.979499 0.201448i \(-0.0645648\pi\)
\(152\) 0 0
\(153\) −35.6691 + 30.9074i −0.233131 + 0.202009i
\(154\) 0 0
\(155\) 40.2671 + 62.6568i 0.259788 + 0.404237i
\(156\) 0 0
\(157\) 46.9851 73.1102i 0.299268 0.465670i −0.658757 0.752356i \(-0.728917\pi\)
0.958025 + 0.286686i \(0.0925536\pi\)
\(158\) 0 0
\(159\) 20.3778 69.4005i 0.128162 0.436481i
\(160\) 0 0
\(161\) 115.653 + 50.3593i 0.718339 + 0.312791i
\(162\) 0 0
\(163\) −149.584 43.9217i −0.917691 0.269458i −0.211416 0.977396i \(-0.567807\pi\)
−0.706275 + 0.707938i \(0.749626\pi\)
\(164\) 0 0
\(165\) −116.614 74.9435i −0.706753 0.454203i
\(166\) 0 0
\(167\) −216.593 + 139.196i −1.29696 + 0.833507i −0.992878 0.119138i \(-0.961987\pi\)
−0.304085 + 0.952645i \(0.598351\pi\)
\(168\) 0 0
\(169\) 109.576 + 126.458i 0.648381 + 0.748271i
\(170\) 0 0
\(171\) −222.926 101.807i −1.30366 0.595361i
\(172\) 0 0
\(173\) −123.293 + 36.2020i −0.712675 + 0.209260i −0.617921 0.786240i \(-0.712025\pi\)
−0.0947545 + 0.995501i \(0.530207\pi\)
\(174\) 0 0
\(175\) −379.670 + 54.5883i −2.16954 + 0.311933i
\(176\) 0 0
\(177\) 30.6094 + 67.0252i 0.172934 + 0.378674i
\(178\) 0 0
\(179\) −8.29392 + 57.6855i −0.0463348 + 0.322265i 0.953451 + 0.301549i \(0.0975037\pi\)
−0.999785 + 0.0207162i \(0.993405\pi\)
\(180\) 0 0
\(181\) −141.302 122.439i −0.780673 0.676457i 0.170417 0.985372i \(-0.445489\pi\)
−0.951090 + 0.308915i \(0.900034\pi\)
\(182\) 0 0
\(183\) 3.97273i 0.0217089i
\(184\) 0 0
\(185\) 208.569 1.12740
\(186\) 0 0
\(187\) 51.8176 59.8007i 0.277100 0.319790i
\(188\) 0 0
\(189\) 99.0573 + 14.2423i 0.524113 + 0.0753561i
\(190\) 0 0
\(191\) 158.834 72.5373i 0.831594 0.379776i 0.0463215 0.998927i \(-0.485250\pi\)
0.785272 + 0.619150i \(0.212523\pi\)
\(192\) 0 0
\(193\) 33.8920 + 235.724i 0.175606 + 1.22137i 0.866785 + 0.498683i \(0.166183\pi\)
−0.691178 + 0.722684i \(0.742908\pi\)
\(194\) 0 0
\(195\) −3.85034 13.1131i −0.0197453 0.0672465i
\(196\) 0 0
\(197\) −68.3206 + 149.601i −0.346805 + 0.759397i 0.653193 + 0.757192i \(0.273429\pi\)
−0.999998 + 0.00220521i \(0.999298\pi\)
\(198\) 0 0
\(199\) 129.980 112.628i 0.653165 0.565971i −0.263978 0.964529i \(-0.585035\pi\)
0.917143 + 0.398558i \(0.130489\pi\)
\(200\) 0 0
\(201\) 7.90638 + 12.3026i 0.0393352 + 0.0612068i
\(202\) 0 0
\(203\) −101.432 + 157.832i −0.499666 + 0.777495i
\(204\) 0 0
\(205\) 168.077 572.417i 0.819887 2.79228i
\(206\) 0 0
\(207\) 115.409 138.058i 0.557530 0.666947i
\(208\) 0 0
\(209\) 394.231 + 115.757i 1.88627 + 0.553860i
\(210\) 0 0
\(211\) −201.305 129.371i −0.954052 0.613132i −0.0317064 0.999497i \(-0.510094\pi\)
−0.922346 + 0.386365i \(0.873731\pi\)
\(212\) 0 0
\(213\) 41.0945 26.4098i 0.192932 0.123990i
\(214\) 0 0
\(215\) 107.373 + 123.915i 0.499410 + 0.576350i
\(216\) 0 0
\(217\) 38.1341 + 17.4153i 0.175733 + 0.0802546i
\(218\) 0 0
\(219\) 63.8188 18.7389i 0.291410 0.0855656i
\(220\) 0 0
\(221\) 7.72187 1.11024i 0.0349406 0.00502370i
\(222\) 0 0
\(223\) −109.776 240.377i −0.492271 1.07792i −0.978905 0.204317i \(-0.934503\pi\)
0.486634 0.873606i \(-0.338224\pi\)
\(224\) 0 0
\(225\) −77.8710 + 541.604i −0.346093 + 2.40713i
\(226\) 0 0
\(227\) −52.0480 45.0999i −0.229286 0.198678i 0.532639 0.846342i \(-0.321200\pi\)
−0.761925 + 0.647665i \(0.775746\pi\)
\(228\) 0 0
\(229\) 39.8188i 0.173881i −0.996214 0.0869405i \(-0.972291\pi\)
0.996214 0.0869405i \(-0.0277090\pi\)
\(230\) 0 0
\(231\) −78.0246 −0.337769
\(232\) 0 0
\(233\) −28.8433 + 33.2870i −0.123791 + 0.142863i −0.814262 0.580498i \(-0.802858\pi\)
0.690471 + 0.723360i \(0.257403\pi\)
\(234\) 0 0
\(235\) 386.982 + 55.6396i 1.64673 + 0.236764i
\(236\) 0 0
\(237\) −16.5619 + 7.56355i −0.0698813 + 0.0319137i
\(238\) 0 0
\(239\) 29.9181 + 208.085i 0.125180 + 0.870649i 0.951544 + 0.307512i \(0.0994966\pi\)
−0.826364 + 0.563137i \(0.809594\pi\)
\(240\) 0 0
\(241\) −93.0411 316.869i −0.386063 1.31481i −0.891921 0.452192i \(-0.850642\pi\)
0.505858 0.862617i \(-0.331176\pi\)
\(242\) 0 0
\(243\) 91.0303 199.329i 0.374610 0.820282i
\(244\) 0 0
\(245\) 139.333 120.732i 0.568705 0.492785i
\(246\) 0 0
\(247\) 21.9006 + 34.0780i 0.0886663 + 0.137967i
\(248\) 0 0
\(249\) 65.0208 101.174i 0.261128 0.406323i
\(250\) 0 0
\(251\) −119.193 + 405.934i −0.474872 + 1.61727i 0.279032 + 0.960282i \(0.409987\pi\)
−0.753904 + 0.656985i \(0.771832\pi\)
\(252\) 0 0
\(253\) −158.578 + 256.641i −0.626790 + 1.01439i
\(254\) 0 0
\(255\) 61.1724 + 17.9618i 0.239892 + 0.0704386i
\(256\) 0 0
\(257\) −213.072 136.933i −0.829073 0.532813i 0.0559105 0.998436i \(-0.482194\pi\)
−0.884983 + 0.465623i \(0.845830\pi\)
\(258\) 0 0
\(259\) 98.7606 63.4696i 0.381315 0.245056i
\(260\) 0 0
\(261\) 175.264 + 202.265i 0.671508 + 0.774962i
\(262\) 0 0
\(263\) 132.210 + 60.3782i 0.502699 + 0.229575i 0.650591 0.759429i \(-0.274521\pi\)
−0.147891 + 0.989004i \(0.547249\pi\)
\(264\) 0 0
\(265\) 623.451 183.062i 2.35265 0.690799i
\(266\) 0 0
\(267\) −54.7744 + 7.87537i −0.205148 + 0.0294958i
\(268\) 0 0
\(269\) 46.0007 + 100.727i 0.171006 + 0.374451i 0.975659 0.219295i \(-0.0703756\pi\)
−0.804652 + 0.593746i \(0.797648\pi\)
\(270\) 0 0
\(271\) −18.6757 + 129.892i −0.0689141 + 0.479308i 0.925914 + 0.377734i \(0.123297\pi\)
−0.994828 + 0.101573i \(0.967612\pi\)
\(272\) 0 0
\(273\) −5.81362 5.03753i −0.0212953 0.0184525i
\(274\) 0 0
\(275\) 917.360i 3.33586i
\(276\) 0 0
\(277\) −87.1222 −0.314520 −0.157260 0.987557i \(-0.550266\pi\)
−0.157260 + 0.987557i \(0.550266\pi\)
\(278\) 0 0
\(279\) 39.1627 45.1962i 0.140368 0.161993i
\(280\) 0 0
\(281\) −362.793 52.1618i −1.29108 0.185629i −0.537656 0.843164i \(-0.680690\pi\)
−0.753424 + 0.657535i \(0.771599\pi\)
\(282\) 0 0
\(283\) −448.212 + 204.692i −1.58379 + 0.723292i −0.996300 0.0859397i \(-0.972611\pi\)
−0.587489 + 0.809232i \(0.699883\pi\)
\(284\) 0 0
\(285\) 47.1134 + 327.681i 0.165310 + 1.14976i
\(286\) 0 0
\(287\) −94.6051 322.195i −0.329634 1.12263i
\(288\) 0 0
\(289\) 104.937 229.779i 0.363103 0.795085i
\(290\) 0 0
\(291\) −113.265 + 98.1443i −0.389225 + 0.337266i
\(292\) 0 0
\(293\) 23.3005 + 36.2564i 0.0795241 + 0.123742i 0.878737 0.477306i \(-0.158387\pi\)
−0.799213 + 0.601048i \(0.794750\pi\)
\(294\) 0 0
\(295\) −357.867 + 556.852i −1.21311 + 1.88763i
\(296\) 0 0
\(297\) −67.4307 + 229.648i −0.227039 + 0.773225i
\(298\) 0 0
\(299\) −28.3852 + 8.88400i −0.0949339 + 0.0297124i
\(300\) 0 0
\(301\) 88.5513 + 26.0010i 0.294190 + 0.0863821i
\(302\) 0 0
\(303\) 6.61119 + 4.24875i 0.0218191 + 0.0140223i
\(304\) 0 0
\(305\) −30.0231 + 19.2947i −0.0984365 + 0.0632613i
\(306\) 0 0
\(307\) −343.003 395.847i −1.11727 1.28940i −0.952994 0.302988i \(-0.902016\pi\)
−0.164279 0.986414i \(-0.552530\pi\)
\(308\) 0 0
\(309\) −157.095 71.7429i −0.508398 0.232178i
\(310\) 0 0
\(311\) −90.8754 + 26.6834i −0.292204 + 0.0857988i −0.424549 0.905405i \(-0.639567\pi\)
0.132345 + 0.991204i \(0.457749\pi\)
\(312\) 0 0
\(313\) −392.994 + 56.5040i −1.25557 + 0.180524i −0.737815 0.675003i \(-0.764142\pi\)
−0.517758 + 0.855527i \(0.673233\pi\)
\(314\) 0 0
\(315\) 173.676 + 380.297i 0.551351 + 1.20729i
\(316\) 0 0
\(317\) −20.7687 + 144.450i −0.0655166 + 0.455678i 0.930484 + 0.366332i \(0.119387\pi\)
−0.996001 + 0.0893455i \(0.971522\pi\)
\(318\) 0 0
\(319\) −339.106 293.837i −1.06303 0.921120i
\(320\) 0 0
\(321\) 61.3670i 0.191175i
\(322\) 0 0
\(323\) −188.972 −0.585053
\(324\) 0 0
\(325\) 59.2279 68.3527i 0.182240 0.210316i
\(326\) 0 0
\(327\) −85.2991 12.2642i −0.260854 0.0375051i
\(328\) 0 0
\(329\) 200.173 91.4161i 0.608429 0.277860i
\(330\) 0 0
\(331\) 12.8119 + 89.1086i 0.0387066 + 0.269210i 0.999980 0.00638766i \(-0.00203327\pi\)
−0.961273 + 0.275598i \(0.911124\pi\)
\(332\) 0 0
\(333\) −47.1813 160.685i −0.141686 0.482537i
\(334\) 0 0
\(335\) −54.5746 + 119.502i −0.162909 + 0.356722i
\(336\) 0 0
\(337\) 321.002 278.150i 0.952528 0.825371i −0.0321977 0.999482i \(-0.510251\pi\)
0.984726 + 0.174111i \(0.0557052\pi\)
\(338\) 0 0
\(339\) 90.6003 + 140.977i 0.267257 + 0.415861i
\(340\) 0 0
\(341\) −54.2060 + 84.3462i −0.158962 + 0.247349i
\(342\) 0 0
\(343\) 104.948 357.419i 0.305970 1.04204i
\(344\) 0 0
\(345\) −241.172 30.3235i −0.699049 0.0878941i
\(346\) 0 0
\(347\) 427.315 + 125.471i 1.23145 + 0.361588i 0.831798 0.555078i \(-0.187312\pi\)
0.399656 + 0.916665i \(0.369130\pi\)
\(348\) 0 0
\(349\) 427.647 + 274.832i 1.22535 + 0.787485i 0.983160 0.182744i \(-0.0584980\pi\)
0.242190 + 0.970229i \(0.422134\pi\)
\(350\) 0 0
\(351\) −19.8511 + 12.7575i −0.0565559 + 0.0363463i
\(352\) 0 0
\(353\) 1.68290 + 1.94217i 0.00476742 + 0.00550189i 0.758128 0.652105i \(-0.226114\pi\)
−0.753361 + 0.657607i \(0.771569\pi\)
\(354\) 0 0
\(355\) 399.174 + 182.297i 1.12443 + 0.513512i
\(356\) 0 0
\(357\) 34.4320 10.1101i 0.0964481 0.0283197i
\(358\) 0 0
\(359\) −384.256 + 55.2477i −1.07035 + 0.153893i −0.654895 0.755720i \(-0.727287\pi\)
−0.415457 + 0.909613i \(0.636378\pi\)
\(360\) 0 0
\(361\) −257.660 564.197i −0.713740 1.56287i
\(362\) 0 0
\(363\) 7.87912 54.8005i 0.0217056 0.150966i
\(364\) 0 0
\(365\) 451.569 + 391.287i 1.23718 + 1.07202i
\(366\) 0 0
\(367\) 533.350i 1.45327i 0.687024 + 0.726635i \(0.258917\pi\)
−0.687024 + 0.726635i \(0.741083\pi\)
\(368\) 0 0
\(369\) −479.020 −1.29816
\(370\) 0 0
\(371\) 239.506 276.404i 0.645568 0.745026i
\(372\) 0 0
\(373\) 4.46095 + 0.641388i 0.0119597 + 0.00171954i 0.148292 0.988944i \(-0.452622\pi\)
−0.136332 + 0.990663i \(0.543532\pi\)
\(374\) 0 0
\(375\) 432.012 197.293i 1.15203 0.526115i
\(376\) 0 0
\(377\) −6.29572 43.7877i −0.0166995 0.116148i
\(378\) 0 0
\(379\) 125.271 + 426.633i 0.330529 + 1.12568i 0.942335 + 0.334672i \(0.108625\pi\)
−0.611805 + 0.791008i \(0.709556\pi\)
\(380\) 0 0
\(381\) 36.0845 79.0140i 0.0947099 0.207386i
\(382\) 0 0
\(383\) 285.064 247.010i 0.744293 0.644934i −0.197816 0.980239i \(-0.563385\pi\)
0.942109 + 0.335305i \(0.108840\pi\)
\(384\) 0 0
\(385\) −378.949 589.656i −0.984282 1.53157i
\(386\) 0 0
\(387\) 71.1767 110.753i 0.183919 0.286184i
\(388\) 0 0
\(389\) −119.130 + 405.718i −0.306246 + 1.04298i 0.652281 + 0.757977i \(0.273812\pi\)
−0.958527 + 0.285001i \(0.908006\pi\)
\(390\) 0 0
\(391\) 36.7253 133.803i 0.0939266 0.342206i
\(392\) 0 0
\(393\) −181.372 53.2558i −0.461507 0.135511i
\(394\) 0 0
\(395\) −137.598 88.4286i −0.348348 0.223870i
\(396\) 0 0
\(397\) −264.755 + 170.147i −0.666888 + 0.428583i −0.829802 0.558057i \(-0.811547\pi\)
0.162914 + 0.986640i \(0.447911\pi\)
\(398\) 0 0
\(399\) 122.025 + 140.825i 0.305828 + 0.352944i
\(400\) 0 0
\(401\) −378.168 172.704i −0.943064 0.430683i −0.116289 0.993215i \(-0.537100\pi\)
−0.826775 + 0.562533i \(0.809827\pi\)
\(402\) 0 0
\(403\) −9.48457 + 2.78492i −0.0235349 + 0.00691048i
\(404\) 0 0
\(405\) 488.209 70.1938i 1.20545 0.173318i
\(406\) 0 0
\(407\) 116.635 + 255.395i 0.286573 + 0.627507i
\(408\) 0 0
\(409\) 73.5327 511.431i 0.179787 1.25044i −0.677469 0.735551i \(-0.736923\pi\)
0.857255 0.514891i \(-0.172168\pi\)
\(410\) 0 0
\(411\) 55.5725 + 48.1539i 0.135213 + 0.117163i
\(412\) 0 0
\(413\) 372.580i 0.902130i
\(414\) 0 0
\(415\) 1080.40 2.60337
\(416\) 0 0
\(417\) −112.142 + 129.419i −0.268925 + 0.310356i
\(418\) 0 0
\(419\) −25.3403 3.64339i −0.0604782 0.00869545i 0.112009 0.993707i \(-0.464271\pi\)
−0.172487 + 0.985012i \(0.555180\pi\)
\(420\) 0 0
\(421\) −72.3201 + 33.0275i −0.171782 + 0.0784500i −0.499450 0.866343i \(-0.666464\pi\)
0.327668 + 0.944793i \(0.393737\pi\)
\(422\) 0 0
\(423\) −44.6752 310.723i −0.105615 0.734569i
\(424\) 0 0
\(425\) 118.868 + 404.828i 0.279690 + 0.952537i
\(426\) 0 0
\(427\) −8.34484 + 18.2726i −0.0195429 + 0.0427931i
\(428\) 0 0
\(429\) 13.9039 12.0478i 0.0324101 0.0280835i
\(430\) 0 0
\(431\) 300.432 + 467.481i 0.697058 + 1.08464i 0.991642 + 0.129018i \(0.0411825\pi\)
−0.294584 + 0.955626i \(0.595181\pi\)
\(432\) 0 0
\(433\) 91.2867 142.045i 0.210824 0.328048i −0.719696 0.694289i \(-0.755719\pi\)
0.930520 + 0.366241i \(0.119355\pi\)
\(434\) 0 0
\(435\) 101.854 346.884i 0.234148 0.797435i
\(436\) 0 0
\(437\) 711.210 115.156i 1.62748 0.263514i
\(438\) 0 0
\(439\) −369.745 108.567i −0.842243 0.247305i −0.167975 0.985791i \(-0.553723\pi\)
−0.674268 + 0.738486i \(0.735541\pi\)
\(440\) 0 0
\(441\) −124.533 80.0325i −0.282388 0.181480i
\(442\) 0 0
\(443\) 449.845 289.098i 1.01545 0.652592i 0.0766537 0.997058i \(-0.475576\pi\)
0.938799 + 0.344466i \(0.111940\pi\)
\(444\) 0 0
\(445\) −325.544 375.698i −0.731560 0.844265i
\(446\) 0 0
\(447\) −120.863 55.1962i −0.270387 0.123481i
\(448\) 0 0
\(449\) −281.535 + 82.6663i −0.627028 + 0.184112i −0.579782 0.814771i \(-0.696862\pi\)
−0.0472453 + 0.998883i \(0.515044\pi\)
\(450\) 0 0
\(451\) 794.923 114.293i 1.76258 0.253421i
\(452\) 0 0
\(453\) 80.3024 + 175.838i 0.177268 + 0.388163i
\(454\) 0 0
\(455\) 9.83466 68.4015i 0.0216146 0.150333i
\(456\) 0 0
\(457\) 283.148 + 245.350i 0.619581 + 0.536870i 0.907105 0.420903i \(-0.138287\pi\)
−0.287525 + 0.957773i \(0.592832\pi\)
\(458\) 0 0
\(459\) 110.080i 0.239826i
\(460\) 0 0
\(461\) −245.044 −0.531549 −0.265774 0.964035i \(-0.585628\pi\)
−0.265774 + 0.964035i \(0.585628\pi\)
\(462\) 0 0
\(463\) −255.131 + 294.437i −0.551039 + 0.635933i −0.961125 0.276114i \(-0.910953\pi\)
0.410086 + 0.912047i \(0.365499\pi\)
\(464\) 0 0
\(465\) −79.9614 11.4967i −0.171960 0.0247241i
\(466\) 0 0
\(467\) −592.416 + 270.547i −1.26856 + 0.579330i −0.932043 0.362348i \(-0.881975\pi\)
−0.336514 + 0.941679i \(0.609248\pi\)
\(468\) 0 0
\(469\) 10.5236 + 73.1934i 0.0224384 + 0.156063i
\(470\) 0 0
\(471\) 26.5565 + 90.4431i 0.0563832 + 0.192024i
\(472\) 0 0
\(473\) −91.6908 + 200.775i −0.193850 + 0.424471i
\(474\) 0 0
\(475\) −1655.72 + 1434.69i −3.48573 + 3.02040i
\(476\) 0 0
\(477\) −282.067 438.905i −0.591335 0.920135i
\(478\) 0 0
\(479\) 418.447 651.117i 0.873585 1.35933i −0.0589552 0.998261i \(-0.518777\pi\)
0.932541 0.361065i \(-0.117587\pi\)
\(480\) 0 0
\(481\) −7.79869 + 26.5599i −0.0162135 + 0.0552181i
\(482\) 0 0
\(483\) −123.426 + 59.0323i −0.255541 + 0.122220i
\(484\) 0 0
\(485\) −1291.81 379.309i −2.66352 0.782080i
\(486\) 0 0
\(487\) 145.125 + 93.2661i 0.297998 + 0.191511i 0.681092 0.732198i \(-0.261505\pi\)
−0.383095 + 0.923709i \(0.625142\pi\)
\(488\) 0 0
\(489\) 142.250 91.4184i 0.290899 0.186950i
\(490\) 0 0
\(491\) 166.334 + 191.960i 0.338766 + 0.390957i 0.899414 0.437097i \(-0.143994\pi\)
−0.560648 + 0.828054i \(0.689448\pi\)
\(492\) 0 0
\(493\) 187.721 + 85.7292i 0.380772 + 0.173893i
\(494\) 0 0
\(495\) −959.377 + 281.699i −1.93814 + 0.569088i
\(496\) 0 0
\(497\) 244.489 35.1523i 0.491930 0.0707289i
\(498\) 0 0
\(499\) −3.97095 8.69516i −0.00795781 0.0174252i 0.905611 0.424109i \(-0.139412\pi\)
−0.913569 + 0.406683i \(0.866685\pi\)
\(500\) 0 0
\(501\) 39.7420 276.412i 0.0793254 0.551720i
\(502\) 0 0
\(503\) −289.603 250.942i −0.575752 0.498892i 0.317615 0.948220i \(-0.397118\pi\)
−0.893367 + 0.449328i \(0.851663\pi\)
\(504\) 0 0
\(505\) 70.5981i 0.139798i
\(506\) 0 0
\(507\) −181.489 −0.357966
\(508\) 0 0
\(509\) −94.8920 + 109.511i −0.186428 + 0.215150i −0.841268 0.540618i \(-0.818191\pi\)
0.654840 + 0.755767i \(0.272736\pi\)
\(510\) 0 0
\(511\) 332.897 + 47.8634i 0.651462 + 0.0936661i
\(512\) 0 0
\(513\) 519.943 237.450i 1.01353 0.462866i
\(514\) 0 0
\(515\) −220.794 1535.66i −0.428726 2.98186i
\(516\) 0 0
\(517\) 148.275 + 504.979i 0.286799 + 0.976748i
\(518\) 0 0
\(519\) 57.8976 126.778i 0.111556 0.244274i
\(520\) 0 0
\(521\) −85.0830 + 73.7249i −0.163307 + 0.141506i −0.732681 0.680572i \(-0.761731\pi\)
0.569374 + 0.822079i \(0.307186\pi\)
\(522\) 0 0
\(523\) 223.828 + 348.283i 0.427969 + 0.665932i 0.986539 0.163525i \(-0.0522864\pi\)
−0.558571 + 0.829457i \(0.688650\pi\)
\(524\) 0 0
\(525\) 224.926 349.992i 0.428431 0.666652i
\(526\) 0 0
\(527\) 12.9916 44.2455i 0.0246521 0.0839573i
\(528\) 0 0
\(529\) −56.6818 + 525.955i −0.107149 + 0.994243i
\(530\) 0 0
\(531\) 509.961 + 149.738i 0.960378 + 0.281993i
\(532\) 0 0
\(533\) 66.6089 + 42.8070i 0.124970 + 0.0803132i
\(534\) 0 0
\(535\) −463.769 + 298.047i −0.866859 + 0.557096i
\(536\) 0 0
\(537\) −41.3944 47.7716i −0.0770845 0.0889602i
\(538\) 0 0
\(539\) 225.755 + 103.099i 0.418841 + 0.191278i
\(540\) 0 0
\(541\) −211.401 + 62.0730i −0.390760 + 0.114737i −0.471210 0.882021i \(-0.656183\pi\)
0.0804498 + 0.996759i \(0.474364\pi\)
\(542\) 0 0
\(543\) 200.728 28.8604i 0.369666 0.0531499i
\(544\) 0 0
\(545\) −321.596 704.196i −0.590083 1.29210i
\(546\) 0 0
\(547\) 106.135 738.184i 0.194031 1.34951i −0.627173 0.778880i \(-0.715788\pi\)
0.821204 0.570634i \(-0.193303\pi\)
\(548\) 0 0
\(549\) 21.6566 + 18.7655i 0.0394473 + 0.0341813i
\(550\) 0 0
\(551\) 1071.59i 1.94480i
\(552\) 0 0
\(553\) −92.0641 −0.166481
\(554\) 0 0
\(555\) −148.143 + 170.966i −0.266925 + 0.308047i
\(556\) 0 0
\(557\) 39.2228 + 5.63938i 0.0704179 + 0.0101246i 0.177434 0.984133i \(-0.443220\pi\)
−0.107016 + 0.994257i \(0.534130\pi\)
\(558\) 0 0
\(559\) −19.7946 + 9.03990i −0.0354108 + 0.0161715i
\(560\) 0 0
\(561\) 12.2141 + 84.9509i 0.0217720 + 0.151428i
\(562\) 0 0
\(563\) 138.220 + 470.734i 0.245506 + 0.836117i 0.986381 + 0.164474i \(0.0525928\pi\)
−0.740875 + 0.671643i \(0.765589\pi\)
\(564\) 0 0
\(565\) −625.379 + 1369.39i −1.10686 + 2.42370i
\(566\) 0 0
\(567\) 209.813 181.804i 0.370041 0.320642i
\(568\) 0 0
\(569\) −200.604 312.146i −0.352555 0.548586i 0.619003 0.785389i \(-0.287537\pi\)
−0.971558 + 0.236803i \(0.923901\pi\)
\(570\) 0 0
\(571\) 127.635 198.603i 0.223528 0.347817i −0.711318 0.702871i \(-0.751901\pi\)
0.934846 + 0.355054i \(0.115538\pi\)
\(572\) 0 0
\(573\) −53.3579 + 181.720i −0.0931202 + 0.317138i
\(574\) 0 0
\(575\) −694.062 1451.16i −1.20706 2.52376i
\(576\) 0 0
\(577\) −3.75169 1.10160i −0.00650207 0.00190918i 0.278480 0.960442i \(-0.410169\pi\)
−0.284982 + 0.958533i \(0.591988\pi\)
\(578\) 0 0
\(579\) −217.298 139.649i −0.375299 0.241190i
\(580\) 0 0
\(581\) 511.584 328.775i 0.880524 0.565878i
\(582\) 0 0
\(583\) 572.805 + 661.052i 0.982513 + 1.13388i
\(584\) 0 0
\(585\) −89.6707 40.9513i −0.153283 0.0700021i
\(586\) 0 0
\(587\) 161.624 47.4572i 0.275340 0.0808471i −0.141148 0.989989i \(-0.545079\pi\)
0.416487 + 0.909142i \(0.363261\pi\)
\(588\) 0 0
\(589\) 237.009 34.0767i 0.402392 0.0578553i
\(590\) 0 0
\(591\) −74.1027 162.262i −0.125385 0.274555i
\(592\) 0 0
\(593\) 33.6439 233.999i 0.0567351 0.394601i −0.941591 0.336760i \(-0.890669\pi\)
0.998326 0.0578417i \(-0.0184219\pi\)
\(594\) 0 0
\(595\) 243.634 + 211.110i 0.409469 + 0.354807i
\(596\) 0 0
\(597\) 186.544i 0.312468i
\(598\) 0 0
\(599\) −156.510 −0.261285 −0.130643 0.991430i \(-0.541704\pi\)
−0.130643 + 0.991430i \(0.541704\pi\)
\(600\) 0 0
\(601\) 16.6631 19.2302i 0.0277256 0.0319970i −0.741717 0.670712i \(-0.765988\pi\)
0.769443 + 0.638715i \(0.220534\pi\)
\(602\) 0 0
\(603\) 104.411 + 15.0121i 0.173153 + 0.0248957i
\(604\) 0 0
\(605\) 452.411 206.609i 0.747788 0.341503i
\(606\) 0 0
\(607\) −0.153618 1.06844i −0.000253077 0.00176019i 0.989695 0.143195i \(-0.0457376\pi\)
−0.989948 + 0.141435i \(0.954828\pi\)
\(608\) 0 0
\(609\) −57.3306 195.250i −0.0941389 0.320608i
\(610\) 0 0
\(611\) −21.5551 + 47.1992i −0.0352785 + 0.0772490i
\(612\) 0 0
\(613\) 817.788 708.617i 1.33408 1.15598i 0.359192 0.933264i \(-0.383052\pi\)
0.974883 0.222719i \(-0.0714933\pi\)
\(614\) 0 0
\(615\) 349.834 + 544.353i 0.568836 + 0.885126i
\(616\) 0 0
\(617\) 304.084 473.165i 0.492843 0.766879i −0.502365 0.864656i \(-0.667537\pi\)
0.995208 + 0.0977763i \(0.0311730\pi\)
\(618\) 0 0
\(619\) −1.25984 + 4.29062i −0.00203528 + 0.00693154i −0.960504 0.278265i \(-0.910241\pi\)
0.958469 + 0.285196i \(0.0920589\pi\)
\(620\) 0 0
\(621\) 67.0805 + 414.294i 0.108020 + 0.667141i
\(622\) 0 0
\(623\) −268.478 78.8323i −0.430944 0.126537i
\(624\) 0 0
\(625\) 2118.28 + 1361.33i 3.38925 + 2.17814i
\(626\) 0 0
\(627\) −374.903 + 240.935i −0.597931 + 0.384267i
\(628\) 0 0
\(629\) −84.5639 97.5920i −0.134442 0.155154i
\(630\) 0 0
\(631\) 1086.25 + 496.073i 1.72147 + 0.786170i 0.995101 + 0.0988668i \(0.0315218\pi\)
0.726371 + 0.687303i \(0.241205\pi\)
\(632\) 0 0
\(633\) 249.030 73.1219i 0.393413 0.115516i
\(634\) 0 0
\(635\) 772.387 111.053i 1.21636 0.174886i
\(636\) 0 0
\(637\) 10.1646 + 22.2575i 0.0159570 + 0.0349411i
\(638\) 0 0
\(639\) 50.1452 348.767i 0.0784745 0.545802i
\(640\) 0 0
\(641\) −392.038 339.703i −0.611604 0.529958i 0.293054 0.956096i \(-0.405328\pi\)
−0.904658 + 0.426138i \(0.859874\pi\)
\(642\) 0 0
\(643\) 589.547i 0.916870i −0.888728 0.458435i \(-0.848410\pi\)
0.888728 0.458435i \(-0.151590\pi\)
\(644\) 0 0
\(645\) −177.840 −0.275721
\(646\) 0 0
\(647\) −126.868 + 146.413i −0.196086 + 0.226295i −0.845275 0.534332i \(-0.820563\pi\)
0.649189 + 0.760627i \(0.275109\pi\)
\(648\) 0 0
\(649\) −881.996 126.812i −1.35901 0.195396i
\(650\) 0 0
\(651\) −41.3615 + 18.8891i −0.0635353 + 0.0290156i
\(652\) 0 0
\(653\) −44.6845 310.787i −0.0684295 0.475938i −0.995005 0.0998281i \(-0.968171\pi\)
0.926575 0.376110i \(-0.122738\pi\)
\(654\) 0 0
\(655\) −478.417 1629.34i −0.730408 2.48754i
\(656\) 0 0
\(657\) 199.302 436.410i 0.303351 0.664247i
\(658\) 0 0
\(659\) −344.770 + 298.744i −0.523171 + 0.453330i −0.875968 0.482370i \(-0.839776\pi\)
0.352797 + 0.935700i \(0.385231\pi\)
\(660\) 0 0
\(661\) −224.445 349.243i −0.339553 0.528355i 0.628921 0.777469i \(-0.283497\pi\)
−0.968474 + 0.249114i \(0.919860\pi\)
\(662\) 0 0
\(663\) −4.57464 + 7.11828i −0.00689991 + 0.0107365i
\(664\) 0 0
\(665\) −471.605 + 1606.14i −0.709180 + 2.41524i
\(666\) 0 0
\(667\) −758.741 208.255i −1.13754 0.312226i
\(668\) 0 0
\(669\) 275.012 + 80.7507i 0.411079 + 0.120704i
\(670\) 0 0
\(671\) −40.4160 25.9738i −0.0602325 0.0387091i
\(672\) 0 0
\(673\) 707.819 454.887i 1.05174 0.675910i 0.103874 0.994590i \(-0.466876\pi\)
0.947862 + 0.318681i \(0.103240\pi\)
\(674\) 0 0
\(675\) −835.737 964.492i −1.23813 1.42888i
\(676\) 0 0
\(677\) 1088.90 + 497.286i 1.60843 + 0.734544i 0.998329 0.0577829i \(-0.0184031\pi\)
0.610097 + 0.792327i \(0.291130\pi\)
\(678\) 0 0
\(679\) −727.117 + 213.501i −1.07086 + 0.314434i
\(680\) 0 0
\(681\) 73.9376 10.6306i 0.108572 0.0156103i
\(682\) 0 0
\(683\) 518.548 + 1135.46i 0.759221 + 1.66246i 0.749050 + 0.662514i \(0.230510\pi\)
0.0101711 + 0.999948i \(0.496762\pi\)
\(684\) 0 0
\(685\) −94.0096 + 653.851i −0.137240 + 0.954528i
\(686\) 0 0
\(687\) 32.6398 + 28.2826i 0.0475107 + 0.0411682i
\(688\) 0 0
\(689\) 86.2373i 0.125163i
\(690\) 0 0
\(691\) −276.558 −0.400229 −0.200114 0.979773i \(-0.564131\pi\)
−0.200114 + 0.979773i \(0.564131\pi\)
\(692\) 0 0
\(693\) −368.556 + 425.336i −0.531826 + 0.613760i
\(694\) 0 0
\(695\) −1522.70 218.932i −2.19094 0.315010i
\(696\) 0 0
\(697\) −335.987 + 153.440i −0.482047 + 0.220144i
\(698\) 0 0
\(699\) −6.79875 47.2864i −0.00972640 0.0676486i
\(700\) 0 0
\(701\) 9.28316 + 31.6155i 0.0132427 + 0.0451006i 0.965849 0.259104i \(-0.0834274\pi\)
−0.952607 + 0.304205i \(0.901609\pi\)
\(702\) 0 0
\(703\) 278.547 609.934i 0.396227 0.867615i
\(704\) 0 0
\(705\) −320.475 + 277.693i −0.454575 + 0.393891i
\(706\) 0 0
\(707\) 21.4837 + 33.4292i 0.0303871 + 0.0472832i
\(708\) 0 0
\(709\) −523.286 + 814.249i −0.738062 + 1.14845i 0.245766 + 0.969329i \(0.420961\pi\)
−0.983828 + 0.179118i \(0.942676\pi\)
\(710\) 0 0
\(711\) −37.0001 + 126.011i −0.0520396 + 0.177230i
\(712\) 0 0
\(713\) −21.9327 + 174.438i −0.0307612 + 0.244653i
\(714\) 0 0
\(715\) 158.577 + 46.5626i 0.221787 + 0.0651225i
\(716\) 0 0
\(717\) −191.820 123.275i −0.267531 0.171932i
\(718\) 0 0
\(719\) 205.244 131.902i 0.285457 0.183452i −0.390074 0.920783i \(-0.627551\pi\)
0.675531 + 0.737331i \(0.263914\pi\)
\(720\) 0 0
\(721\) −571.864 659.966i −0.793153 0.915348i
\(722\) 0 0
\(723\) 325.826 + 148.800i 0.450659 + 0.205809i
\(724\) 0 0
\(725\) 2295.62 674.055i 3.16637 0.929731i
\(726\) 0 0
\(727\) −67.6966 + 9.73330i −0.0931178 + 0.0133883i −0.188716 0.982032i \(-0.560433\pi\)
0.0955984 + 0.995420i \(0.469524\pi\)
\(728\) 0 0
\(729\) −90.5220 198.216i −0.124173 0.271901i
\(730\) 0 0
\(731\) 14.4472 100.482i 0.0197636 0.137459i
\(732\) 0 0
\(733\) 255.484 + 221.378i 0.348546 + 0.302017i 0.811485 0.584373i \(-0.198660\pi\)
−0.462939 + 0.886390i \(0.653205\pi\)
\(734\) 0 0
\(735\) 199.967i 0.272063i
\(736\) 0 0
\(737\) −176.850 −0.239960
\(738\) 0 0
\(739\) −817.589 + 943.548i −1.10635 + 1.27679i −0.148687 + 0.988884i \(0.547505\pi\)
−0.957659 + 0.287906i \(0.907041\pi\)
\(740\) 0 0
\(741\) −43.4897 6.25287i −0.0586905 0.00843842i
\(742\) 0 0
\(743\) 796.172 363.599i 1.07156 0.489367i 0.200074 0.979781i \(-0.435882\pi\)
0.871490 + 0.490414i \(0.163154\pi\)
\(744\) 0 0
\(745\) −169.870 1181.47i −0.228014 1.58587i
\(746\) 0 0
\(747\) −244.401 832.354i −0.327177 1.11426i
\(748\) 0 0
\(749\) −128.903 + 282.259i −0.172100 + 0.376848i
\(750\) 0 0
\(751\) −3.74018 + 3.24089i −0.00498027 + 0.00431543i −0.657347 0.753588i \(-0.728322\pi\)
0.652367 + 0.757903i \(0.273776\pi\)
\(752\) 0 0
\(753\) −248.087 386.032i −0.329465 0.512658i
\(754\) 0 0
\(755\) −938.848 + 1460.88i −1.24351 + 1.93494i
\(756\) 0 0
\(757\) −289.651 + 986.461i −0.382630 + 1.30312i 0.513026 + 0.858373i \(0.328524\pi\)
−0.895657 + 0.444746i \(0.853294\pi\)
\(758\) 0 0
\(759\) −97.7358 312.275i −0.128769 0.411430i
\(760\) 0 0
\(761\) 119.024 + 34.9486i 0.156405 + 0.0459246i 0.358998 0.933338i \(-0.383119\pi\)
−0.202593 + 0.979263i \(0.564937\pi\)
\(762\) 0 0
\(763\) −366.574 235.583i −0.480437 0.308758i
\(764\) 0 0
\(765\) 386.868 248.625i 0.505710 0.325000i
\(766\) 0 0
\(767\) −57.5302 66.3934i −0.0750068 0.0865625i
\(768\) 0 0
\(769\) −464.642 212.195i −0.604216 0.275936i 0.0897268 0.995966i \(-0.471401\pi\)
−0.693943 + 0.720030i \(0.744128\pi\)
\(770\) 0 0
\(771\) 263.586 77.3960i 0.341876 0.100384i
\(772\) 0 0
\(773\) 228.610 32.8692i 0.295744 0.0425216i 0.00715434 0.999974i \(-0.497723\pi\)
0.288590 + 0.957453i \(0.406814\pi\)
\(774\) 0 0
\(775\) −222.086 486.300i −0.286562 0.627484i
\(776\) 0 0
\(777\) −18.1213 + 126.036i −0.0233221 + 0.162209i
\(778\) 0 0
\(779\) −1449.49 1255.99i −1.86071 1.61231i
\(780\) 0 0
\(781\) 590.737i 0.756385i
\(782\) 0 0
\(783\) −624.221 −0.797218
\(784\) 0 0
\(785\) −554.527 + 639.958i −0.706404 + 0.815234i
\(786\) 0 0
\(787\) 1117.11 + 160.616i 1.41946 + 0.204087i 0.808928 0.587908i \(-0.200048\pi\)
0.610528 + 0.791995i \(0.290957\pi\)
\(788\) 0 0
\(789\) −143.399 + 65.4882i −0.181748 + 0.0830015i
\(790\) 0 0
\(791\) 120.592 + 838.734i 0.152455 + 1.06035i
\(792\) 0 0
\(793\) −1.33445 4.54471i −0.00168278 0.00573103i
\(794\) 0 0
\(795\) −292.769 + 641.075i −0.368263 + 0.806384i
\(796\) 0 0
\(797\) 166.097 143.924i 0.208403 0.180582i −0.544405 0.838823i \(-0.683244\pi\)
0.752808 + 0.658241i \(0.228699\pi\)
\(798\) 0 0
\(799\) −130.867 203.632i −0.163788 0.254859i
\(800\) 0 0
\(801\) −215.800 + 335.792i −0.269414 + 0.419216i
\(802\) 0 0
\(803\) −226.611 + 771.766i −0.282205 + 0.961103i
\(804\) 0 0
\(805\) −1045.58 646.062i −1.29886 0.802562i
\(806\) 0 0
\(807\) −115.241 33.8377i −0.142801 0.0419303i
\(808\) 0 0
\(809\) −834.474 536.284i −1.03149 0.662898i −0.0886213 0.996065i \(-0.528246\pi\)
−0.942868 + 0.333168i \(0.891882\pi\)
\(810\) 0 0
\(811\) 890.044 571.996i 1.09746 0.705298i 0.138938 0.990301i \(-0.455631\pi\)
0.958526 + 0.285004i \(0.0919948\pi\)
\(812\) 0 0
\(813\) −93.2091 107.569i −0.114648 0.132311i
\(814\) 0 0
\(815\) 1381.75 + 631.025i 1.69540 + 0.774264i
\(816\) 0 0
\(817\) 505.772 148.508i 0.619060 0.181773i
\(818\) 0 0
\(819\) −54.9223 + 7.89663i −0.0670601 + 0.00964179i
\(820\) 0 0
\(821\) −594.946 1302.75i −0.724661 1.58679i −0.807255 0.590202i \(-0.799048\pi\)
0.0825949 0.996583i \(-0.473679\pi\)
\(822\) 0 0
\(823\) −170.052 + 1182.74i −0.206625 + 1.43710i 0.577444 + 0.816430i \(0.304050\pi\)
−0.784068 + 0.620675i \(0.786859\pi\)
\(824\) 0 0
\(825\) 751.970 + 651.586i 0.911479 + 0.789801i
\(826\) 0 0
\(827\) 224.413i 0.271357i −0.990753 0.135679i \(-0.956679\pi\)
0.990753 0.135679i \(-0.0433215\pi\)
\(828\) 0 0
\(829\) −808.176 −0.974881 −0.487440 0.873156i \(-0.662069\pi\)
−0.487440 + 0.873156i \(0.662069\pi\)
\(830\) 0 0
\(831\) 61.8814 71.4149i 0.0744662 0.0859386i
\(832\) 0 0
\(833\) −112.984 16.2447i −0.135635 0.0195014i
\(834\) 0 0
\(835\) 2281.95 1042.13i 2.73287 1.24806i
\(836\) 0 0
\(837\) 19.8504 + 138.063i 0.0237161 + 0.164949i
\(838\) 0 0
\(839\) 233.691 + 795.877i 0.278535 + 0.948602i 0.973333 + 0.229397i \(0.0736755\pi\)
−0.694798 + 0.719205i \(0.744506\pi\)
\(840\) 0 0
\(841\) 136.772 299.489i 0.162630 0.356111i
\(842\) 0 0
\(843\) 300.444 260.336i 0.356398 0.308821i
\(844\) 0 0
\(845\) −881.453 1371.57i −1.04314 1.62316i
\(846\) 0 0
\(847\) 151.350 235.506i 0.178690 0.278047i
\(848\) 0 0
\(849\) 150.570 512.793i 0.177350 0.603997i
\(850\) 0 0
\(851\) 377.732 + 315.763i 0.443869 + 0.371049i
\(852\) 0 0
\(853\) 419.396 + 123.146i 0.491672 + 0.144368i 0.518164 0.855281i \(-0.326616\pi\)
−0.0264925 + 0.999649i \(0.508434\pi\)
\(854\) 0 0
\(855\) 2008.83 + 1291.00i 2.34951 + 1.50994i
\(856\) 0 0
\(857\) −461.799 + 296.780i −0.538856 + 0.346301i −0.781591 0.623791i \(-0.785592\pi\)
0.242736 + 0.970092i \(0.421955\pi\)
\(858\) 0 0
\(859\) −614.654 709.349i −0.715547 0.825785i 0.275218 0.961382i \(-0.411250\pi\)
−0.990764 + 0.135597i \(0.956705\pi\)
\(860\) 0 0
\(861\) 331.303 + 151.301i 0.384789 + 0.175727i
\(862\) 0 0
\(863\) −396.306 + 116.366i −0.459219 + 0.134839i −0.503156 0.864196i \(-0.667828\pi\)
0.0439375 + 0.999034i \(0.486010\pi\)
\(864\) 0 0
\(865\) 1239.30 178.184i 1.43271 0.205993i
\(866\) 0 0
\(867\) 113.818 + 249.226i 0.131278 + 0.287458i
\(868\) 0 0
\(869\) 31.3351 217.940i 0.0360588 0.250795i
\(870\) 0 0
\(871\) −13.1771 11.4181i −0.0151288 0.0131091i
\(872\) 0 0
\(873\) 1081.03i 1.23830i
\(874\) 0 0
\(875\) 2401.46 2.74453
\(876\) 0 0
\(877\) −767.799 + 886.087i −0.875483 + 1.01036i 0.124352 + 0.992238i \(0.460315\pi\)
−0.999836 + 0.0181235i \(0.994231\pi\)
\(878\) 0 0
\(879\) −46.2697 6.65258i −0.0526390 0.00756835i
\(880\) 0 0
\(881\) −32.3562 + 14.7766i −0.0367267 + 0.0167725i −0.433694 0.901060i \(-0.642790\pi\)
0.396967 + 0.917833i \(0.370063\pi\)
\(882\) 0 0
\(883\) −68.1316 473.866i −0.0771592 0.536654i −0.991337 0.131341i \(-0.958072\pi\)
0.914178 0.405313i \(-0.132837\pi\)
\(884\) 0 0
\(885\) −202.270 688.869i −0.228554 0.778383i
\(886\) 0 0
\(887\) 324.788 711.186i 0.366165 0.801788i −0.633443 0.773789i \(-0.718359\pi\)
0.999608 0.0279994i \(-0.00891367\pi\)
\(888\) 0 0
\(889\) 331.942 287.630i 0.373389 0.323543i
\(890\) 0 0
\(891\) 358.967 + 558.564i 0.402881 + 0.626895i
\(892\) 0 0
\(893\) 679.531 1057.37i 0.760953 1.18407i
\(894\) 0 0
\(895\) 159.981 544.847i 0.178750 0.608767i
\(896\) 0 0
\(897\) 12.8793 29.5778i 0.0143581 0.0329742i
\(898\) 0 0
\(899\) −250.899 73.6705i −0.279086 0.0819472i
\(900\) 0 0
\(901\) −338.434 217.498i −0.375620 0.241396i
\(902\) 0 0
\(903\) −84.2098 + 54.1183i −0.0932555 + 0.0599317i
\(904\) 0 0
\(905\) 1193.00 + 1376.80i 1.31823 + 1.52132i
\(906\) 0 0
\(907\) −21.6209 9.87392i −0.0238378 0.0108863i 0.403460 0.914997i \(-0.367807\pi\)
−0.427298 + 0.904111i \(0.640535\pi\)
\(908\) 0 0
\(909\) 54.3898 15.9703i 0.0598347 0.0175691i
\(910\) 0 0
\(911\) −1017.38 + 146.278i −1.11678 + 0.160568i −0.675895 0.736998i \(-0.736243\pi\)
−0.440881 + 0.897566i \(0.645334\pi\)
\(912\) 0 0
\(913\) 604.176 + 1322.96i 0.661748 + 1.44903i
\(914\) 0 0
\(915\) 5.50886 38.3150i 0.00602061 0.0418743i
\(916\) 0 0
\(917\) −722.361 625.929i −0.787743 0.682583i
\(918\) 0 0
\(919\) 536.305i 0.583575i 0.956483 + 0.291787i \(0.0942499\pi\)
−0.956483 + 0.291787i \(0.905750\pi\)
\(920\) 0 0
\(921\) 568.109 0.616839
\(922\) 0 0
\(923\) −38.1400 + 44.0159i −0.0413217 + 0.0476878i
\(924\) 0 0
\(925\) −1481.85 213.058i −1.60200 0.230333i
\(926\) 0 0
\(927\) −1133.14 + 517.490i −1.22238 + 0.558241i
\(928\) 0 0
\(929\) 8.88967 + 61.8290i 0.00956907 + 0.0665543i 0.994046 0.108957i \(-0.0347512\pi\)
−0.984477 + 0.175512i \(0.943842\pi\)
\(930\) 0 0
\(931\) −166.985 568.700i −0.179361 0.610849i
\(932\) 0 0
\(933\) 42.6746 93.4443i 0.0457391 0.100155i
\(934\) 0 0
\(935\) −582.678 + 504.894i −0.623186 + 0.539993i
\(936\) 0 0
\(937\) 489.441 + 761.586i 0.522349 + 0.812792i 0.997755 0.0669754i \(-0.0213349\pi\)
−0.475405 + 0.879767i \(0.657699\pi\)
\(938\) 0 0
\(939\) 232.820 362.275i 0.247945 0.385810i
\(940\) 0 0
\(941\) 22.9597 78.1936i 0.0243993 0.0830963i −0.946393 0.323016i \(-0.895303\pi\)
0.970793 + 0.239920i \(0.0771213\pi\)
\(942\) 0 0
\(943\) 1171.01 782.226i 1.24179 0.829508i
\(944\) 0 0
\(945\) −935.609 274.719i −0.990062 0.290708i
\(946\) 0 0
\(947\) 104.456 + 67.1298i 0.110302 + 0.0708867i 0.594629 0.804000i \(-0.297299\pi\)
−0.484327 + 0.874887i \(0.660935\pi\)
\(948\) 0 0
\(949\) −66.7127 + 42.8736i −0.0702978 + 0.0451777i
\(950\) 0 0
\(951\) −103.655 119.625i −0.108996 0.125788i
\(952\) 0 0
\(953\) −274.614 125.412i −0.288157 0.131597i 0.266092 0.963948i \(-0.414267\pi\)
−0.554249 + 0.832351i \(0.686995\pi\)
\(954\) 0 0
\(955\) −1632.46 + 479.334i −1.70939 + 0.501921i
\(956\) 0 0
\(957\) 481.723 69.2613i 0.503367 0.0723733i
\(958\) 0 0
\(959\) 154.458 + 338.216i 0.161062 + 0.352676i
\(960\) 0 0
\(961\) 128.449 893.383i 0.133662 0.929639i
\(962\) 0 0
\(963\) 334.531 + 289.872i 0.347384 + 0.301010i
\(964\) 0 0
\(965\) 2320.43i 2.40459i
\(966\) 0 0
\(967\) −1349.94 −1.39601 −0.698003 0.716095i \(-0.745928\pi\)
−0.698003 + 0.716095i \(0.745928\pi\)
\(968\) 0 0
\(969\) 134.224 154.902i 0.138518 0.159858i
\(970\) 0 0
\(971\) 668.685 + 96.1423i 0.688656 + 0.0990137i 0.477754 0.878494i \(-0.341451\pi\)
0.210902 + 0.977507i \(0.432360\pi\)
\(972\) 0 0
\(973\) −787.646 + 359.706i −0.809502 + 0.369687i
\(974\) 0 0
\(975\) 13.9608 + 97.0995i 0.0143188 + 0.0995892i
\(976\) 0 0
\(977\) 360.340 + 1227.21i 0.368823 + 1.25610i 0.909796 + 0.415056i \(0.136238\pi\)
−0.540973 + 0.841040i \(0.681944\pi\)
\(978\) 0 0
\(979\) 277.997 608.729i 0.283960 0.621786i
\(980\) 0 0
\(981\) −469.773 + 407.061i −0.478872 + 0.414945i
\(982\) 0 0
\(983\) 539.680 + 839.758i 0.549013 + 0.854281i 0.999254 0.0386263i \(-0.0122982\pi\)
−0.450241 + 0.892907i \(0.648662\pi\)
\(984\) 0 0
\(985\) 866.365 1348.09i 0.879558 1.36862i
\(986\) 0 0
\(987\) −67.2450 + 229.015i −0.0681307 + 0.232032i
\(988\) 0 0
\(989\) 6.85881 + 386.976i 0.00693509 + 0.391280i
\(990\) 0 0
\(991\) −1096.32 321.909i −1.10628 0.324833i −0.322935 0.946421i \(-0.604669\pi\)
−0.783344 + 0.621589i \(0.786488\pi\)
\(992\) 0 0
\(993\) −82.1433 52.7903i −0.0827223 0.0531624i
\(994\) 0 0
\(995\) −1409.77 + 906.002i −1.41685 + 0.910555i
\(996\) 0 0
\(997\) 868.971 + 1002.85i 0.871586 + 1.00586i 0.999900 + 0.0141299i \(0.00449785\pi\)
−0.128315 + 0.991734i \(0.540957\pi\)
\(998\) 0 0
\(999\) 355.299 + 162.260i 0.355655 + 0.162422i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 92.3.f.a.5.2 40
4.3 odd 2 368.3.p.c.97.3 40
23.3 even 11 2116.3.d.c.1057.26 40
23.14 odd 22 inner 92.3.f.a.37.2 yes 40
23.20 odd 22 2116.3.d.c.1057.25 40
92.83 even 22 368.3.p.c.129.3 40
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
92.3.f.a.5.2 40 1.1 even 1 trivial
92.3.f.a.37.2 yes 40 23.14 odd 22 inner
368.3.p.c.97.3 40 4.3 odd 2
368.3.p.c.129.3 40 92.83 even 22
2116.3.d.c.1057.25 40 23.20 odd 22
2116.3.d.c.1057.26 40 23.3 even 11