Defining parameters
| Level: | \( N \) | \(=\) | \( 912 = 2^{4} \cdot 3 \cdot 19 \) |
| Weight: | \( k \) | \(=\) | \( 2 \) |
| Character orbit: | \([\chi]\) | \(=\) | 912.j (of order \(2\) and degree \(1\)) |
| Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 24 \) |
| Character field: | \(\Q\) | ||
| Newform subspaces: | \( 0 \) | ||
| Sturm bound: | \(320\) | ||
| Trace bound: | \(0\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(912, [\chi])\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 168 | 0 | 168 |
| Cusp forms | 152 | 0 | 152 |
| Eisenstein series | 16 | 0 | 16 |
Decomposition of \(S_{2}^{\mathrm{old}}(912, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(912, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(24, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(456, [\chi])\)\(^{\oplus 2}\)