Properties

Label 912.4.a.r
Level $912$
Weight $4$
Character orbit 912.a
Self dual yes
Analytic conductor $53.810$
Analytic rank $1$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [912,4,Mod(1,912)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("912.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(912, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 912 = 2^{4} \cdot 3 \cdot 19 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 912.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,-12,0,-16] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(53.8097419252\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: 4.4.4914253.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 48x^{2} - 25x + 342 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: no (minimal twist has level 456)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - 3 q^{3} + (\beta_{3} + \beta_{2} - 4) q^{5} + (\beta_{3} + 2 \beta_{2} + \beta_1 + 4) q^{7} + 9 q^{9} + ( - 2 \beta_{2} - 3 \beta_1 + 8) q^{11} + ( - 7 \beta_{3} - 3 \beta_{2} + \cdots - 16) q^{13}+ \cdots + ( - 18 \beta_{2} - 27 \beta_1 + 72) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 12 q^{3} - 16 q^{5} + 14 q^{7} + 36 q^{9} + 38 q^{11} - 62 q^{13} + 48 q^{15} - 150 q^{17} + 76 q^{19} - 42 q^{21} + 146 q^{23} + 74 q^{25} - 108 q^{27} - 212 q^{29} + 562 q^{31} - 114 q^{33} + 510 q^{35}+ \cdots + 342 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - 48x^{2} - 25x + 342 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( 2\nu^{3} - \nu^{2} - 73\nu - 18 ) / 9 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{2} + 5\nu - 24 ) / 3 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( -2\nu^{2} + 2\nu + 48 ) / 3 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{3} + 2\beta_{2} ) / 4 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( -5\beta_{3} + 2\beta_{2} + 96 ) / 4 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( 17\beta_{3} + 37\beta_{2} + 9\beta _1 + 42 ) / 2 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−5.78404
−3.44015
6.63292
2.59127
0 −3.00000 0 −20.6478 0 −20.9397 0 9.00000 0
1.2 0 −3.00000 0 −7.97189 0 5.78057 0 9.00000 0
1.3 0 −3.00000 0 4.81161 0 34.6916 0 9.00000 0
1.4 0 −3.00000 0 7.80807 0 −5.53251 0 9.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(3\) \( +1 \)
\(19\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 912.4.a.r 4
4.b odd 2 1 456.4.a.e 4
12.b even 2 1 1368.4.a.j 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
456.4.a.e 4 4.b odd 2 1
912.4.a.r 4 1.a even 1 1 trivial
1368.4.a.j 4 12.b even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(912))\):

\( T_{5}^{4} + 16T_{5}^{3} - 159T_{5}^{2} - 1002T_{5} + 6184 \) Copy content Toggle raw display
\( T_{7}^{4} - 14T_{7}^{3} - 755T_{7}^{2} + 620T_{7} + 23232 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \) Copy content Toggle raw display
$3$ \( (T + 3)^{4} \) Copy content Toggle raw display
$5$ \( T^{4} + 16 T^{3} + \cdots + 6184 \) Copy content Toggle raw display
$7$ \( T^{4} - 14 T^{3} + \cdots + 23232 \) Copy content Toggle raw display
$11$ \( T^{4} - 38 T^{3} + \cdots + 1416000 \) Copy content Toggle raw display
$13$ \( T^{4} + 62 T^{3} + \cdots - 3035680 \) Copy content Toggle raw display
$17$ \( T^{4} + 150 T^{3} + \cdots - 92131124 \) Copy content Toggle raw display
$19$ \( (T - 19)^{4} \) Copy content Toggle raw display
$23$ \( T^{4} - 146 T^{3} + \cdots - 63221376 \) Copy content Toggle raw display
$29$ \( T^{4} + 212 T^{3} + \cdots - 174135440 \) Copy content Toggle raw display
$31$ \( T^{4} + \cdots - 1036065600 \) Copy content Toggle raw display
$37$ \( T^{4} + 502 T^{3} + \cdots + 170720768 \) Copy content Toggle raw display
$41$ \( T^{4} + 592 T^{3} + \cdots - 291598080 \) Copy content Toggle raw display
$43$ \( T^{4} + \cdots + 1266194768 \) Copy content Toggle raw display
$47$ \( T^{4} + \cdots - 23744617320 \) Copy content Toggle raw display
$53$ \( T^{4} + \cdots + 15426933904 \) Copy content Toggle raw display
$59$ \( T^{4} - 28 T^{3} + \cdots + 327376640 \) Copy content Toggle raw display
$61$ \( T^{4} + \cdots - 22839663788 \) Copy content Toggle raw display
$67$ \( T^{4} + \cdots - 283945462272 \) Copy content Toggle raw display
$71$ \( T^{4} + \cdots + 8949399552 \) Copy content Toggle raw display
$73$ \( T^{4} + \cdots + 12687615660 \) Copy content Toggle raw display
$79$ \( T^{4} + \cdots + 107529574400 \) Copy content Toggle raw display
$83$ \( T^{4} + \cdots - 804862025728 \) Copy content Toggle raw display
$89$ \( T^{4} + \cdots + 394732712592 \) Copy content Toggle raw display
$97$ \( T^{4} + \cdots - 90848070064 \) Copy content Toggle raw display
show more
show less