Properties

Label 92.3.d.a.45.1
Level $92$
Weight $3$
Character 92.45
Analytic conductor $2.507$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [92,3,Mod(45,92)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(92, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("92.45"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 92 = 2^{2} \cdot 23 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 92.d (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.50681843211\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: 4.0.53792.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 7x^{2} + 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 45.1
Root \(2.58874i\) of defining polynomial
Character \(\chi\) \(=\) 92.45
Dual form 92.3.d.a.45.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.70156 q^{3} -1.54515i q^{5} -10.3550i q^{7} -1.70156 q^{9} -16.0744i q^{11} -2.70156 q^{13} +4.17433i q^{15} +13.4453i q^{17} -11.9001i q^{19} +27.9745i q^{21} +(-5.80625 + 22.2551i) q^{23} +22.6125 q^{25} +28.9109 q^{27} +2.91093 q^{29} -40.3141 q^{31} +43.4261i q^{33} -16.0000 q^{35} -30.6037i q^{37} +7.29844 q^{39} +24.5234 q^{41} -6.64175i q^{43} +2.62918i q^{45} +58.9109 q^{47} -58.2250 q^{49} -36.3232i q^{51} +14.0681i q^{53} -24.8375 q^{55} +32.1489i q^{57} -49.2250 q^{59} -67.8492i q^{61} +17.6196i q^{63} +4.17433i q^{65} -110.353i q^{67} +(15.6859 - 60.1234i) q^{69} +86.1359 q^{71} +120.523 q^{73} -61.0891 q^{75} -166.450 q^{77} -86.8522i q^{79} -62.7906 q^{81} +105.095i q^{83} +20.7750 q^{85} -7.86407 q^{87} +7.10288i q^{89} +27.9745i q^{91} +108.911 q^{93} -18.3875 q^{95} +121.331i q^{97} +27.3517i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 2 q^{3} + 6 q^{9} + 2 q^{13} + 28 q^{23} - 12 q^{25} + 26 q^{27} - 78 q^{29} - 46 q^{31} - 64 q^{35} + 42 q^{39} - 94 q^{41} + 146 q^{47} - 28 q^{49} + 208 q^{55} + 8 q^{59} + 178 q^{69} + 50 q^{71}+ \cdots - 176 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/92\mathbb{Z}\right)^\times\).

\(n\) \(5\) \(47\)
\(\chi(n)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −2.70156 −0.900521 −0.450260 0.892897i \(-0.648669\pi\)
−0.450260 + 0.892897i \(0.648669\pi\)
\(4\) 0 0
\(5\) 1.54515i 0.309031i −0.987990 0.154515i \(-0.950618\pi\)
0.987990 0.154515i \(-0.0493816\pi\)
\(6\) 0 0
\(7\) 10.3550i 1.47928i −0.673003 0.739639i \(-0.734996\pi\)
0.673003 0.739639i \(-0.265004\pi\)
\(8\) 0 0
\(9\) −1.70156 −0.189062
\(10\) 0 0
\(11\) 16.0744i 1.46131i −0.682746 0.730656i \(-0.739214\pi\)
0.682746 0.730656i \(-0.260786\pi\)
\(12\) 0 0
\(13\) −2.70156 −0.207812 −0.103906 0.994587i \(-0.533134\pi\)
−0.103906 + 0.994587i \(0.533134\pi\)
\(14\) 0 0
\(15\) 4.17433i 0.278289i
\(16\) 0 0
\(17\) 13.4453i 0.790898i 0.918488 + 0.395449i \(0.129411\pi\)
−0.918488 + 0.395449i \(0.870589\pi\)
\(18\) 0 0
\(19\) 11.9001i 0.626321i −0.949700 0.313161i \(-0.898612\pi\)
0.949700 0.313161i \(-0.101388\pi\)
\(20\) 0 0
\(21\) 27.9745i 1.33212i
\(22\) 0 0
\(23\) −5.80625 + 22.2551i −0.252446 + 0.967611i
\(24\) 0 0
\(25\) 22.6125 0.904500
\(26\) 0 0
\(27\) 28.9109 1.07078
\(28\) 0 0
\(29\) 2.91093 0.100377 0.0501885 0.998740i \(-0.484018\pi\)
0.0501885 + 0.998740i \(0.484018\pi\)
\(30\) 0 0
\(31\) −40.3141 −1.30045 −0.650227 0.759740i \(-0.725326\pi\)
−0.650227 + 0.759740i \(0.725326\pi\)
\(32\) 0 0
\(33\) 43.4261i 1.31594i
\(34\) 0 0
\(35\) −16.0000 −0.457143
\(36\) 0 0
\(37\) 30.6037i 0.827128i −0.910475 0.413564i \(-0.864284\pi\)
0.910475 0.413564i \(-0.135716\pi\)
\(38\) 0 0
\(39\) 7.29844 0.187139
\(40\) 0 0
\(41\) 24.5234 0.598132 0.299066 0.954232i \(-0.403325\pi\)
0.299066 + 0.954232i \(0.403325\pi\)
\(42\) 0 0
\(43\) 6.64175i 0.154459i −0.997013 0.0772297i \(-0.975393\pi\)
0.997013 0.0772297i \(-0.0246075\pi\)
\(44\) 0 0
\(45\) 2.62918i 0.0584261i
\(46\) 0 0
\(47\) 58.9109 1.25342 0.626712 0.779251i \(-0.284400\pi\)
0.626712 + 0.779251i \(0.284400\pi\)
\(48\) 0 0
\(49\) −58.2250 −1.18827
\(50\) 0 0
\(51\) 36.3232i 0.712220i
\(52\) 0 0
\(53\) 14.0681i 0.265437i 0.991154 + 0.132718i \(0.0423706\pi\)
−0.991154 + 0.132718i \(0.957629\pi\)
\(54\) 0 0
\(55\) −24.8375 −0.451591
\(56\) 0 0
\(57\) 32.1489i 0.564015i
\(58\) 0 0
\(59\) −49.2250 −0.834322 −0.417161 0.908833i \(-0.636975\pi\)
−0.417161 + 0.908833i \(0.636975\pi\)
\(60\) 0 0
\(61\) 67.8492i 1.11228i −0.831088 0.556141i \(-0.812281\pi\)
0.831088 0.556141i \(-0.187719\pi\)
\(62\) 0 0
\(63\) 17.6196i 0.279676i
\(64\) 0 0
\(65\) 4.17433i 0.0642205i
\(66\) 0 0
\(67\) 110.353i 1.64706i −0.567273 0.823530i \(-0.692001\pi\)
0.567273 0.823530i \(-0.307999\pi\)
\(68\) 0 0
\(69\) 15.6859 60.1234i 0.227332 0.871354i
\(70\) 0 0
\(71\) 86.1359 1.21318 0.606591 0.795014i \(-0.292537\pi\)
0.606591 + 0.795014i \(0.292537\pi\)
\(72\) 0 0
\(73\) 120.523 1.65101 0.825503 0.564398i \(-0.190892\pi\)
0.825503 + 0.564398i \(0.190892\pi\)
\(74\) 0 0
\(75\) −61.0891 −0.814521
\(76\) 0 0
\(77\) −166.450 −2.16169
\(78\) 0 0
\(79\) 86.8522i 1.09939i −0.835364 0.549697i \(-0.814743\pi\)
0.835364 0.549697i \(-0.185257\pi\)
\(80\) 0 0
\(81\) −62.7906 −0.775193
\(82\) 0 0
\(83\) 105.095i 1.26620i 0.774070 + 0.633100i \(0.218218\pi\)
−0.774070 + 0.633100i \(0.781782\pi\)
\(84\) 0 0
\(85\) 20.7750 0.244412
\(86\) 0 0
\(87\) −7.86407 −0.0903916
\(88\) 0 0
\(89\) 7.10288i 0.0798077i 0.999204 + 0.0399038i \(0.0127052\pi\)
−0.999204 + 0.0399038i \(0.987295\pi\)
\(90\) 0 0
\(91\) 27.9745i 0.307413i
\(92\) 0 0
\(93\) 108.911 1.17109
\(94\) 0 0
\(95\) −18.3875 −0.193553
\(96\) 0 0
\(97\) 121.331i 1.25083i 0.780291 + 0.625417i \(0.215071\pi\)
−0.780291 + 0.625417i \(0.784929\pi\)
\(98\) 0 0
\(99\) 27.3517i 0.276279i
\(100\) 0 0
\(101\) 74.0000 0.732673 0.366337 0.930482i \(-0.380612\pi\)
0.366337 + 0.930482i \(0.380612\pi\)
\(102\) 0 0
\(103\) 111.736i 1.08482i 0.840114 + 0.542410i \(0.182488\pi\)
−0.840114 + 0.542410i \(0.817512\pi\)
\(104\) 0 0
\(105\) 43.2250 0.411667
\(106\) 0 0
\(107\) 156.869i 1.46607i 0.680191 + 0.733035i \(0.261897\pi\)
−0.680191 + 0.733035i \(0.738103\pi\)
\(108\) 0 0
\(109\) 171.399i 1.57247i −0.617931 0.786233i \(-0.712029\pi\)
0.617931 0.786233i \(-0.287971\pi\)
\(110\) 0 0
\(111\) 82.6778i 0.744845i
\(112\) 0 0
\(113\) 125.343i 1.10923i 0.832106 + 0.554617i \(0.187135\pi\)
−0.832106 + 0.554617i \(0.812865\pi\)
\(114\) 0 0
\(115\) 34.3875 + 8.97155i 0.299022 + 0.0780135i
\(116\) 0 0
\(117\) 4.59688 0.0392895
\(118\) 0 0
\(119\) 139.225 1.16996
\(120\) 0 0
\(121\) −137.388 −1.13543
\(122\) 0 0
\(123\) −66.2516 −0.538631
\(124\) 0 0
\(125\) 73.5687i 0.588549i
\(126\) 0 0
\(127\) −144.314 −1.13633 −0.568166 0.822914i \(-0.692347\pi\)
−0.568166 + 0.822914i \(0.692347\pi\)
\(128\) 0 0
\(129\) 17.9431i 0.139094i
\(130\) 0 0
\(131\) 94.1359 0.718595 0.359297 0.933223i \(-0.383016\pi\)
0.359297 + 0.933223i \(0.383016\pi\)
\(132\) 0 0
\(133\) −123.225 −0.926504
\(134\) 0 0
\(135\) 44.6719i 0.330903i
\(136\) 0 0
\(137\) 195.984i 1.43054i −0.698850 0.715268i \(-0.746304\pi\)
0.698850 0.715268i \(-0.253696\pi\)
\(138\) 0 0
\(139\) 221.298 1.59208 0.796038 0.605247i \(-0.206926\pi\)
0.796038 + 0.605247i \(0.206926\pi\)
\(140\) 0 0
\(141\) −159.152 −1.12873
\(142\) 0 0
\(143\) 43.4261i 0.303679i
\(144\) 0 0
\(145\) 4.49784i 0.0310196i
\(146\) 0 0
\(147\) 157.298 1.07006
\(148\) 0 0
\(149\) 273.702i 1.83693i −0.395503 0.918464i \(-0.629430\pi\)
0.395503 0.918464i \(-0.370570\pi\)
\(150\) 0 0
\(151\) −115.539 −0.765159 −0.382580 0.923923i \(-0.624964\pi\)
−0.382580 + 0.923923i \(0.624964\pi\)
\(152\) 0 0
\(153\) 22.8779i 0.149529i
\(154\) 0 0
\(155\) 62.2915i 0.401880i
\(156\) 0 0
\(157\) 48.9838i 0.311999i −0.987757 0.155999i \(-0.950140\pi\)
0.987757 0.155999i \(-0.0498598\pi\)
\(158\) 0 0
\(159\) 38.0060i 0.239031i
\(160\) 0 0
\(161\) 230.450 + 60.1234i 1.43137 + 0.373437i
\(162\) 0 0
\(163\) 12.4609 0.0764475 0.0382238 0.999269i \(-0.487830\pi\)
0.0382238 + 0.999269i \(0.487830\pi\)
\(164\) 0 0
\(165\) 67.1000 0.406667
\(166\) 0 0
\(167\) −276.450 −1.65539 −0.827695 0.561179i \(-0.810348\pi\)
−0.827695 + 0.561179i \(0.810348\pi\)
\(168\) 0 0
\(169\) −161.702 −0.956814
\(170\) 0 0
\(171\) 20.2488i 0.118414i
\(172\) 0 0
\(173\) −106.775 −0.617197 −0.308598 0.951192i \(-0.599860\pi\)
−0.308598 + 0.951192i \(0.599860\pi\)
\(174\) 0 0
\(175\) 234.151i 1.33801i
\(176\) 0 0
\(177\) 132.984 0.751324
\(178\) 0 0
\(179\) −325.214 −1.81684 −0.908419 0.418061i \(-0.862710\pi\)
−0.908419 + 0.418061i \(0.862710\pi\)
\(180\) 0 0
\(181\) 176.819i 0.976899i 0.872592 + 0.488450i \(0.162437\pi\)
−0.872592 + 0.488450i \(0.837563\pi\)
\(182\) 0 0
\(183\) 183.299i 1.00163i
\(184\) 0 0
\(185\) −47.2875 −0.255608
\(186\) 0 0
\(187\) 216.125 1.15575
\(188\) 0 0
\(189\) 299.371i 1.58398i
\(190\) 0 0
\(191\) 154.078i 0.806694i −0.915047 0.403347i \(-0.867847\pi\)
0.915047 0.403347i \(-0.132153\pi\)
\(192\) 0 0
\(193\) 296.648 1.53704 0.768519 0.639827i \(-0.220994\pi\)
0.768519 + 0.639827i \(0.220994\pi\)
\(194\) 0 0
\(195\) 11.2772i 0.0578319i
\(196\) 0 0
\(197\) 228.586 1.16033 0.580167 0.814497i \(-0.302987\pi\)
0.580167 + 0.814497i \(0.302987\pi\)
\(198\) 0 0
\(199\) 141.118i 0.709138i −0.935030 0.354569i \(-0.884628\pi\)
0.935030 0.354569i \(-0.115372\pi\)
\(200\) 0 0
\(201\) 298.126i 1.48321i
\(202\) 0 0
\(203\) 30.1426i 0.148486i
\(204\) 0 0
\(205\) 37.8925i 0.184841i
\(206\) 0 0
\(207\) 9.87969 37.8684i 0.0477280 0.182939i
\(208\) 0 0
\(209\) −191.287 −0.915251
\(210\) 0 0
\(211\) 30.7750 0.145853 0.0729266 0.997337i \(-0.476766\pi\)
0.0729266 + 0.997337i \(0.476766\pi\)
\(212\) 0 0
\(213\) −232.702 −1.09250
\(214\) 0 0
\(215\) −10.2625 −0.0477327
\(216\) 0 0
\(217\) 417.450i 1.92373i
\(218\) 0 0
\(219\) −325.602 −1.48677
\(220\) 0 0
\(221\) 36.3232i 0.164358i
\(222\) 0 0
\(223\) 161.287 0.723262 0.361631 0.932321i \(-0.382220\pi\)
0.361631 + 0.932321i \(0.382220\pi\)
\(224\) 0 0
\(225\) −38.4766 −0.171007
\(226\) 0 0
\(227\) 100.160i 0.441233i −0.975361 0.220616i \(-0.929193\pi\)
0.975361 0.220616i \(-0.0708069\pi\)
\(228\) 0 0
\(229\) 411.892i 1.79866i 0.437274 + 0.899328i \(0.355944\pi\)
−0.437274 + 0.899328i \(0.644056\pi\)
\(230\) 0 0
\(231\) 449.675 1.94664
\(232\) 0 0
\(233\) −116.252 −0.498934 −0.249467 0.968383i \(-0.580255\pi\)
−0.249467 + 0.968383i \(0.580255\pi\)
\(234\) 0 0
\(235\) 91.0265i 0.387347i
\(236\) 0 0
\(237\) 234.637i 0.990028i
\(238\) 0 0
\(239\) 279.686 1.17023 0.585117 0.810949i \(-0.301049\pi\)
0.585117 + 0.810949i \(0.301049\pi\)
\(240\) 0 0
\(241\) 313.577i 1.30115i 0.759442 + 0.650575i \(0.225472\pi\)
−0.759442 + 0.650575i \(0.774528\pi\)
\(242\) 0 0
\(243\) −90.5656 −0.372698
\(244\) 0 0
\(245\) 89.9666i 0.367211i
\(246\) 0 0
\(247\) 32.1489i 0.130157i
\(248\) 0 0
\(249\) 283.920i 1.14024i
\(250\) 0 0
\(251\) 311.271i 1.24013i 0.784552 + 0.620063i \(0.212893\pi\)
−0.784552 + 0.620063i \(0.787107\pi\)
\(252\) 0 0
\(253\) 357.737 + 93.3322i 1.41398 + 0.368902i
\(254\) 0 0
\(255\) −56.1250 −0.220098
\(256\) 0 0
\(257\) 194.073 0.755150 0.377575 0.925979i \(-0.376758\pi\)
0.377575 + 0.925979i \(0.376758\pi\)
\(258\) 0 0
\(259\) −316.900 −1.22355
\(260\) 0 0
\(261\) −4.95314 −0.0189775
\(262\) 0 0
\(263\) 46.6782i 0.177483i −0.996055 0.0887417i \(-0.971715\pi\)
0.996055 0.0887417i \(-0.0282846\pi\)
\(264\) 0 0
\(265\) 21.7375 0.0820282
\(266\) 0 0
\(267\) 19.1889i 0.0718685i
\(268\) 0 0
\(269\) −31.6015 −0.117478 −0.0587389 0.998273i \(-0.518708\pi\)
−0.0587389 + 0.998273i \(0.518708\pi\)
\(270\) 0 0
\(271\) −378.900 −1.39815 −0.699077 0.715046i \(-0.746406\pi\)
−0.699077 + 0.715046i \(0.746406\pi\)
\(272\) 0 0
\(273\) 75.5750i 0.276831i
\(274\) 0 0
\(275\) 363.483i 1.32176i
\(276\) 0 0
\(277\) −132.377 −0.477894 −0.238947 0.971033i \(-0.576802\pi\)
−0.238947 + 0.971033i \(0.576802\pi\)
\(278\) 0 0
\(279\) 68.5969 0.245867
\(280\) 0 0
\(281\) 138.627i 0.493334i 0.969100 + 0.246667i \(0.0793354\pi\)
−0.969100 + 0.246667i \(0.920665\pi\)
\(282\) 0 0
\(283\) 95.5002i 0.337457i 0.985663 + 0.168728i \(0.0539660\pi\)
−0.985663 + 0.168728i \(0.946034\pi\)
\(284\) 0 0
\(285\) 49.6750 0.174298
\(286\) 0 0
\(287\) 253.939i 0.884805i
\(288\) 0 0
\(289\) 108.225 0.374481
\(290\) 0 0
\(291\) 327.783i 1.12640i
\(292\) 0 0
\(293\) 251.471i 0.858264i −0.903242 0.429132i \(-0.858819\pi\)
0.903242 0.429132i \(-0.141181\pi\)
\(294\) 0 0
\(295\) 76.0602i 0.257831i
\(296\) 0 0
\(297\) 464.727i 1.56474i
\(298\) 0 0
\(299\) 15.6859 60.1234i 0.0524613 0.201082i
\(300\) 0 0
\(301\) −68.7750 −0.228488
\(302\) 0 0
\(303\) −199.916 −0.659787
\(304\) 0 0
\(305\) −104.837 −0.343729
\(306\) 0 0
\(307\) 16.4500 0.0535830 0.0267915 0.999641i \(-0.491471\pi\)
0.0267915 + 0.999641i \(0.491471\pi\)
\(308\) 0 0
\(309\) 301.863i 0.976902i
\(310\) 0 0
\(311\) 87.6859 0.281948 0.140974 0.990013i \(-0.454977\pi\)
0.140974 + 0.990013i \(0.454977\pi\)
\(312\) 0 0
\(313\) 210.513i 0.672565i 0.941761 + 0.336282i \(0.109170\pi\)
−0.941761 + 0.336282i \(0.890830\pi\)
\(314\) 0 0
\(315\) 27.2250 0.0864286
\(316\) 0 0
\(317\) −82.9000 −0.261514 −0.130757 0.991414i \(-0.541741\pi\)
−0.130757 + 0.991414i \(0.541741\pi\)
\(318\) 0 0
\(319\) 46.7916i 0.146682i
\(320\) 0 0
\(321\) 423.792i 1.32023i
\(322\) 0 0
\(323\) 160.000 0.495356
\(324\) 0 0
\(325\) −61.0891 −0.187966
\(326\) 0 0
\(327\) 463.044i 1.41604i
\(328\) 0 0
\(329\) 610.020i 1.85416i
\(330\) 0 0
\(331\) −31.6015 −0.0954729 −0.0477365 0.998860i \(-0.515201\pi\)
−0.0477365 + 0.998860i \(0.515201\pi\)
\(332\) 0 0
\(333\) 52.0741i 0.156379i
\(334\) 0 0
\(335\) −170.512 −0.508992
\(336\) 0 0
\(337\) 395.656i 1.17405i 0.809567 + 0.587027i \(0.199702\pi\)
−0.809567 + 0.587027i \(0.800298\pi\)
\(338\) 0 0
\(339\) 338.623i 0.998888i
\(340\) 0 0
\(341\) 648.026i 1.90037i
\(342\) 0 0
\(343\) 95.5244i 0.278497i
\(344\) 0 0
\(345\) −92.9000 24.2372i −0.269275 0.0702528i
\(346\) 0 0
\(347\) 299.675 0.863617 0.431808 0.901965i \(-0.357876\pi\)
0.431808 + 0.901965i \(0.357876\pi\)
\(348\) 0 0
\(349\) 372.586 1.06758 0.533791 0.845617i \(-0.320767\pi\)
0.533791 + 0.845617i \(0.320767\pi\)
\(350\) 0 0
\(351\) −78.1047 −0.222520
\(352\) 0 0
\(353\) −468.502 −1.32720 −0.663600 0.748088i \(-0.730972\pi\)
−0.663600 + 0.748088i \(0.730972\pi\)
\(354\) 0 0
\(355\) 133.093i 0.374911i
\(356\) 0 0
\(357\) −376.125 −1.05357
\(358\) 0 0
\(359\) 566.594i 1.57826i 0.614229 + 0.789128i \(0.289467\pi\)
−0.614229 + 0.789128i \(0.710533\pi\)
\(360\) 0 0
\(361\) 219.388 0.607722
\(362\) 0 0
\(363\) 371.161 1.02248
\(364\) 0 0
\(365\) 186.227i 0.510212i
\(366\) 0 0
\(367\) 198.637i 0.541245i −0.962686 0.270622i \(-0.912771\pi\)
0.962686 0.270622i \(-0.0872295\pi\)
\(368\) 0 0
\(369\) −41.7281 −0.113084
\(370\) 0 0
\(371\) 145.675 0.392655
\(372\) 0 0
\(373\) 68.0109i 0.182335i −0.995836 0.0911675i \(-0.970940\pi\)
0.995836 0.0911675i \(-0.0290599\pi\)
\(374\) 0 0
\(375\) 198.750i 0.530001i
\(376\) 0 0
\(377\) −7.86407 −0.0208596
\(378\) 0 0
\(379\) 185.604i 0.489722i 0.969558 + 0.244861i \(0.0787423\pi\)
−0.969558 + 0.244861i \(0.921258\pi\)
\(380\) 0 0
\(381\) 389.873 1.02329
\(382\) 0 0
\(383\) 175.872i 0.459197i 0.973285 + 0.229598i \(0.0737413\pi\)
−0.973285 + 0.229598i \(0.926259\pi\)
\(384\) 0 0
\(385\) 257.191i 0.668029i
\(386\) 0 0
\(387\) 11.3014i 0.0292025i
\(388\) 0 0
\(389\) 47.7863i 0.122844i 0.998112 + 0.0614220i \(0.0195635\pi\)
−0.998112 + 0.0614220i \(0.980436\pi\)
\(390\) 0 0
\(391\) −299.225 78.0665i −0.765281 0.199659i
\(392\) 0 0
\(393\) −254.314 −0.647110
\(394\) 0 0
\(395\) −134.200 −0.339747
\(396\) 0 0
\(397\) 407.936 1.02755 0.513773 0.857926i \(-0.328247\pi\)
0.513773 + 0.857926i \(0.328247\pi\)
\(398\) 0 0
\(399\) 332.900 0.834336
\(400\) 0 0
\(401\) 655.129i 1.63374i −0.576824 0.816869i \(-0.695708\pi\)
0.576824 0.816869i \(-0.304292\pi\)
\(402\) 0 0
\(403\) 108.911 0.270250
\(404\) 0 0
\(405\) 97.0212i 0.239559i
\(406\) 0 0
\(407\) −491.938 −1.20869
\(408\) 0 0
\(409\) 224.523 0.548957 0.274479 0.961593i \(-0.411495\pi\)
0.274479 + 0.961593i \(0.411495\pi\)
\(410\) 0 0
\(411\) 529.462i 1.28823i
\(412\) 0 0
\(413\) 509.722i 1.23419i
\(414\) 0 0
\(415\) 162.388 0.391295
\(416\) 0 0
\(417\) −597.851 −1.43370
\(418\) 0 0
\(419\) 186.850i 0.445943i 0.974825 + 0.222972i \(0.0715757\pi\)
−0.974825 + 0.222972i \(0.928424\pi\)
\(420\) 0 0
\(421\) 342.174i 0.812766i 0.913703 + 0.406383i \(0.133210\pi\)
−0.913703 + 0.406383i \(0.866790\pi\)
\(422\) 0 0
\(423\) −100.241 −0.236975
\(424\) 0 0
\(425\) 304.031i 0.715367i
\(426\) 0 0
\(427\) −702.575 −1.64537
\(428\) 0 0
\(429\) 117.318i 0.273469i
\(430\) 0 0
\(431\) 170.339i 0.395218i −0.980281 0.197609i \(-0.936682\pi\)
0.980281 0.197609i \(-0.0633176\pi\)
\(432\) 0 0
\(433\) 417.450i 0.964088i −0.876147 0.482044i \(-0.839895\pi\)
0.876147 0.482044i \(-0.160105\pi\)
\(434\) 0 0
\(435\) 12.1512i 0.0279338i
\(436\) 0 0
\(437\) 264.837 + 69.0950i 0.606035 + 0.158112i
\(438\) 0 0
\(439\) 603.161 1.37394 0.686971 0.726684i \(-0.258940\pi\)
0.686971 + 0.726684i \(0.258940\pi\)
\(440\) 0 0
\(441\) 99.0734 0.224656
\(442\) 0 0
\(443\) 699.873 1.57985 0.789925 0.613204i \(-0.210120\pi\)
0.789925 + 0.613204i \(0.210120\pi\)
\(444\) 0 0
\(445\) 10.9751 0.0246630
\(446\) 0 0
\(447\) 739.424i 1.65419i
\(448\) 0 0
\(449\) 681.412 1.51762 0.758811 0.651311i \(-0.225781\pi\)
0.758811 + 0.651311i \(0.225781\pi\)
\(450\) 0 0
\(451\) 394.200i 0.874058i
\(452\) 0 0
\(453\) 312.136 0.689042
\(454\) 0 0
\(455\) 43.2250 0.0950000
\(456\) 0 0
\(457\) 589.035i 1.28892i −0.764640 0.644458i \(-0.777083\pi\)
0.764640 0.644458i \(-0.222917\pi\)
\(458\) 0 0
\(459\) 388.715i 0.846874i
\(460\) 0 0
\(461\) −712.314 −1.54515 −0.772575 0.634924i \(-0.781032\pi\)
−0.772575 + 0.634924i \(0.781032\pi\)
\(462\) 0 0
\(463\) 326.775 0.705778 0.352889 0.935665i \(-0.385199\pi\)
0.352889 + 0.935665i \(0.385199\pi\)
\(464\) 0 0
\(465\) 168.284i 0.361902i
\(466\) 0 0
\(467\) 309.265i 0.662238i 0.943589 + 0.331119i \(0.107426\pi\)
−0.943589 + 0.331119i \(0.892574\pi\)
\(468\) 0 0
\(469\) −1142.70 −2.43646
\(470\) 0 0
\(471\) 132.333i 0.280961i
\(472\) 0 0
\(473\) −106.762 −0.225713
\(474\) 0 0
\(475\) 269.091i 0.566508i
\(476\) 0 0
\(477\) 23.9378i 0.0501841i
\(478\) 0 0
\(479\) 623.352i 1.30136i −0.759352 0.650680i \(-0.774484\pi\)
0.759352 0.650680i \(-0.225516\pi\)
\(480\) 0 0
\(481\) 82.6778i 0.171887i
\(482\) 0 0
\(483\) −622.575 162.427i −1.28898 0.336288i
\(484\) 0 0
\(485\) 187.475 0.386546
\(486\) 0 0
\(487\) −124.964 −0.256600 −0.128300 0.991735i \(-0.540952\pi\)
−0.128300 + 0.991735i \(0.540952\pi\)
\(488\) 0 0
\(489\) −33.6640 −0.0688426
\(490\) 0 0
\(491\) −632.564 −1.28832 −0.644159 0.764892i \(-0.722792\pi\)
−0.644159 + 0.764892i \(0.722792\pi\)
\(492\) 0 0
\(493\) 39.1383i 0.0793880i
\(494\) 0 0
\(495\) 42.2625 0.0853789
\(496\) 0 0
\(497\) 891.933i 1.79463i
\(498\) 0 0
\(499\) −401.277 −0.804161 −0.402081 0.915604i \(-0.631713\pi\)
−0.402081 + 0.915604i \(0.631713\pi\)
\(500\) 0 0
\(501\) 746.847 1.49071
\(502\) 0 0
\(503\) 527.018i 1.04775i 0.851795 + 0.523875i \(0.175514\pi\)
−0.851795 + 0.523875i \(0.824486\pi\)
\(504\) 0 0
\(505\) 114.341i 0.226419i
\(506\) 0 0
\(507\) 436.847 0.861631
\(508\) 0 0
\(509\) −327.477 −0.643372 −0.321686 0.946846i \(-0.604250\pi\)
−0.321686 + 0.946846i \(0.604250\pi\)
\(510\) 0 0
\(511\) 1248.01i 2.44230i
\(512\) 0 0
\(513\) 344.043i 0.670649i
\(514\) 0 0
\(515\) 172.650 0.335243
\(516\) 0 0
\(517\) 946.960i 1.83164i
\(518\) 0 0
\(519\) 288.459 0.555798
\(520\) 0 0
\(521\) 403.730i 0.774913i −0.921888 0.387456i \(-0.873354\pi\)
0.921888 0.387456i \(-0.126646\pi\)
\(522\) 0 0
\(523\) 336.964i 0.644291i 0.946690 + 0.322146i \(0.104404\pi\)
−0.946690 + 0.322146i \(0.895596\pi\)
\(524\) 0 0
\(525\) 632.574i 1.20490i
\(526\) 0 0
\(527\) 542.033i 1.02853i
\(528\) 0 0
\(529\) −461.575 258.437i −0.872542 0.488538i
\(530\) 0 0
\(531\) 83.7594 0.157739
\(532\) 0 0
\(533\) −66.2516 −0.124299
\(534\) 0 0
\(535\) 242.388 0.453061
\(536\) 0 0
\(537\) 878.586 1.63610
\(538\) 0 0
\(539\) 935.934i 1.73643i
\(540\) 0 0
\(541\) −85.2140 −0.157512 −0.0787560 0.996894i \(-0.525095\pi\)
−0.0787560 + 0.996894i \(0.525095\pi\)
\(542\) 0 0
\(543\) 477.687i 0.879718i
\(544\) 0 0
\(545\) −264.837 −0.485940
\(546\) 0 0
\(547\) 194.073 0.354796 0.177398 0.984139i \(-0.443232\pi\)
0.177398 + 0.984139i \(0.443232\pi\)
\(548\) 0 0
\(549\) 115.450i 0.210291i
\(550\) 0 0
\(551\) 34.6404i 0.0628683i
\(552\) 0 0
\(553\) −899.350 −1.62631
\(554\) 0 0
\(555\) 127.750 0.230180
\(556\) 0 0
\(557\) 340.168i 0.610715i 0.952238 + 0.305357i \(0.0987759\pi\)
−0.952238 + 0.305357i \(0.901224\pi\)
\(558\) 0 0
\(559\) 17.9431i 0.0320986i
\(560\) 0 0
\(561\) −583.875 −1.04078
\(562\) 0 0
\(563\) 379.695i 0.674414i −0.941430 0.337207i \(-0.890518\pi\)
0.941430 0.337207i \(-0.109482\pi\)
\(564\) 0 0
\(565\) 193.675 0.342788
\(566\) 0 0
\(567\) 650.194i 1.14673i
\(568\) 0 0
\(569\) 731.512i 1.28561i 0.766030 + 0.642805i \(0.222230\pi\)
−0.766030 + 0.642805i \(0.777770\pi\)
\(570\) 0 0
\(571\) 13.5829i 0.0237879i −0.999929 0.0118939i \(-0.996214\pi\)
0.999929 0.0118939i \(-0.00378605\pi\)
\(572\) 0 0
\(573\) 416.253i 0.726444i
\(574\) 0 0
\(575\) −131.294 + 503.242i −0.228337 + 0.875204i
\(576\) 0 0
\(577\) −329.152 −0.570453 −0.285227 0.958460i \(-0.592069\pi\)
−0.285227 + 0.958460i \(0.592069\pi\)
\(578\) 0 0
\(579\) −801.414 −1.38413
\(580\) 0 0
\(581\) 1088.25 1.87306
\(582\) 0 0
\(583\) 226.138 0.387886
\(584\) 0 0
\(585\) 7.10288i 0.0121417i
\(586\) 0 0
\(587\) 924.711 1.57532 0.787658 0.616112i \(-0.211293\pi\)
0.787658 + 0.616112i \(0.211293\pi\)
\(588\) 0 0
\(589\) 479.742i 0.814502i
\(590\) 0 0
\(591\) −617.539 −1.04491
\(592\) 0 0
\(593\) 820.637 1.38387 0.691937 0.721958i \(-0.256758\pi\)
0.691937 + 0.721958i \(0.256758\pi\)
\(594\) 0 0
\(595\) 215.124i 0.361553i
\(596\) 0 0
\(597\) 381.240i 0.638594i
\(598\) 0 0
\(599\) −472.512 −0.788836 −0.394418 0.918931i \(-0.629054\pi\)
−0.394418 + 0.918931i \(0.629054\pi\)
\(600\) 0 0
\(601\) 530.323 0.882402 0.441201 0.897408i \(-0.354553\pi\)
0.441201 + 0.897408i \(0.354553\pi\)
\(602\) 0 0
\(603\) 187.773i 0.311397i
\(604\) 0 0
\(605\) 212.285i 0.350884i
\(606\) 0 0
\(607\) −214.837 −0.353933 −0.176967 0.984217i \(-0.556628\pi\)
−0.176967 + 0.984217i \(0.556628\pi\)
\(608\) 0 0
\(609\) 81.4321i 0.133714i
\(610\) 0 0
\(611\) −159.152 −0.260477
\(612\) 0 0
\(613\) 9.57030i 0.0156122i −0.999970 0.00780612i \(-0.997515\pi\)
0.999970 0.00780612i \(-0.00248479\pi\)
\(614\) 0 0
\(615\) 102.369i 0.166454i
\(616\) 0 0
\(617\) 184.496i 0.299022i −0.988760 0.149511i \(-0.952230\pi\)
0.988760 0.149511i \(-0.0477699\pi\)
\(618\) 0 0
\(619\) 708.335i 1.14432i 0.820141 + 0.572161i \(0.193895\pi\)
−0.820141 + 0.572161i \(0.806105\pi\)
\(620\) 0 0
\(621\) −167.864 + 643.414i −0.270313 + 1.03609i
\(622\) 0 0
\(623\) 73.5500 0.118058
\(624\) 0 0
\(625\) 451.637 0.722620
\(626\) 0 0
\(627\) 516.775 0.824203
\(628\) 0 0
\(629\) 411.475 0.654173
\(630\) 0 0
\(631\) 1159.48i 1.83753i −0.394809 0.918763i \(-0.629189\pi\)
0.394809 0.918763i \(-0.370811\pi\)
\(632\) 0 0
\(633\) −83.1406 −0.131344
\(634\) 0 0
\(635\) 222.988i 0.351161i
\(636\) 0 0
\(637\) 157.298 0.246936
\(638\) 0 0
\(639\) −146.566 −0.229367
\(640\) 0 0
\(641\) 760.733i 1.18679i 0.804911 + 0.593395i \(0.202213\pi\)
−0.804911 + 0.593395i \(0.797787\pi\)
\(642\) 0 0
\(643\) 529.534i 0.823537i −0.911289 0.411768i \(-0.864911\pi\)
0.911289 0.411768i \(-0.135089\pi\)
\(644\) 0 0
\(645\) 27.7249 0.0429843
\(646\) 0 0
\(647\) −91.4141 −0.141289 −0.0706446 0.997502i \(-0.522506\pi\)
−0.0706446 + 0.997502i \(0.522506\pi\)
\(648\) 0 0
\(649\) 791.264i 1.21920i
\(650\) 0 0
\(651\) 1127.77i 1.73236i
\(652\) 0 0
\(653\) −711.727 −1.08993 −0.544967 0.838458i \(-0.683458\pi\)
−0.544967 + 0.838458i \(0.683458\pi\)
\(654\) 0 0
\(655\) 145.455i 0.222068i
\(656\) 0 0
\(657\) −205.078 −0.312143
\(658\) 0 0
\(659\) 342.546i 0.519797i 0.965636 + 0.259899i \(0.0836891\pi\)
−0.965636 + 0.259899i \(0.916311\pi\)
\(660\) 0 0
\(661\) 621.111i 0.939654i −0.882759 0.469827i \(-0.844316\pi\)
0.882759 0.469827i \(-0.155684\pi\)
\(662\) 0 0
\(663\) 98.1294i 0.148008i
\(664\) 0 0
\(665\) 190.402i 0.286318i
\(666\) 0 0
\(667\) −16.9016 + 64.7830i −0.0253397 + 0.0971260i
\(668\) 0 0
\(669\) −435.728 −0.651313
\(670\) 0 0
\(671\) −1090.64 −1.62539
\(672\) 0 0
\(673\) −34.9515 −0.0519339 −0.0259669 0.999663i \(-0.508266\pi\)
−0.0259669 + 0.999663i \(0.508266\pi\)
\(674\) 0 0
\(675\) 653.748 0.968516
\(676\) 0 0
\(677\) 313.876i 0.463628i 0.972760 + 0.231814i \(0.0744661\pi\)
−0.972760 + 0.231814i \(0.925534\pi\)
\(678\) 0 0
\(679\) 1256.37 1.85033
\(680\) 0 0
\(681\) 270.588i 0.397339i
\(682\) 0 0
\(683\) −469.802 −0.687850 −0.343925 0.938997i \(-0.611757\pi\)
−0.343925 + 0.938997i \(0.611757\pi\)
\(684\) 0 0
\(685\) −302.825 −0.442080
\(686\) 0 0
\(687\) 1112.75i 1.61973i
\(688\) 0 0
\(689\) 38.0060i 0.0551611i
\(690\) 0 0
\(691\) −483.150 −0.699204 −0.349602 0.936898i \(-0.613683\pi\)
−0.349602 + 0.936898i \(0.613683\pi\)
\(692\) 0 0
\(693\) 283.225 0.408694
\(694\) 0 0
\(695\) 341.940i 0.492000i
\(696\) 0 0
\(697\) 329.724i 0.473062i
\(698\) 0 0
\(699\) 314.061 0.449300
\(700\) 0 0
\(701\) 1139.30i 1.62524i 0.582792 + 0.812622i \(0.301960\pi\)
−0.582792 + 0.812622i \(0.698040\pi\)
\(702\) 0 0
\(703\) −364.187 −0.518048
\(704\) 0 0
\(705\) 245.914i 0.348814i
\(706\) 0 0
\(707\) 766.266i 1.08383i
\(708\) 0 0
\(709\) 167.224i 0.235859i −0.993022 0.117930i \(-0.962374\pi\)
0.993022 0.117930i \(-0.0376258\pi\)
\(710\) 0 0
\(711\) 147.784i 0.207854i
\(712\) 0 0
\(713\) 234.073 897.192i 0.328294 1.25833i
\(714\) 0 0
\(715\) 67.1000 0.0938462
\(716\) 0 0
\(717\) −755.589 −1.05382
\(718\) 0 0
\(719\) 402.713 0.560101 0.280050 0.959985i \(-0.409649\pi\)
0.280050 + 0.959985i \(0.409649\pi\)
\(720\) 0 0
\(721\) 1157.02 1.60475
\(722\) 0 0
\(723\) 847.148i 1.17171i
\(724\) 0 0
\(725\) 65.8235 0.0907910
\(726\) 0 0
\(727\) 838.104i 1.15283i 0.817159 + 0.576413i \(0.195548\pi\)
−0.817159 + 0.576413i \(0.804452\pi\)
\(728\) 0 0
\(729\) 809.784 1.11082
\(730\) 0 0
\(731\) 89.3001 0.122162
\(732\) 0 0
\(733\) 303.246i 0.413706i −0.978372 0.206853i \(-0.933678\pi\)
0.978372 0.206853i \(-0.0663221\pi\)
\(734\) 0 0
\(735\) 243.050i 0.330681i
\(736\) 0 0
\(737\) −1773.86 −2.40687
\(738\) 0 0
\(739\) 796.461 1.07776 0.538878 0.842384i \(-0.318849\pi\)
0.538878 + 0.842384i \(0.318849\pi\)
\(740\) 0 0
\(741\) 86.8522i 0.117209i
\(742\) 0 0
\(743\) 166.811i 0.224511i 0.993679 + 0.112255i \(0.0358075\pi\)
−0.993679 + 0.112255i \(0.964193\pi\)
\(744\) 0 0
\(745\) −422.913 −0.567668
\(746\) 0 0
\(747\) 178.825i 0.239391i
\(748\) 0 0
\(749\) 1624.37 2.16872
\(750\) 0 0
\(751\) 283.111i 0.376979i −0.982075 0.188489i \(-0.939641\pi\)
0.982075 0.188489i \(-0.0603591\pi\)
\(752\) 0 0
\(753\) 840.919i 1.11676i
\(754\) 0 0
\(755\) 178.526i 0.236458i
\(756\) 0 0
\(757\) 648.535i 0.856718i −0.903609 0.428359i \(-0.859092\pi\)
0.903609 0.428359i \(-0.140908\pi\)
\(758\) 0 0
\(759\) −966.450 252.143i −1.27332 0.332204i
\(760\) 0 0
\(761\) −1193.53 −1.56837 −0.784183 0.620530i \(-0.786918\pi\)
−0.784183 + 0.620530i \(0.786918\pi\)
\(762\) 0 0
\(763\) −1774.82 −2.32611
\(764\) 0 0
\(765\) −35.3500 −0.0462091
\(766\) 0 0
\(767\) 132.984 0.173383
\(768\) 0 0
\(769\) 293.514i 0.381683i 0.981621 + 0.190841i \(0.0611216\pi\)
−0.981621 + 0.190841i \(0.938878\pi\)
\(770\) 0 0
\(771\) −524.301 −0.680028
\(772\) 0 0
\(773\) 306.498i 0.396505i 0.980151 + 0.198252i \(0.0635266\pi\)
−0.980151 + 0.198252i \(0.936473\pi\)
\(774\) 0 0
\(775\) −911.602 −1.17626
\(776\) 0 0
\(777\) 856.125 1.10183
\(778\) 0 0
\(779\) 291.831i 0.374623i
\(780\) 0 0
\(781\) 1384.59i 1.77284i
\(782\) 0 0
\(783\) 84.1578 0.107481
\(784\) 0 0
\(785\) −75.6876 −0.0964173
\(786\) 0 0
\(787\) 1244.58i 1.58142i 0.612192 + 0.790709i \(0.290288\pi\)
−0.612192 + 0.790709i \(0.709712\pi\)
\(788\) 0 0
\(789\) 126.104i 0.159828i
\(790\) 0 0
\(791\) 1297.92 1.64087
\(792\) 0 0
\(793\) 183.299i 0.231146i
\(794\) 0 0
\(795\) −58.7251 −0.0738681
\(796\) 0 0
\(797\) 1442.73i 1.81020i −0.425201 0.905099i \(-0.639797\pi\)
0.425201 0.905099i \(-0.360203\pi\)
\(798\) 0 0
\(799\) 792.073i 0.991330i
\(800\) 0 0
\(801\) 12.0860i 0.0150886i
\(802\) 0 0
\(803\) 1937.35i 2.41264i
\(804\) 0 0
\(805\) 92.9000 356.081i 0.115404 0.442336i
\(806\) 0 0
\(807\) 85.3735 0.105791
\(808\) 0 0
\(809\) 615.275 0.760538 0.380269 0.924876i \(-0.375831\pi\)
0.380269 + 0.924876i \(0.375831\pi\)
\(810\) 0 0
\(811\) 828.711 1.02184 0.510919 0.859629i \(-0.329305\pi\)
0.510919 + 0.859629i \(0.329305\pi\)
\(812\) 0 0
\(813\) 1023.62 1.25907
\(814\) 0 0
\(815\) 19.2541i 0.0236247i
\(816\) 0 0
\(817\) −79.0375 −0.0967412
\(818\) 0 0
\(819\) 47.6004i 0.0581202i
\(820\) 0 0
\(821\) −141.875 −0.172808 −0.0864038 0.996260i \(-0.527538\pi\)
−0.0864038 + 0.996260i \(0.527538\pi\)
\(822\) 0 0
\(823\) −670.764 −0.815023 −0.407512 0.913200i \(-0.633603\pi\)
−0.407512 + 0.913200i \(0.633603\pi\)
\(824\) 0 0
\(825\) 981.972i 1.19027i
\(826\) 0 0
\(827\) 1558.09i 1.88402i 0.335579 + 0.942012i \(0.391068\pi\)
−0.335579 + 0.942012i \(0.608932\pi\)
\(828\) 0 0
\(829\) −29.8750 −0.0360374 −0.0180187 0.999838i \(-0.505736\pi\)
−0.0180187 + 0.999838i \(0.505736\pi\)
\(830\) 0 0
\(831\) 357.623 0.430353
\(832\) 0 0
\(833\) 782.850i 0.939796i
\(834\) 0 0
\(835\) 427.158i 0.511566i
\(836\) 0 0
\(837\) −1165.52 −1.39249
\(838\) 0 0
\(839\) 1039.67i 1.23918i 0.784927 + 0.619588i \(0.212700\pi\)
−0.784927 + 0.619588i \(0.787300\pi\)
\(840\) 0 0
\(841\) −832.526 −0.989924
\(842\) 0 0
\(843\) 374.509i 0.444258i
\(844\) 0 0
\(845\) 249.854i 0.295685i
\(846\) 0 0
\(847\) 1422.64i 1.67962i
\(848\) 0 0
\(849\) 258.000i 0.303887i
\(850\) 0 0
\(851\) 681.087 + 177.693i 0.800338 + 0.208805i
\(852\) 0 0
\(853\) −729.350 −0.855041 −0.427520 0.904006i \(-0.640613\pi\)
−0.427520 + 0.904006i \(0.640613\pi\)
\(854\) 0 0
\(855\) 31.2875 0.0365935
\(856\) 0 0
\(857\) −211.076 −0.246297 −0.123148 0.992388i \(-0.539299\pi\)
−0.123148 + 0.992388i \(0.539299\pi\)
\(858\) 0 0
\(859\) 722.573 0.841180 0.420590 0.907251i \(-0.361823\pi\)
0.420590 + 0.907251i \(0.361823\pi\)
\(860\) 0 0
\(861\) 686.032i 0.796785i
\(862\) 0 0
\(863\) 1521.49 1.76302 0.881510 0.472166i \(-0.156528\pi\)
0.881510 + 0.472166i \(0.156528\pi\)
\(864\) 0 0
\(865\) 164.984i 0.190733i
\(866\) 0 0
\(867\) −292.377 −0.337228
\(868\) 0 0
\(869\) −1396.10 −1.60656
\(870\) 0 0
\(871\) 298.126i 0.342280i
\(872\) 0 0
\(873\) 206.452i 0.236486i
\(874\) 0 0
\(875\) −761.800 −0.870629
\(876\) 0 0
\(877\) 954.500 1.08837 0.544185 0.838965i \(-0.316839\pi\)
0.544185 + 0.838965i \(0.316839\pi\)
\(878\) 0 0
\(879\) 679.366i 0.772885i
\(880\) 0 0
\(881\) 1319.79i 1.49806i 0.662539 + 0.749028i \(0.269479\pi\)
−0.662539 + 0.749028i \(0.730521\pi\)
\(882\) 0 0
\(883\) 634.500 0.718573 0.359286 0.933227i \(-0.383020\pi\)
0.359286 + 0.933227i \(0.383020\pi\)
\(884\) 0 0
\(885\) 205.481i 0.232182i
\(886\) 0 0
\(887\) 847.936 0.955959 0.477980 0.878371i \(-0.341369\pi\)
0.477980 + 0.878371i \(0.341369\pi\)
\(888\) 0 0
\(889\) 1494.36i 1.68095i
\(890\) 0 0
\(891\) 1009.32i 1.13280i
\(892\) 0 0
\(893\) 701.046i 0.785046i
\(894\) 0 0
\(895\) 502.506i 0.561459i
\(896\) 0 0
\(897\) −42.3765 + 162.427i −0.0472425 + 0.181078i
\(898\) 0 0
\(899\) −117.352 −0.130536
\(900\) 0 0
\(901\) −189.150 −0.209933
\(902\) 0 0
\(903\) 185.800 0.205759
\(904\) 0 0
\(905\) 273.212 0.301892
\(906\) 0 0
\(907\) 50.8283i 0.0560401i 0.999607 + 0.0280200i \(0.00892022\pi\)
−0.999607 + 0.0280200i \(0.991080\pi\)
\(908\) 0 0
\(909\) −125.916 −0.138521
\(910\) 0 0
\(911\) 1166.58i 1.28055i −0.768145 0.640276i \(-0.778820\pi\)
0.768145 0.640276i \(-0.221180\pi\)
\(912\) 0 0
\(913\) 1689.34 1.85031
\(914\) 0 0
\(915\) 283.225 0.309536
\(916\) 0 0
\(917\) 974.773i 1.06300i
\(918\) 0 0
\(919\) 1245.15i 1.35490i 0.735570 + 0.677449i \(0.236914\pi\)
−0.735570 + 0.677449i \(0.763086\pi\)
\(920\) 0 0
\(921\) −44.4407 −0.0482526
\(922\) 0 0
\(923\) −232.702 −0.252114
\(924\) 0 0
\(925\) 692.026i 0.748137i
\(926\) 0 0
\(927\) 190.126i 0.205099i
\(928\) 0 0
\(929\) 227.748 0.245154 0.122577 0.992459i \(-0.460884\pi\)
0.122577 + 0.992459i \(0.460884\pi\)
\(930\) 0 0
\(931\) 692.884i 0.744236i
\(932\) 0 0
\(933\) −236.889 −0.253900
\(934\) 0 0
\(935\) 333.947i 0.357162i
\(936\) 0 0
\(937\) 1020.58i 1.08920i −0.838697 0.544598i \(-0.816682\pi\)
0.838697 0.544598i \(-0.183318\pi\)
\(938\) 0 0
\(939\) 568.713i 0.605659i
\(940\) 0 0
\(941\) 687.463i 0.730567i 0.930896 + 0.365283i \(0.119028\pi\)
−0.930896 + 0.365283i \(0.880972\pi\)
\(942\) 0 0
\(943\) −142.389 + 545.770i −0.150996 + 0.578760i
\(944\) 0 0
\(945\) −462.575 −0.489497
\(946\) 0 0
\(947\) −1524.63 −1.60995 −0.804977 0.593306i \(-0.797822\pi\)
−0.804977 + 0.593306i \(0.797822\pi\)
\(948\) 0 0
\(949\) −325.602 −0.343100
\(950\) 0 0
\(951\) 223.959 0.235499
\(952\) 0 0
\(953\) 428.679i 0.449821i 0.974379 + 0.224910i \(0.0722089\pi\)
−0.974379 + 0.224910i \(0.927791\pi\)
\(954\) 0 0
\(955\) −238.075 −0.249293
\(956\) 0 0
\(957\) 126.411i 0.132090i
\(958\) 0 0
\(959\) −2029.40 −2.11616
\(960\) 0 0
\(961\) 664.223 0.691179
\(962\) 0 0
\(963\) 266.923i 0.277179i
\(964\) 0 0
\(965\) 458.368i 0.474992i
\(966\) 0 0
\(967\) 345.361 0.357147 0.178573 0.983927i \(-0.442852\pi\)
0.178573 + 0.983927i \(0.442852\pi\)
\(968\) 0 0
\(969\) −432.250 −0.446078
\(970\) 0 0
\(971\) 1775.98i 1.82902i −0.404563 0.914510i \(-0.632576\pi\)
0.404563 0.914510i \(-0.367424\pi\)
\(972\) 0 0
\(973\) 2291.53i 2.35512i
\(974\) 0 0
\(975\) 165.036 0.169268
\(976\) 0 0
\(977\) 1117.25i 1.14355i −0.820410 0.571776i \(-0.806255\pi\)
0.820410 0.571776i \(-0.193745\pi\)
\(978\) 0 0
\(979\) 114.175 0.116624
\(980\) 0 0
\(981\) 291.646i 0.297294i
\(982\) 0 0
\(983\) 783.335i 0.796882i 0.917194 + 0.398441i \(0.130449\pi\)
−0.917194 + 0.398441i \(0.869551\pi\)
\(984\) 0 0
\(985\) 353.201i 0.358579i
\(986\) 0 0
\(987\) 1648.01i 1.66971i
\(988\) 0 0
\(989\) 147.813 + 38.5637i 0.149457 + 0.0389926i
\(990\) 0 0
\(991\) 575.612 0.580840 0.290420 0.956899i \(-0.406205\pi\)
0.290420 + 0.956899i \(0.406205\pi\)
\(992\) 0 0
\(993\) 85.3735 0.0859753
\(994\) 0 0
\(995\) −218.050 −0.219146
\(996\) 0 0
\(997\) 673.875 0.675903 0.337951 0.941164i \(-0.390266\pi\)
0.337951 + 0.941164i \(0.390266\pi\)
\(998\) 0 0
\(999\) 884.782i 0.885668i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 92.3.d.a.45.1 4
3.2 odd 2 828.3.b.a.505.3 4
4.3 odd 2 368.3.f.b.321.3 4
5.2 odd 4 2300.3.d.a.1149.6 8
5.3 odd 4 2300.3.d.a.1149.3 8
5.4 even 2 2300.3.f.a.1701.4 4
8.3 odd 2 1472.3.f.e.321.2 4
8.5 even 2 1472.3.f.d.321.4 4
23.22 odd 2 inner 92.3.d.a.45.2 yes 4
69.68 even 2 828.3.b.a.505.2 4
92.91 even 2 368.3.f.b.321.4 4
115.22 even 4 2300.3.d.a.1149.5 8
115.68 even 4 2300.3.d.a.1149.4 8
115.114 odd 2 2300.3.f.a.1701.3 4
184.45 odd 2 1472.3.f.d.321.3 4
184.91 even 2 1472.3.f.e.321.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
92.3.d.a.45.1 4 1.1 even 1 trivial
92.3.d.a.45.2 yes 4 23.22 odd 2 inner
368.3.f.b.321.3 4 4.3 odd 2
368.3.f.b.321.4 4 92.91 even 2
828.3.b.a.505.2 4 69.68 even 2
828.3.b.a.505.3 4 3.2 odd 2
1472.3.f.d.321.3 4 184.45 odd 2
1472.3.f.d.321.4 4 8.5 even 2
1472.3.f.e.321.1 4 184.91 even 2
1472.3.f.e.321.2 4 8.3 odd 2
2300.3.d.a.1149.3 8 5.3 odd 4
2300.3.d.a.1149.4 8 115.68 even 4
2300.3.d.a.1149.5 8 115.22 even 4
2300.3.d.a.1149.6 8 5.2 odd 4
2300.3.f.a.1701.3 4 115.114 odd 2
2300.3.f.a.1701.4 4 5.4 even 2