Properties

Label 92.3.f.a.5.1
Level $92$
Weight $3$
Character 92.5
Analytic conductor $2.507$
Analytic rank $0$
Dimension $40$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [92,3,Mod(5,92)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("92.5"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(92, base_ring=CyclotomicField(22)) chi = DirichletCharacter(H, H._module([0, 1])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 92 = 2^{2} \cdot 23 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 92.f (of order \(22\), degree \(10\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.50681843211\)
Analytic rank: \(0\)
Dimension: \(40\)
Relative dimension: \(4\) over \(\Q(\zeta_{22})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{22}]$

Embedding invariants

Embedding label 5.1
Character \(\chi\) \(=\) 92.5
Dual form 92.3.f.a.37.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.05837 + 2.37548i) q^{3} +(5.87759 + 0.845069i) q^{5} +(-11.1861 + 5.10852i) q^{7} +(-0.125205 - 0.870819i) q^{9} +(3.20967 + 10.9311i) q^{11} +(-3.12123 + 6.83453i) q^{13} +(-14.1057 + 12.2226i) q^{15} +(4.18019 + 6.50451i) q^{17} +(16.9234 - 26.3334i) q^{19} +(10.8899 - 37.0876i) q^{21} +(11.2408 - 20.0660i) q^{23} +(9.84455 + 2.89062i) q^{25} +(-21.4718 - 13.7991i) q^{27} +(5.54128 - 3.56117i) q^{29} +(32.9159 + 37.9870i) q^{31} +(-32.5733 - 14.8757i) q^{33} +(-70.0644 + 20.5728i) q^{35} +(26.3757 - 3.79226i) q^{37} +(-9.81067 - 21.4824i) q^{39} +(5.64863 - 39.2871i) q^{41} +(37.0006 + 32.0612i) q^{43} -5.22412i q^{45} +7.37372 q^{47} +(66.9438 - 77.2573i) q^{49} +(-24.0557 - 3.45869i) q^{51} +(-70.7218 + 32.2976i) q^{53} +(9.62754 + 66.9610i) q^{55} +(27.7198 + 94.4050i) q^{57} +(-1.87466 + 4.10493i) q^{59} +(-29.6733 + 25.7121i) q^{61} +(5.84915 + 9.10146i) q^{63} +(-24.1209 + 37.5329i) q^{65} +(10.8850 - 37.0708i) q^{67} +(24.5286 + 68.0055i) q^{69} +(34.6570 + 10.1762i) q^{71} +(-10.2280 - 6.57315i) q^{73} +(-27.1303 + 17.4356i) q^{75} +(-91.7456 - 105.880i) q^{77} +(-10.5682 - 4.82632i) q^{79} +(84.5735 - 24.8330i) q^{81} +(-146.472 + 21.0595i) q^{83} +(19.0727 + 41.7634i) q^{85} +(-2.94650 + 20.4934i) q^{87} +(88.3431 + 76.5498i) q^{89} -92.3967i q^{91} -157.990 q^{93} +(121.723 - 140.475i) q^{95} +(95.6287 + 13.7493i) q^{97} +(9.11717 - 4.16367i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 40 q - 2 q^{3} - 6 q^{9} - 2 q^{13} + 77 q^{15} + 55 q^{17} + 33 q^{19} + 33 q^{21} - 50 q^{23} - 54 q^{25} - 191 q^{27} + q^{29} - 53 q^{31} - 121 q^{33} - 156 q^{35} - 352 q^{37} - 306 q^{39} + 6 q^{41}+ \cdots + 1353 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/92\mathbb{Z}\right)^\times\).

\(n\) \(5\) \(47\)
\(\chi(n)\) \(e\left(\frac{1}{22}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −2.05837 + 2.37548i −0.686122 + 0.791827i −0.986808 0.161896i \(-0.948239\pi\)
0.300686 + 0.953723i \(0.402784\pi\)
\(4\) 0 0
\(5\) 5.87759 + 0.845069i 1.17552 + 0.169014i 0.702267 0.711914i \(-0.252171\pi\)
0.473251 + 0.880928i \(0.343081\pi\)
\(6\) 0 0
\(7\) −11.1861 + 5.10852i −1.59802 + 0.729789i −0.997556 0.0698665i \(-0.977743\pi\)
−0.600459 + 0.799656i \(0.705015\pi\)
\(8\) 0 0
\(9\) −0.125205 0.870819i −0.0139117 0.0967577i
\(10\) 0 0
\(11\) 3.20967 + 10.9311i 0.291788 + 0.993739i 0.966715 + 0.255854i \(0.0823568\pi\)
−0.674927 + 0.737884i \(0.735825\pi\)
\(12\) 0 0
\(13\) −3.12123 + 6.83453i −0.240094 + 0.525733i −0.990869 0.134825i \(-0.956953\pi\)
0.750775 + 0.660558i \(0.229680\pi\)
\(14\) 0 0
\(15\) −14.1057 + 12.2226i −0.940378 + 0.814842i
\(16\) 0 0
\(17\) 4.18019 + 6.50451i 0.245894 + 0.382618i 0.942159 0.335166i \(-0.108793\pi\)
−0.696265 + 0.717785i \(0.745156\pi\)
\(18\) 0 0
\(19\) 16.9234 26.3334i 0.890708 1.38597i −0.0315956 0.999501i \(-0.510059\pi\)
0.922303 0.386467i \(-0.126305\pi\)
\(20\) 0 0
\(21\) 10.8899 37.0876i 0.518567 1.76608i
\(22\) 0 0
\(23\) 11.2408 20.0660i 0.488732 0.872434i
\(24\) 0 0
\(25\) 9.84455 + 2.89062i 0.393782 + 0.115625i
\(26\) 0 0
\(27\) −21.4718 13.7991i −0.795252 0.511077i
\(28\) 0 0
\(29\) 5.54128 3.56117i 0.191079 0.122799i −0.441604 0.897210i \(-0.645590\pi\)
0.632682 + 0.774411i \(0.281954\pi\)
\(30\) 0 0
\(31\) 32.9159 + 37.9870i 1.06180 + 1.22539i 0.973354 + 0.229306i \(0.0736455\pi\)
0.0884488 + 0.996081i \(0.471809\pi\)
\(32\) 0 0
\(33\) −32.5733 14.8757i −0.987071 0.450780i
\(34\) 0 0
\(35\) −70.0644 + 20.5728i −2.00184 + 0.587793i
\(36\) 0 0
\(37\) 26.3757 3.79226i 0.712857 0.102493i 0.223661 0.974667i \(-0.428199\pi\)
0.489196 + 0.872174i \(0.337290\pi\)
\(38\) 0 0
\(39\) −9.81067 21.4824i −0.251556 0.550830i
\(40\) 0 0
\(41\) 5.64863 39.2871i 0.137772 0.958222i −0.797254 0.603643i \(-0.793715\pi\)
0.935026 0.354579i \(-0.115376\pi\)
\(42\) 0 0
\(43\) 37.0006 + 32.0612i 0.860480 + 0.745610i 0.968625 0.248525i \(-0.0799459\pi\)
−0.108146 + 0.994135i \(0.534491\pi\)
\(44\) 0 0
\(45\) 5.22412i 0.116092i
\(46\) 0 0
\(47\) 7.37372 0.156888 0.0784438 0.996919i \(-0.475005\pi\)
0.0784438 + 0.996919i \(0.475005\pi\)
\(48\) 0 0
\(49\) 66.9438 77.2573i 1.36620 1.57668i
\(50\) 0 0
\(51\) −24.0557 3.45869i −0.471680 0.0678174i
\(52\) 0 0
\(53\) −70.7218 + 32.2976i −1.33437 + 0.609388i −0.949554 0.313604i \(-0.898464\pi\)
−0.384819 + 0.922992i \(0.625736\pi\)
\(54\) 0 0
\(55\) 9.62754 + 66.9610i 0.175046 + 1.21747i
\(56\) 0 0
\(57\) 27.7198 + 94.4050i 0.486313 + 1.65623i
\(58\) 0 0
\(59\) −1.87466 + 4.10493i −0.0317739 + 0.0695751i −0.924854 0.380324i \(-0.875813\pi\)
0.893080 + 0.449899i \(0.148540\pi\)
\(60\) 0 0
\(61\) −29.6733 + 25.7121i −0.486447 + 0.421509i −0.863244 0.504787i \(-0.831571\pi\)
0.376797 + 0.926296i \(0.377026\pi\)
\(62\) 0 0
\(63\) 5.84915 + 9.10146i 0.0928437 + 0.144468i
\(64\) 0 0
\(65\) −24.1209 + 37.5329i −0.371091 + 0.577429i
\(66\) 0 0
\(67\) 10.8850 37.0708i 0.162462 0.553295i −0.837514 0.546415i \(-0.815992\pi\)
0.999976 0.00687954i \(-0.00218984\pi\)
\(68\) 0 0
\(69\) 24.5286 + 68.0055i 0.355487 + 0.985587i
\(70\) 0 0
\(71\) 34.6570 + 10.1762i 0.488126 + 0.143327i 0.516529 0.856270i \(-0.327224\pi\)
−0.0284027 + 0.999597i \(0.509042\pi\)
\(72\) 0 0
\(73\) −10.2280 6.57315i −0.140110 0.0900432i 0.468708 0.883353i \(-0.344720\pi\)
−0.608818 + 0.793310i \(0.708356\pi\)
\(74\) 0 0
\(75\) −27.1303 + 17.4356i −0.361737 + 0.232474i
\(76\) 0 0
\(77\) −91.7456 105.880i −1.19150 1.37507i
\(78\) 0 0
\(79\) −10.5682 4.82632i −0.133774 0.0610926i 0.347403 0.937716i \(-0.387063\pi\)
−0.481177 + 0.876623i \(0.659791\pi\)
\(80\) 0 0
\(81\) 84.5735 24.8330i 1.04412 0.306581i
\(82\) 0 0
\(83\) −146.472 + 21.0595i −1.76472 + 0.253728i −0.946850 0.321676i \(-0.895754\pi\)
−0.817869 + 0.575404i \(0.804845\pi\)
\(84\) 0 0
\(85\) 19.0727 + 41.7634i 0.224385 + 0.491334i
\(86\) 0 0
\(87\) −2.94650 + 20.4934i −0.0338679 + 0.235556i
\(88\) 0 0
\(89\) 88.3431 + 76.5498i 0.992620 + 0.860110i 0.990167 0.139887i \(-0.0446740\pi\)
0.00245209 + 0.999997i \(0.499219\pi\)
\(90\) 0 0
\(91\) 92.3967i 1.01535i
\(92\) 0 0
\(93\) −157.990 −1.69882
\(94\) 0 0
\(95\) 121.723 140.475i 1.28129 1.47869i
\(96\) 0 0
\(97\) 95.6287 + 13.7493i 0.985863 + 0.141746i 0.616344 0.787477i \(-0.288613\pi\)
0.369520 + 0.929223i \(0.379522\pi\)
\(98\) 0 0
\(99\) 9.11717 4.16367i 0.0920926 0.0420573i
\(100\) 0 0
\(101\) 20.7542 + 144.349i 0.205487 + 1.42919i 0.787650 + 0.616122i \(0.211297\pi\)
−0.582163 + 0.813072i \(0.697794\pi\)
\(102\) 0 0
\(103\) 2.52321 + 8.59327i 0.0244972 + 0.0834298i 0.970834 0.239751i \(-0.0770659\pi\)
−0.946337 + 0.323181i \(0.895248\pi\)
\(104\) 0 0
\(105\) 95.3479 208.783i 0.908075 1.98841i
\(106\) 0 0
\(107\) 141.230 122.376i 1.31991 1.14370i 0.340848 0.940118i \(-0.389286\pi\)
0.979057 0.203586i \(-0.0652597\pi\)
\(108\) 0 0
\(109\) −111.156 172.961i −1.01978 1.58680i −0.789570 0.613660i \(-0.789696\pi\)
−0.230206 0.973142i \(-0.573940\pi\)
\(110\) 0 0
\(111\) −45.2824 + 70.4608i −0.407950 + 0.634782i
\(112\) 0 0
\(113\) −16.6504 + 56.7061i −0.147349 + 0.501824i −0.999779 0.0210169i \(-0.993310\pi\)
0.852430 + 0.522841i \(0.175128\pi\)
\(114\) 0 0
\(115\) 83.0262 108.440i 0.721967 0.942958i
\(116\) 0 0
\(117\) 6.34243 + 1.86231i 0.0542088 + 0.0159171i
\(118\) 0 0
\(119\) −79.9885 51.4055i −0.672173 0.431979i
\(120\) 0 0
\(121\) −7.39587 + 4.75304i −0.0611229 + 0.0392813i
\(122\) 0 0
\(123\) 81.6988 + 94.2855i 0.664218 + 0.766548i
\(124\) 0 0
\(125\) −79.6161 36.3594i −0.636928 0.290875i
\(126\) 0 0
\(127\) 55.4306 16.2759i 0.436461 0.128157i −0.0561180 0.998424i \(-0.517872\pi\)
0.492579 + 0.870268i \(0.336054\pi\)
\(128\) 0 0
\(129\) −152.322 + 21.9005i −1.18079 + 0.169772i
\(130\) 0 0
\(131\) −16.9139 37.0362i −0.129114 0.282719i 0.834024 0.551728i \(-0.186031\pi\)
−0.963138 + 0.269009i \(0.913304\pi\)
\(132\) 0 0
\(133\) −54.7827 + 381.022i −0.411900 + 2.86483i
\(134\) 0 0
\(135\) −114.541 99.2505i −0.848453 0.735189i
\(136\) 0 0
\(137\) 132.675i 0.968427i −0.874950 0.484214i \(-0.839106\pi\)
0.874950 0.484214i \(-0.160894\pi\)
\(138\) 0 0
\(139\) 133.153 0.957937 0.478969 0.877832i \(-0.341011\pi\)
0.478969 + 0.877832i \(0.341011\pi\)
\(140\) 0 0
\(141\) −15.1778 + 17.5161i −0.107644 + 0.124228i
\(142\) 0 0
\(143\) −84.7272 12.1819i −0.592498 0.0851884i
\(144\) 0 0
\(145\) 35.5788 16.2483i 0.245371 0.112057i
\(146\) 0 0
\(147\) 45.7283 + 318.047i 0.311077 + 2.16359i
\(148\) 0 0
\(149\) −47.1861 160.701i −0.316685 1.07853i −0.951954 0.306240i \(-0.900929\pi\)
0.635269 0.772291i \(-0.280889\pi\)
\(150\) 0 0
\(151\) 2.78127 6.09014i 0.0184190 0.0403321i −0.900199 0.435479i \(-0.856579\pi\)
0.918618 + 0.395147i \(0.129306\pi\)
\(152\) 0 0
\(153\) 5.14087 4.45459i 0.0336005 0.0291150i
\(154\) 0 0
\(155\) 161.364 + 251.088i 1.04106 + 1.61992i
\(156\) 0 0
\(157\) −84.9397 + 132.169i −0.541017 + 0.841840i −0.998886 0.0471801i \(-0.984977\pi\)
0.457869 + 0.889020i \(0.348613\pi\)
\(158\) 0 0
\(159\) 68.8491 234.478i 0.433013 1.47471i
\(160\) 0 0
\(161\) −23.2337 + 281.884i −0.144309 + 1.75083i
\(162\) 0 0
\(163\) 148.179 + 43.5093i 0.909074 + 0.266928i 0.702651 0.711535i \(-0.251999\pi\)
0.206423 + 0.978463i \(0.433818\pi\)
\(164\) 0 0
\(165\) −178.882 114.960i −1.08413 0.696729i
\(166\) 0 0
\(167\) −57.6530 + 37.0513i −0.345227 + 0.221864i −0.701751 0.712422i \(-0.747598\pi\)
0.356524 + 0.934286i \(0.383962\pi\)
\(168\) 0 0
\(169\) 73.7027 + 85.0574i 0.436111 + 0.503298i
\(170\) 0 0
\(171\) −25.0505 11.4402i −0.146494 0.0669017i
\(172\) 0 0
\(173\) 88.9709 26.1242i 0.514283 0.151007i −0.0142854 0.999898i \(-0.504547\pi\)
0.528568 + 0.848891i \(0.322729\pi\)
\(174\) 0 0
\(175\) −124.889 + 17.9563i −0.713651 + 0.102608i
\(176\) 0 0
\(177\) −5.89245 12.9027i −0.0332907 0.0728964i
\(178\) 0 0
\(179\) 14.3907 100.089i 0.0803948 0.559158i −0.909319 0.416099i \(-0.863397\pi\)
0.989714 0.143059i \(-0.0456939\pi\)
\(180\) 0 0
\(181\) −32.3537 28.0347i −0.178750 0.154888i 0.560890 0.827890i \(-0.310459\pi\)
−0.739640 + 0.673002i \(0.765004\pi\)
\(182\) 0 0
\(183\) 123.413i 0.674389i
\(184\) 0 0
\(185\) 158.230 0.855299
\(186\) 0 0
\(187\) −57.6846 + 66.5716i −0.308474 + 0.355998i
\(188\) 0 0
\(189\) 310.679 + 44.6689i 1.64380 + 0.236343i
\(190\) 0 0
\(191\) −320.420 + 146.331i −1.67759 + 0.766130i −0.678076 + 0.734991i \(0.737186\pi\)
−0.999515 + 0.0311389i \(0.990087\pi\)
\(192\) 0 0
\(193\) −13.1272 91.3019i −0.0680168 0.473067i −0.995153 0.0983418i \(-0.968646\pi\)
0.927136 0.374725i \(-0.122263\pi\)
\(194\) 0 0
\(195\) −39.5090 134.555i −0.202610 0.690027i
\(196\) 0 0
\(197\) −70.4645 + 154.296i −0.357688 + 0.783227i 0.642173 + 0.766559i \(0.278033\pi\)
−0.999861 + 0.0166673i \(0.994694\pi\)
\(198\) 0 0
\(199\) −12.6596 + 10.9696i −0.0636161 + 0.0551236i −0.686089 0.727518i \(-0.740674\pi\)
0.622472 + 0.782642i \(0.286128\pi\)
\(200\) 0 0
\(201\) 65.6556 + 102.162i 0.326645 + 0.508270i
\(202\) 0 0
\(203\) −43.7931 + 68.1433i −0.215729 + 0.335681i
\(204\) 0 0
\(205\) 66.4007 226.140i 0.323906 1.10312i
\(206\) 0 0
\(207\) −18.8812 7.27638i −0.0912137 0.0351516i
\(208\) 0 0
\(209\) 342.172 + 100.471i 1.63719 + 0.480722i
\(210\) 0 0
\(211\) −279.840 179.842i −1.32626 0.852333i −0.330450 0.943823i \(-0.607201\pi\)
−0.995806 + 0.0914904i \(0.970837\pi\)
\(212\) 0 0
\(213\) −95.5100 + 61.3806i −0.448404 + 0.288172i
\(214\) 0 0
\(215\) 190.380 + 219.711i 0.885490 + 1.02191i
\(216\) 0 0
\(217\) −562.258 256.775i −2.59105 1.18329i
\(218\) 0 0
\(219\) 36.6674 10.7665i 0.167431 0.0491622i
\(220\) 0 0
\(221\) −57.5026 + 8.26763i −0.260193 + 0.0374101i
\(222\) 0 0
\(223\) 124.690 + 273.034i 0.559150 + 1.22437i 0.952376 + 0.304926i \(0.0986318\pi\)
−0.393226 + 0.919442i \(0.628641\pi\)
\(224\) 0 0
\(225\) 1.28462 8.93474i 0.00570943 0.0397100i
\(226\) 0 0
\(227\) −262.115 227.124i −1.15469 1.00054i −0.999921 0.0125936i \(-0.995991\pi\)
−0.154769 0.987951i \(-0.549463\pi\)
\(228\) 0 0
\(229\) 241.786i 1.05583i −0.849296 0.527917i \(-0.822973\pi\)
0.849296 0.527917i \(-0.177027\pi\)
\(230\) 0 0
\(231\) 440.362 1.90633
\(232\) 0 0
\(233\) 104.001 120.023i 0.446355 0.515121i −0.487330 0.873218i \(-0.662029\pi\)
0.933684 + 0.358097i \(0.116574\pi\)
\(234\) 0 0
\(235\) 43.3397 + 6.23130i 0.184424 + 0.0265162i
\(236\) 0 0
\(237\) 33.2179 15.1701i 0.140160 0.0640090i
\(238\) 0 0
\(239\) −61.9976 431.203i −0.259404 1.80420i −0.537091 0.843525i \(-0.680477\pi\)
0.277686 0.960672i \(-0.410432\pi\)
\(240\) 0 0
\(241\) −61.2600 208.632i −0.254191 0.865694i −0.983407 0.181411i \(-0.941933\pi\)
0.729217 0.684283i \(-0.239885\pi\)
\(242\) 0 0
\(243\) −19.6669 + 43.0645i −0.0809338 + 0.177220i
\(244\) 0 0
\(245\) 458.756 397.514i 1.87247 1.62251i
\(246\) 0 0
\(247\) 127.155 + 197.856i 0.514796 + 0.801038i
\(248\) 0 0
\(249\) 251.466 391.289i 1.00990 1.57144i
\(250\) 0 0
\(251\) 32.6756 111.283i 0.130182 0.443358i −0.868443 0.495789i \(-0.834879\pi\)
0.998625 + 0.0524310i \(0.0166970\pi\)
\(252\) 0 0
\(253\) 255.423 + 58.4699i 1.00958 + 0.231106i
\(254\) 0 0
\(255\) −138.467 40.6575i −0.543006 0.159441i
\(256\) 0 0
\(257\) 367.866 + 236.413i 1.43138 + 0.919895i 0.999842 + 0.0178025i \(0.00566701\pi\)
0.431543 + 0.902092i \(0.357969\pi\)
\(258\) 0 0
\(259\) −275.669 + 177.162i −1.06436 + 0.684021i
\(260\) 0 0
\(261\) −3.79493 4.37958i −0.0145399 0.0167800i
\(262\) 0 0
\(263\) −278.498 127.186i −1.05893 0.483596i −0.191672 0.981459i \(-0.561391\pi\)
−0.867256 + 0.497863i \(0.834118\pi\)
\(264\) 0 0
\(265\) −442.967 + 130.067i −1.67157 + 0.490818i
\(266\) 0 0
\(267\) −363.685 + 52.2900i −1.36212 + 0.195843i
\(268\) 0 0
\(269\) 28.9363 + 63.3616i 0.107570 + 0.235545i 0.955760 0.294146i \(-0.0950352\pi\)
−0.848191 + 0.529691i \(0.822308\pi\)
\(270\) 0 0
\(271\) −49.4641 + 344.030i −0.182524 + 1.26948i 0.668243 + 0.743943i \(0.267047\pi\)
−0.850768 + 0.525542i \(0.823863\pi\)
\(272\) 0 0
\(273\) 219.486 + 190.186i 0.803980 + 0.696652i
\(274\) 0 0
\(275\) 116.890i 0.425054i
\(276\) 0 0
\(277\) −200.629 −0.724292 −0.362146 0.932121i \(-0.617956\pi\)
−0.362146 + 0.932121i \(0.617956\pi\)
\(278\) 0 0
\(279\) 28.9585 33.4199i 0.103794 0.119785i
\(280\) 0 0
\(281\) −132.513 19.0525i −0.471576 0.0678024i −0.0975700 0.995229i \(-0.531107\pi\)
−0.374006 + 0.927426i \(0.622016\pi\)
\(282\) 0 0
\(283\) 270.374 123.475i 0.955384 0.436309i 0.124169 0.992261i \(-0.460373\pi\)
0.831214 + 0.555952i \(0.187646\pi\)
\(284\) 0 0
\(285\) 83.1468 + 578.299i 0.291743 + 2.02912i
\(286\) 0 0
\(287\) 137.513 + 468.326i 0.479139 + 1.63180i
\(288\) 0 0
\(289\) 95.2203 208.503i 0.329482 0.721465i
\(290\) 0 0
\(291\) −229.500 + 198.863i −0.788660 + 0.683378i
\(292\) 0 0
\(293\) 0.643565 + 1.00141i 0.00219647 + 0.00341777i 0.842350 0.538931i \(-0.181172\pi\)
−0.840154 + 0.542349i \(0.817535\pi\)
\(294\) 0 0
\(295\) −14.4874 + 22.5429i −0.0491099 + 0.0764165i
\(296\) 0 0
\(297\) 81.9222 279.002i 0.275832 0.939399i
\(298\) 0 0
\(299\) 102.056 + 139.456i 0.341326 + 0.466409i
\(300\) 0 0
\(301\) −577.678 169.622i −1.91920 0.563527i
\(302\) 0 0
\(303\) −385.617 247.821i −1.27266 0.817891i
\(304\) 0 0
\(305\) −196.136 + 126.049i −0.643068 + 0.413275i
\(306\) 0 0
\(307\) 50.5249 + 58.3088i 0.164576 + 0.189931i 0.832047 0.554705i \(-0.187169\pi\)
−0.667471 + 0.744636i \(0.732623\pi\)
\(308\) 0 0
\(309\) −25.6068 11.6942i −0.0828700 0.0378455i
\(310\) 0 0
\(311\) 254.557 74.7445i 0.818510 0.240336i 0.154436 0.988003i \(-0.450644\pi\)
0.664074 + 0.747667i \(0.268826\pi\)
\(312\) 0 0
\(313\) −23.4081 + 3.36558i −0.0747863 + 0.0107526i −0.179606 0.983739i \(-0.557482\pi\)
0.104820 + 0.994491i \(0.466573\pi\)
\(314\) 0 0
\(315\) 26.6875 + 58.4376i 0.0847224 + 0.185516i
\(316\) 0 0
\(317\) 47.9875 333.760i 0.151380 1.05287i −0.762529 0.646953i \(-0.776043\pi\)
0.913910 0.405918i \(-0.133048\pi\)
\(318\) 0 0
\(319\) 56.7132 + 49.1423i 0.177784 + 0.154051i
\(320\) 0 0
\(321\) 587.384i 1.82986i
\(322\) 0 0
\(323\) 242.029 0.749316
\(324\) 0 0
\(325\) −50.4831 + 58.2606i −0.155333 + 0.179263i
\(326\) 0 0
\(327\) 639.665 + 91.9700i 1.95616 + 0.281254i
\(328\) 0 0
\(329\) −82.4832 + 37.6688i −0.250709 + 0.114495i
\(330\) 0 0
\(331\) −23.7383 165.103i −0.0717169 0.498802i −0.993744 0.111678i \(-0.964378\pi\)
0.922028 0.387124i \(-0.126532\pi\)
\(332\) 0 0
\(333\) −6.60474 22.4937i −0.0198340 0.0675485i
\(334\) 0 0
\(335\) 95.3046 208.688i 0.284491 0.622949i
\(336\) 0 0
\(337\) −23.9240 + 20.7303i −0.0709912 + 0.0615142i −0.689634 0.724158i \(-0.742228\pi\)
0.618642 + 0.785673i \(0.287683\pi\)
\(338\) 0 0
\(339\) −100.432 156.275i −0.296258 0.460987i
\(340\) 0 0
\(341\) −309.591 + 481.733i −0.907892 + 1.41271i
\(342\) 0 0
\(343\) −184.406 + 628.028i −0.537626 + 1.83098i
\(344\) 0 0
\(345\) 86.6994 + 420.437i 0.251303 + 1.21866i
\(346\) 0 0
\(347\) −325.038 95.4399i −0.936710 0.275043i −0.222467 0.974940i \(-0.571411\pi\)
−0.714243 + 0.699897i \(0.753229\pi\)
\(348\) 0 0
\(349\) 168.198 + 108.095i 0.481944 + 0.309726i 0.758958 0.651139i \(-0.225709\pi\)
−0.277014 + 0.960866i \(0.589345\pi\)
\(350\) 0 0
\(351\) 161.329 103.680i 0.459626 0.295384i
\(352\) 0 0
\(353\) −4.68012 5.40114i −0.0132581 0.0153007i 0.749082 0.662478i \(-0.230495\pi\)
−0.762340 + 0.647177i \(0.775950\pi\)
\(354\) 0 0
\(355\) 195.100 + 89.0990i 0.549576 + 0.250983i
\(356\) 0 0
\(357\) 286.758 84.1999i 0.803245 0.235854i
\(358\) 0 0
\(359\) −172.261 + 24.7674i −0.479836 + 0.0689901i −0.377989 0.925810i \(-0.623384\pi\)
−0.101847 + 0.994800i \(0.532475\pi\)
\(360\) 0 0
\(361\) −257.080 562.926i −0.712132 1.55935i
\(362\) 0 0
\(363\) 3.93266 27.3522i 0.0108338 0.0753505i
\(364\) 0 0
\(365\) −54.5613 47.2776i −0.149483 0.129528i
\(366\) 0 0
\(367\) 618.663i 1.68573i −0.538124 0.842866i \(-0.680867\pi\)
0.538124 0.842866i \(-0.319133\pi\)
\(368\) 0 0
\(369\) −34.9192 −0.0946320
\(370\) 0 0
\(371\) 626.109 722.568i 1.68762 1.94762i
\(372\) 0 0
\(373\) 6.64357 + 0.955200i 0.0178112 + 0.00256086i 0.151215 0.988501i \(-0.451682\pi\)
−0.133403 + 0.991062i \(0.542591\pi\)
\(374\) 0 0
\(375\) 250.250 114.285i 0.667333 0.304761i
\(376\) 0 0
\(377\) 7.04331 + 48.9873i 0.0186825 + 0.129940i
\(378\) 0 0
\(379\) 93.2086 + 317.439i 0.245933 + 0.837571i 0.986243 + 0.165305i \(0.0528608\pi\)
−0.740310 + 0.672266i \(0.765321\pi\)
\(380\) 0 0
\(381\) −75.4334 + 165.176i −0.197988 + 0.433533i
\(382\) 0 0
\(383\) −289.286 + 250.668i −0.755317 + 0.654486i −0.944893 0.327380i \(-0.893834\pi\)
0.189576 + 0.981866i \(0.439289\pi\)
\(384\) 0 0
\(385\) −449.767 699.851i −1.16823 1.81779i
\(386\) 0 0
\(387\) 23.2869 36.2351i 0.0601728 0.0936307i
\(388\) 0 0
\(389\) 40.1802 136.841i 0.103291 0.351777i −0.891588 0.452847i \(-0.850408\pi\)
0.994879 + 0.101070i \(0.0322267\pi\)
\(390\) 0 0
\(391\) 177.508 10.7635i 0.453985 0.0275282i
\(392\) 0 0
\(393\) 122.794 + 36.0555i 0.312452 + 0.0917443i
\(394\) 0 0
\(395\) −58.0367 37.2979i −0.146928 0.0944251i
\(396\) 0 0
\(397\) 293.987 188.934i 0.740523 0.475905i −0.115198 0.993343i \(-0.536750\pi\)
0.855721 + 0.517438i \(0.173114\pi\)
\(398\) 0 0
\(399\) −792.347 914.418i −1.98583 2.29177i
\(400\) 0 0
\(401\) 195.948 + 89.4864i 0.488648 + 0.223158i 0.644474 0.764626i \(-0.277077\pi\)
−0.155826 + 0.987785i \(0.549804\pi\)
\(402\) 0 0
\(403\) −362.361 + 106.399i −0.899159 + 0.264017i
\(404\) 0 0
\(405\) 518.074 74.4878i 1.27919 0.183920i
\(406\) 0 0
\(407\) 126.111 + 276.144i 0.309855 + 0.678487i
\(408\) 0 0
\(409\) −66.2202 + 460.572i −0.161908 + 1.12609i 0.733126 + 0.680093i \(0.238061\pi\)
−0.895033 + 0.445999i \(0.852848\pi\)
\(410\) 0 0
\(411\) 315.166 + 273.093i 0.766826 + 0.664459i
\(412\) 0 0
\(413\) 55.4950i 0.134370i
\(414\) 0 0
\(415\) −878.697 −2.11734
\(416\) 0 0
\(417\) −274.078 + 316.303i −0.657262 + 0.758520i
\(418\) 0 0
\(419\) −490.436 70.5140i −1.17049 0.168291i −0.470472 0.882415i \(-0.655916\pi\)
−0.700020 + 0.714124i \(0.746825\pi\)
\(420\) 0 0
\(421\) −8.41092 + 3.84114i −0.0199784 + 0.00912384i −0.425379 0.905015i \(-0.639859\pi\)
0.405401 + 0.914139i \(0.367132\pi\)
\(422\) 0 0
\(423\) −0.923225 6.42117i −0.00218257 0.0151801i
\(424\) 0 0
\(425\) 22.3501 + 76.1173i 0.0525884 + 0.179100i
\(426\) 0 0
\(427\) 200.578 439.205i 0.469738 1.02858i
\(428\) 0 0
\(429\) 203.338 176.193i 0.473980 0.410706i
\(430\) 0 0
\(431\) 207.682 + 323.160i 0.481862 + 0.749792i 0.994032 0.109093i \(-0.0347945\pi\)
−0.512170 + 0.858884i \(0.671158\pi\)
\(432\) 0 0
\(433\) 292.183 454.646i 0.674788 1.04999i −0.319939 0.947438i \(-0.603662\pi\)
0.994728 0.102553i \(-0.0327012\pi\)
\(434\) 0 0
\(435\) −34.6367 + 117.962i −0.0796245 + 0.271176i
\(436\) 0 0
\(437\) −338.171 635.595i −0.773848 1.45445i
\(438\) 0 0
\(439\) 672.006 + 197.319i 1.53077 + 0.449473i 0.935285 0.353896i \(-0.115143\pi\)
0.595481 + 0.803370i \(0.296962\pi\)
\(440\) 0 0
\(441\) −75.6588 48.6229i −0.171562 0.110256i
\(442\) 0 0
\(443\) 112.803 72.4941i 0.254634 0.163644i −0.407096 0.913385i \(-0.633459\pi\)
0.661731 + 0.749742i \(0.269822\pi\)
\(444\) 0 0
\(445\) 454.555 + 524.584i 1.02147 + 1.17884i
\(446\) 0 0
\(447\) 478.869 + 218.692i 1.07129 + 0.489244i
\(448\) 0 0
\(449\) 107.362 31.5244i 0.239114 0.0702102i −0.159980 0.987120i \(-0.551143\pi\)
0.399094 + 0.916910i \(0.369325\pi\)
\(450\) 0 0
\(451\) 447.583 64.3527i 0.992423 0.142689i
\(452\) 0 0
\(453\) 8.74213 + 19.1426i 0.0192983 + 0.0422574i
\(454\) 0 0
\(455\) 78.0816 543.069i 0.171608 1.19356i
\(456\) 0 0
\(457\) 107.011 + 92.7256i 0.234160 + 0.202901i 0.764035 0.645175i \(-0.223216\pi\)
−0.529875 + 0.848076i \(0.677761\pi\)
\(458\) 0 0
\(459\) 197.346i 0.429949i
\(460\) 0 0
\(461\) −110.581 −0.239872 −0.119936 0.992782i \(-0.538269\pi\)
−0.119936 + 0.992782i \(0.538269\pi\)
\(462\) 0 0
\(463\) 51.8422 59.8291i 0.111970 0.129220i −0.696998 0.717073i \(-0.745481\pi\)
0.808968 + 0.587853i \(0.200027\pi\)
\(464\) 0 0
\(465\) −928.601 133.513i −1.99699 0.287124i
\(466\) 0 0
\(467\) −273.684 + 124.987i −0.586047 + 0.267639i −0.686294 0.727324i \(-0.740764\pi\)
0.100248 + 0.994963i \(0.468037\pi\)
\(468\) 0 0
\(469\) 67.6166 + 470.284i 0.144172 + 1.00274i
\(470\) 0 0
\(471\) −139.127 473.824i −0.295387 1.00600i
\(472\) 0 0
\(473\) −231.706 + 507.364i −0.489864 + 1.07265i
\(474\) 0 0
\(475\) 242.724 210.321i 0.510997 0.442781i
\(476\) 0 0
\(477\) 36.9800 + 57.5420i 0.0775263 + 0.120633i
\(478\) 0 0
\(479\) −273.544 + 425.643i −0.571074 + 0.888608i −0.999891 0.0147831i \(-0.995294\pi\)
0.428817 + 0.903391i \(0.358931\pi\)
\(480\) 0 0
\(481\) −56.4063 + 192.102i −0.117269 + 0.399381i
\(482\) 0 0
\(483\) −621.787 635.412i −1.28734 1.31555i
\(484\) 0 0
\(485\) 550.447 + 161.626i 1.13494 + 0.333249i
\(486\) 0 0
\(487\) 591.509 + 380.140i 1.21460 + 0.780574i 0.981422 0.191860i \(-0.0614520\pi\)
0.233175 + 0.972435i \(0.425088\pi\)
\(488\) 0 0
\(489\) −408.362 + 262.438i −0.835097 + 0.536684i
\(490\) 0 0
\(491\) 116.837 + 134.837i 0.237957 + 0.274617i 0.862150 0.506653i \(-0.169118\pi\)
−0.624193 + 0.781270i \(0.714572\pi\)
\(492\) 0 0
\(493\) 46.3273 + 21.1570i 0.0939701 + 0.0429147i
\(494\) 0 0
\(495\) 57.1055 16.7677i 0.115365 0.0338741i
\(496\) 0 0
\(497\) −439.662 + 63.2138i −0.884631 + 0.127191i
\(498\) 0 0
\(499\) 184.156 + 403.246i 0.369051 + 0.808109i 0.999492 + 0.0318717i \(0.0101468\pi\)
−0.630441 + 0.776237i \(0.717126\pi\)
\(500\) 0 0
\(501\) 30.6562 213.219i 0.0611900 0.425586i
\(502\) 0 0
\(503\) −77.2184 66.9101i −0.153516 0.133022i 0.574717 0.818353i \(-0.305112\pi\)
−0.728232 + 0.685330i \(0.759658\pi\)
\(504\) 0 0
\(505\) 865.960i 1.71477i
\(506\) 0 0
\(507\) −353.759 −0.697750
\(508\) 0 0
\(509\) −453.232 + 523.058i −0.890436 + 1.02762i 0.109000 + 0.994042i \(0.465235\pi\)
−0.999436 + 0.0335763i \(0.989310\pi\)
\(510\) 0 0
\(511\) 147.991 + 21.2779i 0.289610 + 0.0416397i
\(512\) 0 0
\(513\) −726.754 + 331.897i −1.41667 + 0.646973i
\(514\) 0 0
\(515\) 7.56848 + 52.6400i 0.0146961 + 0.102214i
\(516\) 0 0
\(517\) 23.6672 + 80.6030i 0.0457779 + 0.155905i
\(518\) 0 0
\(519\) −121.077 + 265.122i −0.233289 + 0.510832i
\(520\) 0 0
\(521\) −483.431 + 418.895i −0.927890 + 0.804022i −0.980888 0.194573i \(-0.937668\pi\)
0.0529976 + 0.998595i \(0.483122\pi\)
\(522\) 0 0
\(523\) 167.135 + 260.066i 0.319569 + 0.497259i 0.963458 0.267860i \(-0.0863165\pi\)
−0.643889 + 0.765119i \(0.722680\pi\)
\(524\) 0 0
\(525\) 214.412 333.632i 0.408404 0.635490i
\(526\) 0 0
\(527\) −109.492 + 372.895i −0.207764 + 0.707580i
\(528\) 0 0
\(529\) −276.287 451.117i −0.522282 0.852773i
\(530\) 0 0
\(531\) 3.80937 + 1.11853i 0.00717395 + 0.00210646i
\(532\) 0 0
\(533\) 250.878 + 161.230i 0.470691 + 0.302495i
\(534\) 0 0
\(535\) 933.507 599.929i 1.74487 1.12136i
\(536\) 0 0
\(537\) 208.139 + 240.205i 0.387595 + 0.447309i
\(538\) 0 0
\(539\) 1059.38 + 483.801i 1.96545 + 0.897590i
\(540\) 0 0
\(541\) −226.716 + 66.5699i −0.419069 + 0.123050i −0.484467 0.874809i \(-0.660986\pi\)
0.0653980 + 0.997859i \(0.479168\pi\)
\(542\) 0 0
\(543\) 133.192 19.1501i 0.245288 0.0352671i
\(544\) 0 0
\(545\) −507.162 1110.53i −0.930572 2.03767i
\(546\) 0 0
\(547\) 54.0700 376.065i 0.0988482 0.687505i −0.878790 0.477209i \(-0.841648\pi\)
0.977638 0.210295i \(-0.0674425\pi\)
\(548\) 0 0
\(549\) 26.1058 + 22.6208i 0.0475515 + 0.0412036i
\(550\) 0 0
\(551\) 206.188i 0.374207i
\(552\) 0 0
\(553\) 142.872 0.258358
\(554\) 0 0
\(555\) −325.696 + 375.873i −0.586839 + 0.677248i
\(556\) 0 0
\(557\) −367.253 52.8030i −0.659341 0.0947989i −0.195481 0.980708i \(-0.562627\pi\)
−0.463860 + 0.885909i \(0.653536\pi\)
\(558\) 0 0
\(559\) −334.611 + 152.812i −0.598588 + 0.273366i
\(560\) 0 0
\(561\) −39.4035 274.057i −0.0702379 0.488515i
\(562\) 0 0
\(563\) 30.0924 + 102.485i 0.0534501 + 0.182034i 0.981891 0.189445i \(-0.0606688\pi\)
−0.928441 + 0.371479i \(0.878851\pi\)
\(564\) 0 0
\(565\) −145.785 + 319.224i −0.258026 + 0.564999i
\(566\) 0 0
\(567\) −819.188 + 709.831i −1.44478 + 1.25191i
\(568\) 0 0
\(569\) −271.953 423.167i −0.477949 0.743704i 0.515634 0.856809i \(-0.327557\pi\)
−0.993583 + 0.113105i \(0.963920\pi\)
\(570\) 0 0
\(571\) −365.306 + 568.427i −0.639765 + 0.995494i 0.358317 + 0.933600i \(0.383351\pi\)
−0.998083 + 0.0618944i \(0.980286\pi\)
\(572\) 0 0
\(573\) 311.935 1062.35i 0.544390 1.85402i
\(574\) 0 0
\(575\) 168.664 165.048i 0.293329 0.287039i
\(576\) 0 0
\(577\) 971.300 + 285.199i 1.68336 + 0.494280i 0.976940 0.213512i \(-0.0684904\pi\)
0.706421 + 0.707792i \(0.250309\pi\)
\(578\) 0 0
\(579\) 243.907 + 156.749i 0.421255 + 0.270724i
\(580\) 0 0
\(581\) 1530.87 983.827i 2.63488 1.69333i
\(582\) 0 0
\(583\) −580.042 669.404i −0.994926 1.14821i
\(584\) 0 0
\(585\) 35.7044 + 16.3057i 0.0610332 + 0.0278729i
\(586\) 0 0
\(587\) −195.167 + 57.3061i −0.332481 + 0.0976253i −0.443712 0.896169i \(-0.646339\pi\)
0.111231 + 0.993795i \(0.464521\pi\)
\(588\) 0 0
\(589\) 1557.38 223.917i 2.64410 0.380165i
\(590\) 0 0
\(591\) −221.485 484.984i −0.374763 0.820615i
\(592\) 0 0
\(593\) −38.4840 + 267.662i −0.0648972 + 0.451370i 0.931301 + 0.364251i \(0.118675\pi\)
−0.996198 + 0.0871187i \(0.972234\pi\)
\(594\) 0 0
\(595\) −426.698 369.736i −0.717140 0.621405i
\(596\) 0 0
\(597\) 52.6521i 0.0881944i
\(598\) 0 0
\(599\) 360.150 0.601252 0.300626 0.953742i \(-0.402804\pi\)
0.300626 + 0.953742i \(0.402804\pi\)
\(600\) 0 0
\(601\) −58.4554 + 67.4612i −0.0972636 + 0.112248i −0.802295 0.596928i \(-0.796388\pi\)
0.705031 + 0.709177i \(0.250933\pi\)
\(602\) 0 0
\(603\) −33.6448 4.83739i −0.0557956 0.00802220i
\(604\) 0 0
\(605\) −47.4865 + 21.6864i −0.0784901 + 0.0358452i
\(606\) 0 0
\(607\) −147.615 1026.69i −0.243189 1.69141i −0.635915 0.771759i \(-0.719377\pi\)
0.392727 0.919655i \(-0.371532\pi\)
\(608\) 0 0
\(609\) −71.7310 244.293i −0.117785 0.401139i
\(610\) 0 0
\(611\) −23.0150 + 50.3959i −0.0376678 + 0.0824810i
\(612\) 0 0
\(613\) 223.396 193.573i 0.364430 0.315780i −0.453327 0.891344i \(-0.649763\pi\)
0.817757 + 0.575564i \(0.195217\pi\)
\(614\) 0 0
\(615\) 400.514 + 623.212i 0.651242 + 1.01335i
\(616\) 0 0
\(617\) 636.911 991.053i 1.03227 1.60624i 0.265731 0.964047i \(-0.414387\pi\)
0.766540 0.642197i \(-0.221977\pi\)
\(618\) 0 0
\(619\) −30.6669 + 104.442i −0.0495427 + 0.168727i −0.980548 0.196278i \(-0.937115\pi\)
0.931006 + 0.365005i \(0.118933\pi\)
\(620\) 0 0
\(621\) −518.253 + 275.739i −0.834547 + 0.444025i
\(622\) 0 0
\(623\) −1379.27 404.991i −2.21392 0.650066i
\(624\) 0 0
\(625\) −653.009 419.663i −1.04481 0.671461i
\(626\) 0 0
\(627\) −942.982 + 606.018i −1.50396 + 0.966535i
\(628\) 0 0
\(629\) 134.922 + 155.709i 0.214503 + 0.247550i
\(630\) 0 0
\(631\) 328.847 + 150.179i 0.521152 + 0.238002i 0.658582 0.752509i \(-0.271157\pi\)
−0.137429 + 0.990512i \(0.543884\pi\)
\(632\) 0 0
\(633\) 1003.22 294.573i 1.58487 0.465361i
\(634\) 0 0
\(635\) 339.552 48.8203i 0.534728 0.0768823i
\(636\) 0 0
\(637\) 319.070 + 698.667i 0.500896 + 1.09681i
\(638\) 0 0
\(639\) 4.52241 31.4540i 0.00707732 0.0492239i
\(640\) 0 0
\(641\) 21.8212 + 18.9082i 0.0340424 + 0.0294979i 0.671716 0.740809i \(-0.265558\pi\)
−0.637673 + 0.770307i \(0.720103\pi\)
\(642\) 0 0
\(643\) 887.952i 1.38095i 0.723355 + 0.690476i \(0.242599\pi\)
−0.723355 + 0.690476i \(0.757401\pi\)
\(644\) 0 0
\(645\) −913.791 −1.41673
\(646\) 0 0
\(647\) −514.676 + 593.967i −0.795480 + 0.918033i −0.998124 0.0612193i \(-0.980501\pi\)
0.202644 + 0.979252i \(0.435047\pi\)
\(648\) 0 0
\(649\) −50.8886 7.31667i −0.0784108 0.0112738i
\(650\) 0 0
\(651\) 1767.30 807.097i 2.71474 1.23978i
\(652\) 0 0
\(653\) −135.917 945.325i −0.208143 1.44766i −0.779211 0.626762i \(-0.784380\pi\)
0.571068 0.820903i \(-0.306529\pi\)
\(654\) 0 0
\(655\) −68.1146 231.977i −0.103992 0.354163i
\(656\) 0 0
\(657\) −4.44343 + 9.72975i −0.00676321 + 0.0148094i
\(658\) 0 0
\(659\) −303.974 + 263.395i −0.461266 + 0.399689i −0.854255 0.519854i \(-0.825986\pi\)
0.392989 + 0.919543i \(0.371441\pi\)
\(660\) 0 0
\(661\) −130.028 202.327i −0.196714 0.306093i 0.728858 0.684665i \(-0.240052\pi\)
−0.925572 + 0.378572i \(0.876415\pi\)
\(662\) 0 0
\(663\) 98.7218 153.614i 0.148902 0.231695i
\(664\) 0 0
\(665\) −643.980 + 2193.19i −0.968391 + 3.29804i
\(666\) 0 0
\(667\) −9.16959 151.222i −0.0137475 0.226719i
\(668\) 0 0
\(669\) −905.246 265.804i −1.35313 0.397316i
\(670\) 0 0
\(671\) −376.303 241.835i −0.560809 0.360410i
\(672\) 0 0
\(673\) 6.58105 4.22939i 0.00977868 0.00628438i −0.535742 0.844382i \(-0.679968\pi\)
0.545521 + 0.838097i \(0.316332\pi\)
\(674\) 0 0
\(675\) −171.492 197.913i −0.254063 0.293204i
\(676\) 0 0
\(677\) −232.541 106.198i −0.343487 0.156865i 0.236200 0.971704i \(-0.424098\pi\)
−0.579687 + 0.814839i \(0.696825\pi\)
\(678\) 0 0
\(679\) −1139.95 + 334.720i −1.67887 + 0.492960i
\(680\) 0 0
\(681\) 1079.05 155.145i 1.58452 0.227819i
\(682\) 0 0
\(683\) −78.4858 171.860i −0.114913 0.251625i 0.843433 0.537235i \(-0.180531\pi\)
−0.958346 + 0.285610i \(0.907804\pi\)
\(684\) 0 0
\(685\) 112.119 779.806i 0.163678 1.13840i
\(686\) 0 0
\(687\) 574.358 + 497.684i 0.836038 + 0.724431i
\(688\) 0 0
\(689\) 584.158i 0.847835i
\(690\) 0 0
\(691\) 599.732 0.867919 0.433960 0.900932i \(-0.357116\pi\)
0.433960 + 0.900932i \(0.357116\pi\)
\(692\) 0 0
\(693\) −80.7154 + 93.1505i −0.116472 + 0.134416i
\(694\) 0 0
\(695\) 782.620 + 112.524i 1.12607 + 0.161905i
\(696\) 0 0
\(697\) 279.156 127.486i 0.400511 0.182907i
\(698\) 0 0
\(699\) 71.0413 + 494.103i 0.101633 + 0.706871i
\(700\) 0 0
\(701\) 209.376 + 713.068i 0.298681 + 1.01722i 0.962941 + 0.269713i \(0.0869289\pi\)
−0.664259 + 0.747502i \(0.731253\pi\)
\(702\) 0 0
\(703\) 346.505 758.740i 0.492895 1.07929i
\(704\) 0 0
\(705\) −104.011 + 90.1262i −0.147534 + 0.127839i
\(706\) 0 0
\(707\) −969.567 1508.68i −1.37138 2.13391i
\(708\) 0 0
\(709\) 55.9500 87.0600i 0.0789140 0.122793i −0.799553 0.600595i \(-0.794930\pi\)
0.878467 + 0.477803i \(0.158567\pi\)
\(710\) 0 0
\(711\) −2.87966 + 9.80723i −0.00405016 + 0.0137936i
\(712\) 0 0
\(713\) 1132.25 233.484i 1.58801 0.327467i
\(714\) 0 0
\(715\) −487.697 143.201i −0.682094 0.200281i
\(716\) 0 0
\(717\) 1151.93 + 740.299i 1.60659 + 1.03250i
\(718\) 0 0
\(719\) −896.429 + 576.100i −1.24677 + 0.801251i −0.986417 0.164262i \(-0.947476\pi\)
−0.260355 + 0.965513i \(0.583839\pi\)
\(720\) 0 0
\(721\) −72.1238 83.2353i −0.100033 0.115444i
\(722\) 0 0
\(723\) 621.697 + 283.920i 0.859886 + 0.392697i
\(724\) 0 0
\(725\) 64.8454 19.0403i 0.0894419 0.0262625i
\(726\) 0 0
\(727\) −666.062 + 95.7652i −0.916178 + 0.131727i −0.584246 0.811577i \(-0.698610\pi\)
−0.331932 + 0.943303i \(0.607701\pi\)
\(728\) 0 0
\(729\) 267.730 + 586.246i 0.367256 + 0.804179i
\(730\) 0 0
\(731\) −53.8727 + 374.693i −0.0736973 + 0.512576i
\(732\) 0 0
\(733\) −16.7913 14.5497i −0.0229076 0.0198496i 0.643332 0.765588i \(-0.277552\pi\)
−0.666239 + 0.745738i \(0.732097\pi\)
\(734\) 0 0
\(735\) 1907.99i 2.59591i
\(736\) 0 0
\(737\) 440.162 0.597235
\(738\) 0 0
\(739\) −37.8995 + 43.7383i −0.0512848 + 0.0591858i −0.780812 0.624766i \(-0.785195\pi\)
0.729528 + 0.683951i \(0.239740\pi\)
\(740\) 0 0
\(741\) −731.734 105.207i −0.987495 0.141980i
\(742\) 0 0
\(743\) 701.647 320.431i 0.944343 0.431267i 0.117106 0.993119i \(-0.462638\pi\)
0.827237 + 0.561852i \(0.189911\pi\)
\(744\) 0 0
\(745\) −141.537 984.410i −0.189982 1.32136i
\(746\) 0 0
\(747\) 36.6779 + 124.914i 0.0491003 + 0.167220i
\(748\) 0 0
\(749\) −954.650 + 2090.39i −1.27457 + 2.79091i
\(750\) 0 0
\(751\) 128.748 111.561i 0.171435 0.148550i −0.564917 0.825148i \(-0.691092\pi\)
0.736353 + 0.676598i \(0.236546\pi\)
\(752\) 0 0
\(753\) 197.092 + 306.681i 0.261743 + 0.407279i
\(754\) 0 0
\(755\) 21.4938 33.4450i 0.0284686 0.0442980i
\(756\) 0 0
\(757\) −128.192 + 436.583i −0.169342 + 0.576727i 0.830464 + 0.557072i \(0.188075\pi\)
−0.999807 + 0.0196556i \(0.993743\pi\)
\(758\) 0 0
\(759\) −664.648 + 486.400i −0.875689 + 0.640843i
\(760\) 0 0
\(761\) −1166.46 342.504i −1.53280 0.450071i −0.596894 0.802320i \(-0.703599\pi\)
−0.935906 + 0.352249i \(0.885417\pi\)
\(762\) 0 0
\(763\) 2126.98 + 1366.92i 2.78765 + 1.79151i
\(764\) 0 0
\(765\) 33.9803 21.8378i 0.0444187 0.0285462i
\(766\) 0 0
\(767\) −22.2041 25.6248i −0.0289492 0.0334092i
\(768\) 0 0
\(769\) −74.8887 34.2005i −0.0973846 0.0444740i 0.366127 0.930565i \(-0.380684\pi\)
−0.463512 + 0.886091i \(0.653411\pi\)
\(770\) 0 0
\(771\) −1318.80 + 387.234i −1.71050 + 0.502249i
\(772\) 0 0
\(773\) −858.101 + 123.376i −1.11009 + 0.159607i −0.672880 0.739751i \(-0.734943\pi\)
−0.437212 + 0.899359i \(0.644034\pi\)
\(774\) 0 0
\(775\) 214.236 + 469.112i 0.276434 + 0.605306i
\(776\) 0 0
\(777\) 146.583 1019.51i 0.188653 1.31211i
\(778\) 0 0
\(779\) −938.969 813.621i −1.20535 1.04444i
\(780\) 0 0
\(781\) 411.502i 0.526891i
\(782\) 0 0
\(783\) −168.122 −0.214715
\(784\) 0 0
\(785\) −610.932 + 705.054i −0.778258 + 0.898157i
\(786\) 0 0
\(787\) −241.523 34.7258i −0.306891 0.0441243i −0.0128512 0.999917i \(-0.504091\pi\)
−0.294040 + 0.955793i \(0.595000\pi\)
\(788\) 0 0
\(789\) 875.378 399.772i 1.10948 0.506682i
\(790\) 0 0
\(791\) −103.431 719.380i −0.130760 0.909456i
\(792\) 0 0
\(793\) −83.1128 283.056i −0.104808 0.356943i
\(794\) 0 0
\(795\) 602.817 1319.98i 0.758260 1.66036i
\(796\) 0 0
\(797\) 962.972 834.420i 1.20825 1.04695i 0.210657 0.977560i \(-0.432440\pi\)
0.997590 0.0693912i \(-0.0221057\pi\)
\(798\) 0 0
\(799\) 30.8236 + 47.9624i 0.0385777 + 0.0600281i
\(800\) 0 0
\(801\) 55.6000 86.5153i 0.0694132 0.108009i
\(802\) 0 0
\(803\) 39.0234 132.901i 0.0485970 0.165506i
\(804\) 0 0
\(805\) −374.770 + 1637.16i −0.465553 + 2.03375i
\(806\) 0 0
\(807\) −210.076 61.6838i −0.260317 0.0764359i
\(808\) 0 0
\(809\) 182.502 + 117.287i 0.225589 + 0.144977i 0.648554 0.761169i \(-0.275374\pi\)
−0.422965 + 0.906146i \(0.639011\pi\)
\(810\) 0 0
\(811\) −841.926 + 541.073i −1.03813 + 0.667167i −0.944524 0.328442i \(-0.893477\pi\)
−0.0936084 + 0.995609i \(0.529840\pi\)
\(812\) 0 0
\(813\) −715.422 825.641i −0.879978 1.01555i
\(814\) 0 0
\(815\) 834.167 + 380.951i 1.02352 + 0.467425i
\(816\) 0 0
\(817\) 1470.46 431.766i 1.79983 0.528477i
\(818\) 0 0
\(819\) −80.4608 + 11.5685i −0.0982427 + 0.0141252i
\(820\) 0 0
\(821\) −272.627 596.970i −0.332067 0.727126i 0.667784 0.744355i \(-0.267243\pi\)
−0.999852 + 0.0172290i \(0.994516\pi\)
\(822\) 0 0
\(823\) 69.3610 482.417i 0.0842783 0.586168i −0.903296 0.429017i \(-0.858860\pi\)
0.987575 0.157151i \(-0.0502310\pi\)
\(824\) 0 0
\(825\) −277.670 240.602i −0.336569 0.291639i
\(826\) 0 0
\(827\) 141.931i 0.171622i 0.996311 + 0.0858109i \(0.0273481\pi\)
−0.996311 + 0.0858109i \(0.972652\pi\)
\(828\) 0 0
\(829\) −111.316 −0.134277 −0.0671387 0.997744i \(-0.521387\pi\)
−0.0671387 + 0.997744i \(0.521387\pi\)
\(830\) 0 0
\(831\) 412.967 476.590i 0.496952 0.573514i
\(832\) 0 0
\(833\) 782.359 + 112.486i 0.939206 + 0.135037i
\(834\) 0 0
\(835\) −370.171 + 169.052i −0.443319 + 0.202457i
\(836\) 0 0
\(837\) −182.578 1269.86i −0.218134 1.51715i
\(838\) 0 0
\(839\) 130.031 + 442.844i 0.154983 + 0.527823i 0.999976 0.00695430i \(-0.00221364\pi\)
−0.844993 + 0.534777i \(0.820395\pi\)
\(840\) 0 0
\(841\) −331.340 + 725.534i −0.393984 + 0.862704i
\(842\) 0 0
\(843\) 318.019 275.565i 0.377246 0.326886i
\(844\) 0 0
\(845\) 361.314 + 562.216i 0.427591 + 0.665345i
\(846\) 0 0
\(847\) 58.4500 90.9500i 0.0690083 0.107379i
\(848\) 0 0
\(849\) −263.214 + 896.425i −0.310028 + 1.05586i
\(850\) 0 0
\(851\) 220.390 571.883i 0.258978 0.672012i
\(852\) 0 0
\(853\) −1280.14 375.884i −1.50075 0.440661i −0.574798 0.818295i \(-0.694919\pi\)
−0.925955 + 0.377635i \(0.876738\pi\)
\(854\) 0 0
\(855\) −137.569 88.4101i −0.160899 0.103404i
\(856\) 0 0
\(857\) −22.6048 + 14.5272i −0.0263766 + 0.0169512i −0.553763 0.832675i \(-0.686809\pi\)
0.527386 + 0.849626i \(0.323172\pi\)
\(858\) 0 0
\(859\) −129.946 149.965i −0.151276 0.174581i 0.675054 0.737769i \(-0.264120\pi\)
−0.826329 + 0.563187i \(0.809575\pi\)
\(860\) 0 0
\(861\) −1395.55 637.327i −1.62085 0.740217i
\(862\) 0 0
\(863\) 1149.11 337.408i 1.33152 0.390971i 0.462886 0.886418i \(-0.346814\pi\)
0.868638 + 0.495447i \(0.164996\pi\)
\(864\) 0 0
\(865\) 545.011 78.3607i 0.630070 0.0905904i
\(866\) 0 0
\(867\) 299.298 + 655.370i 0.345211 + 0.755906i
\(868\) 0 0
\(869\) 18.8368 131.013i 0.0216764 0.150763i
\(870\) 0 0
\(871\) 219.387 + 190.100i 0.251879 + 0.218255i
\(872\) 0 0
\(873\) 84.9968i 0.0973617i
\(874\) 0 0
\(875\) 1076.34 1.23010
\(876\) 0 0
\(877\) −435.404 + 502.483i −0.496470 + 0.572957i −0.947583 0.319510i \(-0.896482\pi\)
0.451113 + 0.892467i \(0.351027\pi\)
\(878\) 0 0
\(879\) −3.70352 0.532485i −0.00421333 0.000605785i
\(880\) 0 0
\(881\) 704.486 321.728i 0.799643 0.365185i 0.0266868 0.999644i \(-0.491504\pi\)
0.772957 + 0.634459i \(0.218777\pi\)
\(882\) 0 0
\(883\) −113.136 786.875i −0.128126 0.891139i −0.947927 0.318489i \(-0.896825\pi\)
0.819800 0.572650i \(-0.194084\pi\)
\(884\) 0 0
\(885\) −23.7297 80.8161i −0.0268133 0.0913176i
\(886\) 0 0
\(887\) 465.014 1018.24i 0.524254 1.14796i −0.443549 0.896250i \(-0.646281\pi\)
0.967804 0.251707i \(-0.0809918\pi\)
\(888\) 0 0
\(889\) −536.907 + 465.232i −0.603945 + 0.523321i
\(890\) 0 0
\(891\) 542.906 + 844.778i 0.609322 + 0.948123i
\(892\) 0 0
\(893\) 124.789 194.175i 0.139741 0.217441i
\(894\) 0 0
\(895\) 169.165 576.122i 0.189011 0.643712i
\(896\) 0 0
\(897\) −541.345 44.6193i −0.603506 0.0497428i
\(898\) 0 0
\(899\) 317.674 + 93.2776i 0.353364 + 0.103757i
\(900\) 0 0
\(901\) −505.711 325.000i −0.561277 0.360711i
\(902\) 0 0
\(903\) 1592.01 1023.12i 1.76302 1.13302i
\(904\) 0 0
\(905\) −166.471 192.117i −0.183945 0.212284i
\(906\) 0 0
\(907\) −227.401 103.851i −0.250718 0.114499i 0.286092 0.958202i \(-0.407644\pi\)
−0.536810 + 0.843703i \(0.680371\pi\)
\(908\) 0 0
\(909\) 123.103 36.1463i 0.135427 0.0397649i
\(910\) 0 0
\(911\) 1460.62 210.005i 1.60331 0.230522i 0.718179 0.695858i \(-0.244976\pi\)
0.885134 + 0.465337i \(0.154067\pi\)
\(912\) 0 0
\(913\) −700.329 1533.51i −0.767064 1.67964i
\(914\) 0 0
\(915\) 104.293 725.371i 0.113981 0.792755i
\(916\) 0 0
\(917\) 378.401 + 327.886i 0.412651 + 0.357564i
\(918\) 0 0
\(919\) 219.965i 0.239353i −0.992813 0.119676i \(-0.961814\pi\)
0.992813 0.119676i \(-0.0381857\pi\)
\(920\) 0 0
\(921\) −242.510 −0.263312
\(922\) 0 0
\(923\) −177.722 + 205.102i −0.192548 + 0.222212i
\(924\) 0 0
\(925\) 270.619 + 38.9091i 0.292561 + 0.0420639i
\(926\) 0 0
\(927\) 7.16726 3.27318i 0.00773167 0.00353094i
\(928\) 0 0
\(929\) 53.4767 + 371.939i 0.0575637 + 0.400365i 0.998149 + 0.0608083i \(0.0193678\pi\)
−0.940586 + 0.339556i \(0.889723\pi\)
\(930\) 0 0
\(931\) −901.526 3070.32i −0.968342 3.29787i
\(932\) 0 0
\(933\) −346.416 + 758.546i −0.371293 + 0.813018i
\(934\) 0 0
\(935\) −395.304 + 342.533i −0.422785 + 0.366345i
\(936\) 0 0
\(937\) −48.7706 75.8885i −0.0520497 0.0809909i 0.814253 0.580510i \(-0.197147\pi\)
−0.866303 + 0.499519i \(0.833510\pi\)
\(938\) 0 0
\(939\) 40.1876 62.5331i 0.0427983 0.0665954i
\(940\) 0 0
\(941\) −276.462 + 941.543i −0.293796 + 1.00058i 0.671844 + 0.740693i \(0.265503\pi\)
−0.965640 + 0.259885i \(0.916315\pi\)
\(942\) 0 0
\(943\) −724.839 554.966i −0.768652 0.588511i
\(944\) 0 0
\(945\) 1788.29 + 525.090i 1.89237 + 0.555651i
\(946\) 0 0
\(947\) −1393.95 895.839i −1.47197 0.945976i −0.997852 0.0655138i \(-0.979131\pi\)
−0.474116 0.880462i \(-0.657232\pi\)
\(948\) 0 0
\(949\) 76.8484 49.3875i 0.0809783 0.0520416i
\(950\) 0 0
\(951\) 694.065 + 800.994i 0.729827 + 0.842265i
\(952\) 0 0
\(953\) 370.652 + 169.271i 0.388932 + 0.177619i 0.600277 0.799792i \(-0.295057\pi\)
−0.211345 + 0.977412i \(0.567784\pi\)
\(954\) 0 0
\(955\) −2006.96 + 589.295i −2.10152 + 0.617063i
\(956\) 0 0
\(957\) −233.473 + 33.5684i −0.243963 + 0.0350767i
\(958\) 0 0
\(959\) 677.771 + 1484.11i 0.706748 + 1.54756i
\(960\) 0 0
\(961\) −222.789 + 1549.53i −0.231831 + 1.61242i
\(962\) 0 0
\(963\) −124.250 107.664i −0.129024 0.111800i
\(964\) 0 0
\(965\) 547.728i 0.567594i
\(966\) 0 0
\(967\) −131.126 −0.135601 −0.0678003 0.997699i \(-0.521598\pi\)
−0.0678003 + 0.997699i \(0.521598\pi\)
\(968\) 0 0
\(969\) −498.184 + 574.935i −0.514122 + 0.593328i
\(970\) 0 0
\(971\) −1096.45 157.645i −1.12919 0.162353i −0.447704 0.894182i \(-0.647758\pi\)
−0.681489 + 0.731828i \(0.738667\pi\)
\(972\) 0 0
\(973\) −1489.47 + 680.217i −1.53080 + 0.699092i
\(974\) 0 0
\(975\) −34.4843 239.843i −0.0353685 0.245993i
\(976\) 0 0
\(977\) 232.138 + 790.589i 0.237603 + 0.809201i 0.988816 + 0.149141i \(0.0476509\pi\)
−0.751213 + 0.660060i \(0.770531\pi\)
\(978\) 0 0
\(979\) −553.223 + 1211.39i −0.565090 + 1.23737i
\(980\) 0 0
\(981\) −136.701 + 118.452i −0.139348 + 0.120746i
\(982\) 0 0
\(983\) 598.670 + 931.548i 0.609023 + 0.947659i 0.999633 + 0.0271021i \(0.00862791\pi\)
−0.390610 + 0.920556i \(0.627736\pi\)
\(984\) 0 0
\(985\) −544.551 + 847.339i −0.552844 + 0.860242i
\(986\) 0 0
\(987\) 80.2990 273.473i 0.0813567 0.277075i
\(988\) 0 0
\(989\) 1059.26 382.059i 1.07104 0.386308i
\(990\) 0 0
\(991\) 618.787 + 181.692i 0.624407 + 0.183342i 0.578605 0.815608i \(-0.303597\pi\)
0.0458020 + 0.998951i \(0.485416\pi\)
\(992\) 0 0
\(993\) 441.062 + 283.453i 0.444171 + 0.285451i
\(994\) 0 0
\(995\) −83.6780 + 53.7766i −0.0840985 + 0.0540468i
\(996\) 0 0
\(997\) 543.712 + 627.477i 0.545348 + 0.629365i 0.959793 0.280709i \(-0.0905696\pi\)
−0.414445 + 0.910074i \(0.636024\pi\)
\(998\) 0 0
\(999\) −618.664 282.534i −0.619283 0.282817i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 92.3.f.a.5.1 40
4.3 odd 2 368.3.p.c.97.4 40
23.3 even 11 2116.3.d.c.1057.31 40
23.14 odd 22 inner 92.3.f.a.37.1 yes 40
23.20 odd 22 2116.3.d.c.1057.32 40
92.83 even 22 368.3.p.c.129.4 40
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
92.3.f.a.5.1 40 1.1 even 1 trivial
92.3.f.a.37.1 yes 40 23.14 odd 22 inner
368.3.p.c.97.4 40 4.3 odd 2
368.3.p.c.129.4 40 92.83 even 22
2116.3.d.c.1057.31 40 23.3 even 11
2116.3.d.c.1057.32 40 23.20 odd 22