Properties

Label 912.4.a.v
Level $912$
Weight $4$
Character orbit 912.a
Self dual yes
Analytic conductor $53.810$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [912,4,Mod(1,912)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("912.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(912, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 912 = 2^{4} \cdot 3 \cdot 19 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 912.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,12,0,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(53.8097419252\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\mathbb{Q}[x]/(x^{4} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 37x^{2} + 90x + 32 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: no (minimal twist has level 456)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + 3 q^{3} + ( - \beta_1 + 1) q^{5} + (\beta_{2} - \beta_1 + 3) q^{7} + 9 q^{9} + (\beta_{3} - 2 \beta_{2} - 2 \beta_1 + 2) q^{11} + (\beta_{3} + 3 \beta_{2} - \beta_1 + 7) q^{13} + ( - 3 \beta_1 + 3) q^{15}+ \cdots + (9 \beta_{3} - 18 \beta_{2} + \cdots + 18) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 12 q^{3} + 4 q^{5} + 14 q^{7} + 36 q^{9} + 4 q^{11} + 34 q^{13} + 12 q^{15} + 6 q^{17} + 76 q^{19} + 42 q^{21} + 28 q^{23} + 218 q^{25} + 108 q^{27} + 122 q^{29} + 406 q^{31} + 12 q^{33} + 558 q^{35}+ \cdots + 36 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - x^{3} - 37x^{2} + 90x + 32 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu^{2} + \nu - 19 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{3} + 3\nu^{2} - 25\nu - 10 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{2} + 5\nu - 20 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{3} - \beta _1 + 1 ) / 4 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( -\beta_{3} + 5\beta _1 + 75 ) / 4 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( 7\beta_{3} + \beta_{2} - 10\beta _1 - 40 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−6.58389
4.37109
3.52797
−0.315175
0 3.00000 0 −16.7637 0 −15.5196 0 9.00000 0
1.2 0 3.00000 0 −3.47753 0 20.0805 0 9.00000 0
1.3 0 3.00000 0 4.02542 0 −10.9228 0 9.00000 0
1.4 0 3.00000 0 20.2158 0 20.3619 0 9.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(3\) \( -1 \)
\(19\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 912.4.a.v 4
4.b odd 2 1 456.4.a.d 4
12.b even 2 1 1368.4.a.h 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
456.4.a.d 4 4.b odd 2 1
912.4.a.v 4 1.a even 1 1 trivial
1368.4.a.h 4 12.b even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(912))\):

\( T_{5}^{4} - 4T_{5}^{3} - 351T_{5}^{2} + 234T_{5} + 4744 \) Copy content Toggle raw display
\( T_{7}^{4} - 14T_{7}^{3} - 491T_{7}^{2} + 3956T_{7} + 69312 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \) Copy content Toggle raw display
$3$ \( (T - 3)^{4} \) Copy content Toggle raw display
$5$ \( T^{4} - 4 T^{3} + \cdots + 4744 \) Copy content Toggle raw display
$7$ \( T^{4} - 14 T^{3} + \cdots + 69312 \) Copy content Toggle raw display
$11$ \( T^{4} - 4 T^{3} + \cdots + 1427568 \) Copy content Toggle raw display
$13$ \( T^{4} - 34 T^{3} + \cdots - 50368 \) Copy content Toggle raw display
$17$ \( T^{4} - 6 T^{3} + \cdots + 3579172 \) Copy content Toggle raw display
$19$ \( (T - 19)^{4} \) Copy content Toggle raw display
$23$ \( T^{4} - 28 T^{3} + \cdots - 16129728 \) Copy content Toggle raw display
$29$ \( T^{4} - 122 T^{3} + \cdots - 140199008 \) Copy content Toggle raw display
$31$ \( T^{4} - 406 T^{3} + \cdots - 504207936 \) Copy content Toggle raw display
$37$ \( T^{4} + 298 T^{3} + \cdots - 401007616 \) Copy content Toggle raw display
$41$ \( T^{4} + 410 T^{3} + \cdots - 520350720 \) Copy content Toggle raw display
$43$ \( T^{4} + \cdots - 19506717088 \) Copy content Toggle raw display
$47$ \( T^{4} - 398 T^{3} + \cdots - 1107396 \) Copy content Toggle raw display
$53$ \( T^{4} + 186 T^{3} + \cdots + 471097888 \) Copy content Toggle raw display
$59$ \( T^{4} + \cdots - 22500689920 \) Copy content Toggle raw display
$61$ \( T^{4} + \cdots + 5246148412 \) Copy content Toggle raw display
$67$ \( T^{4} + \cdots + 38301585408 \) Copy content Toggle raw display
$71$ \( T^{4} + \cdots - 15379571712 \) Copy content Toggle raw display
$73$ \( T^{4} + \cdots + 217739666388 \) Copy content Toggle raw display
$79$ \( T^{4} + \cdots - 252780395008 \) Copy content Toggle raw display
$83$ \( T^{4} + \cdots - 31109315968 \) Copy content Toggle raw display
$89$ \( T^{4} + \cdots + 538261932672 \) Copy content Toggle raw display
$97$ \( T^{4} + \cdots + 699514334000 \) Copy content Toggle raw display
show more
show less