Properties

Label 912.6.a.o
Level $912$
Weight $6$
Character orbit 912.a
Self dual yes
Analytic conductor $146.270$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [912,6,Mod(1,912)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("912.1"); S:= CuspForms(chi, 6); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(912, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 6, names="a")
 
Level: \( N \) \(=\) \( 912 = 2^{4} \cdot 3 \cdot 19 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 912.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,0,27,0,63] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(146.270043669\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: 3.3.2922585.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 360x + 60 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2\cdot 3 \)
Twist minimal: no (minimal twist has level 114)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + 9 q^{3} + ( - \beta_{2} + \beta_1 + 21) q^{5} + (4 \beta_{2} + \beta_1 - 40) q^{7} + 81 q^{9} + ( - 4 \beta_{2} - 13 \beta_1 + 152) q^{11} + ( - 3 \beta_{2} - 4 \beta_1 - 273) q^{13} + ( - 9 \beta_{2} + 9 \beta_1 + 189) q^{15}+ \cdots + ( - 324 \beta_{2} - 1053 \beta_1 + 12312) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + 27 q^{3} + 63 q^{5} - 125 q^{7} + 243 q^{9} + 473 q^{11} - 812 q^{13} + 567 q^{15} - 1661 q^{17} - 1083 q^{19} - 1125 q^{21} - 514 q^{23} + 7662 q^{25} + 2187 q^{27} + 5826 q^{29} - 20488 q^{31} + 4257 q^{33}+ \cdots + 38313 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{3} - x^{2} - 360x + 60 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( \nu^{2} + 21\nu - 250 ) / 8 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( -\nu^{2} + 3\nu + 238 ) / 4 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{2} + 2\beta _1 + 3 ) / 6 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( -7\beta_{2} + 2\beta _1 + 479 ) / 2 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0.166602
−18.5652
19.3986
0 9.00000 0 −69.4272 0 167.663 0 81.0000 0
1.2 0 9.00000 0 24.6902 0 −239.263 0 81.0000 0
1.3 0 9.00000 0 107.737 0 −53.4003 0 81.0000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(3\) \( -1 \)
\(19\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 912.6.a.o 3
4.b odd 2 1 114.6.a.h 3
12.b even 2 1 342.6.a.o 3
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
114.6.a.h 3 4.b odd 2 1
342.6.a.o 3 12.b even 2 1
912.6.a.o 3 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5}^{3} - 63T_{5}^{2} - 6534T_{5} + 184680 \) acting on \(S_{6}^{\mathrm{new}}(\Gamma_0(912))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{3} \) Copy content Toggle raw display
$3$ \( (T - 9)^{3} \) Copy content Toggle raw display
$5$ \( T^{3} - 63 T^{2} + \cdots + 184680 \) Copy content Toggle raw display
$7$ \( T^{3} + 125 T^{2} + \cdots - 2142176 \) Copy content Toggle raw display
$11$ \( T^{3} - 473 T^{2} + \cdots + 158381280 \) Copy content Toggle raw display
$13$ \( T^{3} + 812 T^{2} + \cdots + 571824 \) Copy content Toggle raw display
$17$ \( T^{3} + \cdots - 1400814036 \) Copy content Toggle raw display
$19$ \( (T + 361)^{3} \) Copy content Toggle raw display
$23$ \( T^{3} + \cdots + 18455076000 \) Copy content Toggle raw display
$29$ \( T^{3} + \cdots + 19566842760 \) Copy content Toggle raw display
$31$ \( T^{3} + \cdots + 256187655168 \) Copy content Toggle raw display
$37$ \( T^{3} + \cdots + 250544964416 \) Copy content Toggle raw display
$41$ \( T^{3} + \cdots + 16913974176 \) Copy content Toggle raw display
$43$ \( T^{3} + \cdots + 1232020979664 \) Copy content Toggle raw display
$47$ \( T^{3} + \cdots - 497752133400 \) Copy content Toggle raw display
$53$ \( T^{3} + \cdots + 484621940664 \) Copy content Toggle raw display
$59$ \( T^{3} + \cdots + 10803978277632 \) Copy content Toggle raw display
$61$ \( T^{3} + \cdots + 35958120853924 \) Copy content Toggle raw display
$67$ \( T^{3} + \cdots - 18394458377472 \) Copy content Toggle raw display
$71$ \( T^{3} + \cdots + 35051765760000 \) Copy content Toggle raw display
$73$ \( T^{3} + \cdots + 53634950800100 \) Copy content Toggle raw display
$79$ \( T^{3} + \cdots + 30939023653120 \) Copy content Toggle raw display
$83$ \( T^{3} + \cdots - 365118946951680 \) Copy content Toggle raw display
$89$ \( T^{3} + \cdots - 196132218012936 \) Copy content Toggle raw display
$97$ \( T^{3} + \cdots - 156744792431720 \) Copy content Toggle raw display
show more
show less