Properties

Label 912.4.a.t
Level $912$
Weight $4$
Character orbit 912.a
Self dual yes
Analytic conductor $53.810$
Analytic rank $1$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [912,4,Mod(1,912)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("912.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(912, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 912 = 2^{4} \cdot 3 \cdot 19 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 912.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,-12,0,-6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(53.8097419252\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: \(\mathbb{Q}[x]/(x^{4} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 27x^{2} - 13x + 88 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: no (minimal twist has level 57)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - 3 q^{3} + ( - \beta_{3} - 2) q^{5} + ( - \beta_{3} + 2 \beta_{2} - 10) q^{7} + 9 q^{9} + (2 \beta_{3} - 3 \beta_{2} - 2 \beta_1 + 1) q^{11} + (3 \beta_1 + 17) q^{13} + (3 \beta_{3} + 6) q^{15} + (5 \beta_{3} + 10) q^{17}+ \cdots + (18 \beta_{3} - 27 \beta_{2} + \cdots + 9) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 12 q^{3} - 6 q^{5} - 38 q^{7} + 36 q^{9} + 68 q^{13} + 18 q^{15} + 30 q^{17} - 76 q^{19} + 114 q^{21} + 246 q^{23} + 118 q^{25} - 108 q^{27} + 6 q^{29} - 188 q^{31} + 426 q^{35} + 620 q^{37} - 204 q^{39}+ \cdots - 2188 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - x^{3} - 27x^{2} - 13x + 88 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( 4\nu - 1 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{3} - 2\nu^{2} - 19\nu + 2 ) / 2 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( -\nu^{3} + 6\nu^{2} + 11\nu - 56 ) / 2 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta _1 + 1 ) / 4 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( \beta_{3} + \beta_{2} + \beta _1 + 28 ) / 2 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( 4\beta_{3} + 12\beta_{2} + 23\beta _1 + 123 ) / 4 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−3.61122
5.67783
−2.67253
1.60592
0 −3.00000 0 −16.8076 0 −27.3697 0 9.00000 0
1.2 0 −3.00000 0 −10.4211 0 −5.73511 0 9.00000 0
1.3 0 −3.00000 0 9.72745 0 21.1323 0 9.00000 0
1.4 0 −3.00000 0 11.5013 0 −26.0275 0 9.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(3\) \( +1 \)
\(19\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 912.4.a.t 4
4.b odd 2 1 57.4.a.d 4
12.b even 2 1 171.4.a.h 4
20.d odd 2 1 1425.4.a.k 4
76.d even 2 1 1083.4.a.d 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
57.4.a.d 4 4.b odd 2 1
171.4.a.h 4 12.b even 2 1
912.4.a.t 4 1.a even 1 1 trivial
1083.4.a.d 4 76.d even 2 1
1425.4.a.k 4 20.d odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(912))\):

\( T_{5}^{4} + 6T_{5}^{3} - 291T_{5}^{2} - 672T_{5} + 19596 \) Copy content Toggle raw display
\( T_{7}^{4} + 38T_{7}^{3} - 231T_{7}^{2} - 17440T_{7} - 86336 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \) Copy content Toggle raw display
$3$ \( (T + 3)^{4} \) Copy content Toggle raw display
$5$ \( T^{4} + 6 T^{3} + \cdots + 19596 \) Copy content Toggle raw display
$7$ \( T^{4} + 38 T^{3} + \cdots - 86336 \) Copy content Toggle raw display
$11$ \( T^{4} - 3555 T^{2} + \cdots + 611496 \) Copy content Toggle raw display
$13$ \( T^{4} - 68 T^{3} + \cdots + 1448560 \) Copy content Toggle raw display
$17$ \( T^{4} - 30 T^{3} + \cdots + 12247500 \) Copy content Toggle raw display
$19$ \( (T + 19)^{4} \) Copy content Toggle raw display
$23$ \( T^{4} - 246 T^{3} + \cdots - 23258112 \) Copy content Toggle raw display
$29$ \( T^{4} - 6 T^{3} + \cdots + 266996640 \) Copy content Toggle raw display
$31$ \( T^{4} + 188 T^{3} + \cdots + 26116096 \) Copy content Toggle raw display
$37$ \( T^{4} + \cdots - 2908078592 \) Copy content Toggle raw display
$41$ \( T^{4} + \cdots + 5830938624 \) Copy content Toggle raw display
$43$ \( T^{4} + \cdots + 4295336224 \) Copy content Toggle raw display
$47$ \( T^{4} + \cdots - 2545654992 \) Copy content Toggle raw display
$53$ \( T^{4} + \cdots + 8557525344 \) Copy content Toggle raw display
$59$ \( T^{4} + \cdots - 15363391488 \) Copy content Toggle raw display
$61$ \( T^{4} + \cdots + 1866482620 \) Copy content Toggle raw display
$67$ \( T^{4} + \cdots + 108714503680 \) Copy content Toggle raw display
$71$ \( T^{4} + \cdots + 94181583360 \) Copy content Toggle raw display
$73$ \( T^{4} + \cdots - 61797409892 \) Copy content Toggle raw display
$79$ \( T^{4} + \cdots + 56420337664 \) Copy content Toggle raw display
$83$ \( T^{4} + \cdots + 526934353536 \) Copy content Toggle raw display
$89$ \( T^{4} + \cdots - 181099849920 \) Copy content Toggle raw display
$97$ \( T^{4} + \cdots - 73056760016 \) Copy content Toggle raw display
show more
show less