Properties

Label 9075.2.a.dr.1.5
Level $9075$
Weight $2$
Character 9075.1
Self dual yes
Analytic conductor $72.464$
Analytic rank $1$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [9075,2,Mod(1,9075)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("9075.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(9075, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 9075 = 3 \cdot 5^{2} \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 9075.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,1,-6,9,0,-1,-4,0,6,0,0,-9,2,-10,0,11,2,1,2,0,4,0,-12] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(23)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(72.4642398343\)
Analytic rank: \(1\)
Dimension: \(6\)
Coefficient field: 6.6.860280160.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{5} - 10x^{4} + 9x^{3} + 23x^{2} - 22x - 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 1815)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.5
Root \(1.53672\) of defining polynomial
Character \(\chi\) \(=\) 9075.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.53672 q^{2} -1.00000 q^{3} +0.361523 q^{4} -1.53672 q^{6} +2.86503 q^{7} -2.51789 q^{8} +1.00000 q^{9} -0.361523 q^{12} -2.43598 q^{13} +4.40277 q^{14} -4.59235 q^{16} +3.88488 q^{17} +1.53672 q^{18} -5.93848 q^{19} -2.86503 q^{21} +6.02732 q^{23} +2.51789 q^{24} -3.74343 q^{26} -1.00000 q^{27} +1.03578 q^{28} -4.03698 q^{29} -0.783128 q^{31} -2.02140 q^{32} +5.96999 q^{34} +0.361523 q^{36} -8.02406 q^{37} -9.12581 q^{38} +2.43598 q^{39} +7.54195 q^{41} -4.40277 q^{42} +9.90572 q^{43} +9.26233 q^{46} -0.551103 q^{47} +4.59235 q^{48} +1.20842 q^{49} -3.88488 q^{51} -0.880664 q^{52} -2.75907 q^{53} -1.53672 q^{54} -7.21383 q^{56} +5.93848 q^{57} -6.20372 q^{58} -14.5497 q^{59} -13.7901 q^{61} -1.20345 q^{62} +2.86503 q^{63} +6.07836 q^{64} -3.96724 q^{67} +1.40447 q^{68} -6.02732 q^{69} +9.27271 q^{71} -2.51789 q^{72} +0.615424 q^{73} -12.3308 q^{74} -2.14690 q^{76} +3.74343 q^{78} -4.53993 q^{79} +1.00000 q^{81} +11.5899 q^{82} -11.6797 q^{83} -1.03578 q^{84} +15.2224 q^{86} +4.03698 q^{87} +16.9894 q^{89} -6.97917 q^{91} +2.17902 q^{92} +0.783128 q^{93} -0.846893 q^{94} +2.02140 q^{96} -8.95511 q^{97} +1.85700 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + q^{2} - 6 q^{3} + 9 q^{4} - q^{6} - 4 q^{7} + 6 q^{9} - 9 q^{12} + 2 q^{13} - 10 q^{14} + 11 q^{16} + 2 q^{17} + q^{18} + 2 q^{19} + 4 q^{21} - 12 q^{23} - 6 q^{27} - 24 q^{28} - 12 q^{29} + 18 q^{31}+ \cdots + 53 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.53672 1.08663 0.543314 0.839529i \(-0.317169\pi\)
0.543314 + 0.839529i \(0.317169\pi\)
\(3\) −1.00000 −0.577350
\(4\) 0.361523 0.180762
\(5\) 0 0
\(6\) −1.53672 −0.627365
\(7\) 2.86503 1.08288 0.541440 0.840739i \(-0.317879\pi\)
0.541440 + 0.840739i \(0.317879\pi\)
\(8\) −2.51789 −0.890208
\(9\) 1.00000 0.333333
\(10\) 0 0
\(11\) 0 0
\(12\) −0.361523 −0.104363
\(13\) −2.43598 −0.675620 −0.337810 0.941214i \(-0.609686\pi\)
−0.337810 + 0.941214i \(0.609686\pi\)
\(14\) 4.40277 1.17669
\(15\) 0 0
\(16\) −4.59235 −1.14809
\(17\) 3.88488 0.942222 0.471111 0.882074i \(-0.343853\pi\)
0.471111 + 0.882074i \(0.343853\pi\)
\(18\) 1.53672 0.362210
\(19\) −5.93848 −1.36238 −0.681191 0.732106i \(-0.738538\pi\)
−0.681191 + 0.732106i \(0.738538\pi\)
\(20\) 0 0
\(21\) −2.86503 −0.625202
\(22\) 0 0
\(23\) 6.02732 1.25678 0.628392 0.777897i \(-0.283714\pi\)
0.628392 + 0.777897i \(0.283714\pi\)
\(24\) 2.51789 0.513962
\(25\) 0 0
\(26\) −3.74343 −0.734148
\(27\) −1.00000 −0.192450
\(28\) 1.03578 0.195743
\(29\) −4.03698 −0.749648 −0.374824 0.927096i \(-0.622297\pi\)
−0.374824 + 0.927096i \(0.622297\pi\)
\(30\) 0 0
\(31\) −0.783128 −0.140654 −0.0703270 0.997524i \(-0.522404\pi\)
−0.0703270 + 0.997524i \(0.522404\pi\)
\(32\) −2.02140 −0.357336
\(33\) 0 0
\(34\) 5.96999 1.02385
\(35\) 0 0
\(36\) 0.361523 0.0602539
\(37\) −8.02406 −1.31915 −0.659574 0.751640i \(-0.729263\pi\)
−0.659574 + 0.751640i \(0.729263\pi\)
\(38\) −9.12581 −1.48040
\(39\) 2.43598 0.390069
\(40\) 0 0
\(41\) 7.54195 1.17785 0.588927 0.808186i \(-0.299550\pi\)
0.588927 + 0.808186i \(0.299550\pi\)
\(42\) −4.40277 −0.679362
\(43\) 9.90572 1.51061 0.755304 0.655374i \(-0.227489\pi\)
0.755304 + 0.655374i \(0.227489\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 9.26233 1.36566
\(47\) −0.551103 −0.0803866 −0.0401933 0.999192i \(-0.512797\pi\)
−0.0401933 + 0.999192i \(0.512797\pi\)
\(48\) 4.59235 0.662848
\(49\) 1.20842 0.172631
\(50\) 0 0
\(51\) −3.88488 −0.543992
\(52\) −0.880664 −0.122126
\(53\) −2.75907 −0.378987 −0.189493 0.981882i \(-0.560685\pi\)
−0.189493 + 0.981882i \(0.560685\pi\)
\(54\) −1.53672 −0.209122
\(55\) 0 0
\(56\) −7.21383 −0.963989
\(57\) 5.93848 0.786571
\(58\) −6.20372 −0.814589
\(59\) −14.5497 −1.89421 −0.947103 0.320931i \(-0.896004\pi\)
−0.947103 + 0.320931i \(0.896004\pi\)
\(60\) 0 0
\(61\) −13.7901 −1.76565 −0.882824 0.469704i \(-0.844361\pi\)
−0.882824 + 0.469704i \(0.844361\pi\)
\(62\) −1.20345 −0.152839
\(63\) 2.86503 0.360960
\(64\) 6.07836 0.759795
\(65\) 0 0
\(66\) 0 0
\(67\) −3.96724 −0.484675 −0.242338 0.970192i \(-0.577914\pi\)
−0.242338 + 0.970192i \(0.577914\pi\)
\(68\) 1.40447 0.170318
\(69\) −6.02732 −0.725604
\(70\) 0 0
\(71\) 9.27271 1.10047 0.550234 0.835010i \(-0.314538\pi\)
0.550234 + 0.835010i \(0.314538\pi\)
\(72\) −2.51789 −0.296736
\(73\) 0.615424 0.0720300 0.0360150 0.999351i \(-0.488534\pi\)
0.0360150 + 0.999351i \(0.488534\pi\)
\(74\) −12.3308 −1.43342
\(75\) 0 0
\(76\) −2.14690 −0.246266
\(77\) 0 0
\(78\) 3.74343 0.423861
\(79\) −4.53993 −0.510782 −0.255391 0.966838i \(-0.582204\pi\)
−0.255391 + 0.966838i \(0.582204\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 11.5899 1.27989
\(83\) −11.6797 −1.28202 −0.641008 0.767534i \(-0.721483\pi\)
−0.641008 + 0.767534i \(0.721483\pi\)
\(84\) −1.03578 −0.113012
\(85\) 0 0
\(86\) 15.2224 1.64147
\(87\) 4.03698 0.432809
\(88\) 0 0
\(89\) 16.9894 1.80087 0.900437 0.434986i \(-0.143247\pi\)
0.900437 + 0.434986i \(0.143247\pi\)
\(90\) 0 0
\(91\) −6.97917 −0.731616
\(92\) 2.17902 0.227178
\(93\) 0.783128 0.0812066
\(94\) −0.846893 −0.0873504
\(95\) 0 0
\(96\) 2.02140 0.206308
\(97\) −8.95511 −0.909254 −0.454627 0.890682i \(-0.650227\pi\)
−0.454627 + 0.890682i \(0.650227\pi\)
\(98\) 1.85700 0.187586
\(99\) 0 0
\(100\) 0 0
\(101\) 4.05035 0.403024 0.201512 0.979486i \(-0.435414\pi\)
0.201512 + 0.979486i \(0.435414\pi\)
\(102\) −5.96999 −0.591117
\(103\) −3.09729 −0.305185 −0.152593 0.988289i \(-0.548762\pi\)
−0.152593 + 0.988289i \(0.548762\pi\)
\(104\) 6.13353 0.601442
\(105\) 0 0
\(106\) −4.23992 −0.411818
\(107\) 5.42307 0.524268 0.262134 0.965032i \(-0.415574\pi\)
0.262134 + 0.965032i \(0.415574\pi\)
\(108\) −0.361523 −0.0347876
\(109\) 2.29776 0.220085 0.110043 0.993927i \(-0.464901\pi\)
0.110043 + 0.993927i \(0.464901\pi\)
\(110\) 0 0
\(111\) 8.02406 0.761610
\(112\) −13.1572 −1.24324
\(113\) 9.61495 0.904498 0.452249 0.891892i \(-0.350622\pi\)
0.452249 + 0.891892i \(0.350622\pi\)
\(114\) 9.12581 0.854711
\(115\) 0 0
\(116\) −1.45946 −0.135508
\(117\) −2.43598 −0.225207
\(118\) −22.3588 −2.05830
\(119\) 11.1303 1.02031
\(120\) 0 0
\(121\) 0 0
\(122\) −21.1917 −1.91860
\(123\) −7.54195 −0.680035
\(124\) −0.283119 −0.0254248
\(125\) 0 0
\(126\) 4.40277 0.392230
\(127\) −19.6140 −1.74046 −0.870229 0.492648i \(-0.836029\pi\)
−0.870229 + 0.492648i \(0.836029\pi\)
\(128\) 13.3836 1.18295
\(129\) −9.90572 −0.872150
\(130\) 0 0
\(131\) −4.00843 −0.350218 −0.175109 0.984549i \(-0.556028\pi\)
−0.175109 + 0.984549i \(0.556028\pi\)
\(132\) 0 0
\(133\) −17.0140 −1.47530
\(134\) −6.09655 −0.526662
\(135\) 0 0
\(136\) −9.78169 −0.838773
\(137\) −23.1747 −1.97995 −0.989975 0.141242i \(-0.954891\pi\)
−0.989975 + 0.141242i \(0.954891\pi\)
\(138\) −9.26233 −0.788462
\(139\) 13.8238 1.17252 0.586260 0.810123i \(-0.300600\pi\)
0.586260 + 0.810123i \(0.300600\pi\)
\(140\) 0 0
\(141\) 0.551103 0.0464112
\(142\) 14.2496 1.19580
\(143\) 0 0
\(144\) −4.59235 −0.382696
\(145\) 0 0
\(146\) 0.945738 0.0782698
\(147\) −1.20842 −0.0996685
\(148\) −2.90088 −0.238451
\(149\) −13.5293 −1.10836 −0.554181 0.832396i \(-0.686968\pi\)
−0.554181 + 0.832396i \(0.686968\pi\)
\(150\) 0 0
\(151\) −21.7316 −1.76849 −0.884245 0.467024i \(-0.845326\pi\)
−0.884245 + 0.467024i \(0.845326\pi\)
\(152\) 14.9524 1.21280
\(153\) 3.88488 0.314074
\(154\) 0 0
\(155\) 0 0
\(156\) 0.880664 0.0705096
\(157\) 10.0477 0.801894 0.400947 0.916101i \(-0.368681\pi\)
0.400947 + 0.916101i \(0.368681\pi\)
\(158\) −6.97662 −0.555030
\(159\) 2.75907 0.218808
\(160\) 0 0
\(161\) 17.2685 1.36095
\(162\) 1.53672 0.120737
\(163\) −17.0119 −1.33248 −0.666239 0.745739i \(-0.732097\pi\)
−0.666239 + 0.745739i \(0.732097\pi\)
\(164\) 2.72659 0.212911
\(165\) 0 0
\(166\) −17.9485 −1.39308
\(167\) 8.17422 0.632540 0.316270 0.948669i \(-0.397569\pi\)
0.316270 + 0.948669i \(0.397569\pi\)
\(168\) 7.21383 0.556559
\(169\) −7.06599 −0.543538
\(170\) 0 0
\(171\) −5.93848 −0.454127
\(172\) 3.58115 0.273060
\(173\) −0.0419137 −0.00318664 −0.00159332 0.999999i \(-0.500507\pi\)
−0.00159332 + 0.999999i \(0.500507\pi\)
\(174\) 6.20372 0.470303
\(175\) 0 0
\(176\) 0 0
\(177\) 14.5497 1.09362
\(178\) 26.1081 1.95688
\(179\) −21.5288 −1.60914 −0.804570 0.593857i \(-0.797604\pi\)
−0.804570 + 0.593857i \(0.797604\pi\)
\(180\) 0 0
\(181\) 10.9246 0.812020 0.406010 0.913869i \(-0.366920\pi\)
0.406010 + 0.913869i \(0.366920\pi\)
\(182\) −10.7251 −0.794995
\(183\) 13.7901 1.01940
\(184\) −15.1761 −1.11880
\(185\) 0 0
\(186\) 1.20345 0.0882414
\(187\) 0 0
\(188\) −0.199236 −0.0145308
\(189\) −2.86503 −0.208401
\(190\) 0 0
\(191\) −0.485281 −0.0351137 −0.0175569 0.999846i \(-0.505589\pi\)
−0.0175569 + 0.999846i \(0.505589\pi\)
\(192\) −6.07836 −0.438668
\(193\) 12.5864 0.905989 0.452994 0.891513i \(-0.350356\pi\)
0.452994 + 0.891513i \(0.350356\pi\)
\(194\) −13.7615 −0.988021
\(195\) 0 0
\(196\) 0.436870 0.0312050
\(197\) −15.8941 −1.13241 −0.566204 0.824265i \(-0.691588\pi\)
−0.566204 + 0.824265i \(0.691588\pi\)
\(198\) 0 0
\(199\) −5.02089 −0.355922 −0.177961 0.984038i \(-0.556950\pi\)
−0.177961 + 0.984038i \(0.556950\pi\)
\(200\) 0 0
\(201\) 3.96724 0.279827
\(202\) 6.22427 0.437938
\(203\) −11.5661 −0.811779
\(204\) −1.40447 −0.0983329
\(205\) 0 0
\(206\) −4.75969 −0.331623
\(207\) 6.02732 0.418928
\(208\) 11.1869 0.775670
\(209\) 0 0
\(210\) 0 0
\(211\) −0.800040 −0.0550770 −0.0275385 0.999621i \(-0.508767\pi\)
−0.0275385 + 0.999621i \(0.508767\pi\)
\(212\) −0.997466 −0.0685063
\(213\) −9.27271 −0.635356
\(214\) 8.33376 0.569684
\(215\) 0 0
\(216\) 2.51789 0.171321
\(217\) −2.24369 −0.152311
\(218\) 3.53102 0.239151
\(219\) −0.615424 −0.0415865
\(220\) 0 0
\(221\) −9.46350 −0.636584
\(222\) 12.3308 0.827587
\(223\) 8.10773 0.542933 0.271467 0.962448i \(-0.412491\pi\)
0.271467 + 0.962448i \(0.412491\pi\)
\(224\) −5.79137 −0.386952
\(225\) 0 0
\(226\) 14.7755 0.982853
\(227\) 8.70426 0.577722 0.288861 0.957371i \(-0.406723\pi\)
0.288861 + 0.957371i \(0.406723\pi\)
\(228\) 2.14690 0.142182
\(229\) 29.6210 1.95741 0.978705 0.205272i \(-0.0658080\pi\)
0.978705 + 0.205272i \(0.0658080\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 10.1647 0.667342
\(233\) −6.71715 −0.440055 −0.220028 0.975494i \(-0.570615\pi\)
−0.220028 + 0.975494i \(0.570615\pi\)
\(234\) −3.74343 −0.244716
\(235\) 0 0
\(236\) −5.26004 −0.342400
\(237\) 4.53993 0.294900
\(238\) 17.1042 1.10870
\(239\) −2.23252 −0.144409 −0.0722047 0.997390i \(-0.523003\pi\)
−0.0722047 + 0.997390i \(0.523003\pi\)
\(240\) 0 0
\(241\) 8.20298 0.528400 0.264200 0.964468i \(-0.414892\pi\)
0.264200 + 0.964468i \(0.414892\pi\)
\(242\) 0 0
\(243\) −1.00000 −0.0641500
\(244\) −4.98546 −0.319161
\(245\) 0 0
\(246\) −11.5899 −0.738945
\(247\) 14.4660 0.920452
\(248\) 1.97183 0.125211
\(249\) 11.6797 0.740172
\(250\) 0 0
\(251\) −0.900721 −0.0568530 −0.0284265 0.999596i \(-0.509050\pi\)
−0.0284265 + 0.999596i \(0.509050\pi\)
\(252\) 1.03578 0.0652478
\(253\) 0 0
\(254\) −30.1413 −1.89123
\(255\) 0 0
\(256\) 8.41013 0.525633
\(257\) −4.27720 −0.266804 −0.133402 0.991062i \(-0.542590\pi\)
−0.133402 + 0.991062i \(0.542590\pi\)
\(258\) −15.2224 −0.947703
\(259\) −22.9892 −1.42848
\(260\) 0 0
\(261\) −4.03698 −0.249883
\(262\) −6.15986 −0.380557
\(263\) −3.64614 −0.224831 −0.112415 0.993661i \(-0.535859\pi\)
−0.112415 + 0.993661i \(0.535859\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) −26.1458 −1.60310
\(267\) −16.9894 −1.03974
\(268\) −1.43425 −0.0876107
\(269\) −11.2872 −0.688192 −0.344096 0.938934i \(-0.611815\pi\)
−0.344096 + 0.938934i \(0.611815\pi\)
\(270\) 0 0
\(271\) −9.58466 −0.582227 −0.291113 0.956689i \(-0.594026\pi\)
−0.291113 + 0.956689i \(0.594026\pi\)
\(272\) −17.8407 −1.08175
\(273\) 6.97917 0.422399
\(274\) −35.6132 −2.15147
\(275\) 0 0
\(276\) −2.17902 −0.131161
\(277\) −26.9810 −1.62113 −0.810565 0.585648i \(-0.800840\pi\)
−0.810565 + 0.585648i \(0.800840\pi\)
\(278\) 21.2434 1.27409
\(279\) −0.783128 −0.0468846
\(280\) 0 0
\(281\) −18.9918 −1.13296 −0.566479 0.824076i \(-0.691695\pi\)
−0.566479 + 0.824076i \(0.691695\pi\)
\(282\) 0.846893 0.0504317
\(283\) −27.0944 −1.61060 −0.805298 0.592870i \(-0.797995\pi\)
−0.805298 + 0.592870i \(0.797995\pi\)
\(284\) 3.35230 0.198922
\(285\) 0 0
\(286\) 0 0
\(287\) 21.6079 1.27548
\(288\) −2.02140 −0.119112
\(289\) −1.90771 −0.112218
\(290\) 0 0
\(291\) 8.95511 0.524958
\(292\) 0.222490 0.0130202
\(293\) −9.07599 −0.530225 −0.265112 0.964218i \(-0.585409\pi\)
−0.265112 + 0.964218i \(0.585409\pi\)
\(294\) −1.85700 −0.108303
\(295\) 0 0
\(296\) 20.2037 1.17432
\(297\) 0 0
\(298\) −20.7908 −1.20438
\(299\) −14.6824 −0.849108
\(300\) 0 0
\(301\) 28.3802 1.63581
\(302\) −33.3954 −1.92169
\(303\) −4.05035 −0.232686
\(304\) 27.2716 1.56413
\(305\) 0 0
\(306\) 5.96999 0.341282
\(307\) −6.10964 −0.348696 −0.174348 0.984684i \(-0.555782\pi\)
−0.174348 + 0.984684i \(0.555782\pi\)
\(308\) 0 0
\(309\) 3.09729 0.176199
\(310\) 0 0
\(311\) −14.8604 −0.842655 −0.421327 0.906909i \(-0.638436\pi\)
−0.421327 + 0.906909i \(0.638436\pi\)
\(312\) −6.13353 −0.347243
\(313\) −27.4142 −1.54954 −0.774772 0.632240i \(-0.782136\pi\)
−0.774772 + 0.632240i \(0.782136\pi\)
\(314\) 15.4406 0.871361
\(315\) 0 0
\(316\) −1.64129 −0.0923298
\(317\) −13.9328 −0.782543 −0.391272 0.920275i \(-0.627965\pi\)
−0.391272 + 0.920275i \(0.627965\pi\)
\(318\) 4.23992 0.237763
\(319\) 0 0
\(320\) 0 0
\(321\) −5.42307 −0.302686
\(322\) 26.5369 1.47884
\(323\) −23.0703 −1.28367
\(324\) 0.361523 0.0200846
\(325\) 0 0
\(326\) −26.1427 −1.44791
\(327\) −2.29776 −0.127066
\(328\) −18.9898 −1.04854
\(329\) −1.57893 −0.0870491
\(330\) 0 0
\(331\) 24.9385 1.37074 0.685371 0.728194i \(-0.259640\pi\)
0.685371 + 0.728194i \(0.259640\pi\)
\(332\) −4.22249 −0.231739
\(333\) −8.02406 −0.439716
\(334\) 12.5615 0.687336
\(335\) 0 0
\(336\) 13.1572 0.717786
\(337\) 16.2380 0.884541 0.442271 0.896882i \(-0.354173\pi\)
0.442271 + 0.896882i \(0.354173\pi\)
\(338\) −10.8585 −0.590623
\(339\) −9.61495 −0.522212
\(340\) 0 0
\(341\) 0 0
\(342\) −9.12581 −0.493468
\(343\) −16.5931 −0.895942
\(344\) −24.9415 −1.34476
\(345\) 0 0
\(346\) −0.0644098 −0.00346269
\(347\) 27.4616 1.47422 0.737109 0.675774i \(-0.236191\pi\)
0.737109 + 0.675774i \(0.236191\pi\)
\(348\) 1.45946 0.0782353
\(349\) 25.1370 1.34555 0.672777 0.739845i \(-0.265101\pi\)
0.672777 + 0.739845i \(0.265101\pi\)
\(350\) 0 0
\(351\) 2.43598 0.130023
\(352\) 0 0
\(353\) −12.2362 −0.651267 −0.325633 0.945496i \(-0.605577\pi\)
−0.325633 + 0.945496i \(0.605577\pi\)
\(354\) 22.3588 1.18836
\(355\) 0 0
\(356\) 6.14207 0.325529
\(357\) −11.1303 −0.589079
\(358\) −33.0839 −1.74854
\(359\) −3.88413 −0.204997 −0.102498 0.994733i \(-0.532684\pi\)
−0.102498 + 0.994733i \(0.532684\pi\)
\(360\) 0 0
\(361\) 16.2656 0.856083
\(362\) 16.7881 0.882364
\(363\) 0 0
\(364\) −2.52313 −0.132248
\(365\) 0 0
\(366\) 21.1917 1.10771
\(367\) 19.5703 1.02156 0.510780 0.859712i \(-0.329357\pi\)
0.510780 + 0.859712i \(0.329357\pi\)
\(368\) −27.6795 −1.44290
\(369\) 7.54195 0.392618
\(370\) 0 0
\(371\) −7.90482 −0.410398
\(372\) 0.283119 0.0146790
\(373\) −0.729978 −0.0377968 −0.0188984 0.999821i \(-0.506016\pi\)
−0.0188984 + 0.999821i \(0.506016\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 1.38761 0.0715608
\(377\) 9.83401 0.506477
\(378\) −4.40277 −0.226454
\(379\) 36.0155 1.84999 0.924997 0.379975i \(-0.124067\pi\)
0.924997 + 0.379975i \(0.124067\pi\)
\(380\) 0 0
\(381\) 19.6140 1.00485
\(382\) −0.745744 −0.0381556
\(383\) −12.4551 −0.636428 −0.318214 0.948019i \(-0.603083\pi\)
−0.318214 + 0.948019i \(0.603083\pi\)
\(384\) −13.3836 −0.682977
\(385\) 0 0
\(386\) 19.3418 0.984473
\(387\) 9.90572 0.503536
\(388\) −3.23748 −0.164358
\(389\) −20.4612 −1.03742 −0.518711 0.854950i \(-0.673588\pi\)
−0.518711 + 0.854950i \(0.673588\pi\)
\(390\) 0 0
\(391\) 23.4154 1.18417
\(392\) −3.04266 −0.153677
\(393\) 4.00843 0.202199
\(394\) −24.4249 −1.23051
\(395\) 0 0
\(396\) 0 0
\(397\) −23.9046 −1.19974 −0.599869 0.800098i \(-0.704781\pi\)
−0.599869 + 0.800098i \(0.704781\pi\)
\(398\) −7.71573 −0.386755
\(399\) 17.0140 0.851763
\(400\) 0 0
\(401\) −9.45101 −0.471961 −0.235980 0.971758i \(-0.575830\pi\)
−0.235980 + 0.971758i \(0.575830\pi\)
\(402\) 6.09655 0.304068
\(403\) 1.90769 0.0950286
\(404\) 1.46429 0.0728513
\(405\) 0 0
\(406\) −17.7739 −0.882103
\(407\) 0 0
\(408\) 9.78169 0.484266
\(409\) −7.69520 −0.380503 −0.190252 0.981735i \(-0.560930\pi\)
−0.190252 + 0.981735i \(0.560930\pi\)
\(410\) 0 0
\(411\) 23.1747 1.14312
\(412\) −1.11974 −0.0551658
\(413\) −41.6853 −2.05120
\(414\) 9.26233 0.455219
\(415\) 0 0
\(416\) 4.92409 0.241423
\(417\) −13.8238 −0.676955
\(418\) 0 0
\(419\) −30.0599 −1.46852 −0.734262 0.678866i \(-0.762472\pi\)
−0.734262 + 0.678866i \(0.762472\pi\)
\(420\) 0 0
\(421\) −23.8194 −1.16088 −0.580442 0.814301i \(-0.697120\pi\)
−0.580442 + 0.814301i \(0.697120\pi\)
\(422\) −1.22944 −0.0598482
\(423\) −0.551103 −0.0267955
\(424\) 6.94702 0.337377
\(425\) 0 0
\(426\) −14.2496 −0.690396
\(427\) −39.5092 −1.91199
\(428\) 1.96056 0.0947675
\(429\) 0 0
\(430\) 0 0
\(431\) −0.608493 −0.0293101 −0.0146550 0.999893i \(-0.504665\pi\)
−0.0146550 + 0.999893i \(0.504665\pi\)
\(432\) 4.59235 0.220949
\(433\) 17.1030 0.821919 0.410959 0.911654i \(-0.365194\pi\)
0.410959 + 0.911654i \(0.365194\pi\)
\(434\) −3.44793 −0.165506
\(435\) 0 0
\(436\) 0.830693 0.0397830
\(437\) −35.7931 −1.71222
\(438\) −0.945738 −0.0451891
\(439\) 11.5579 0.551628 0.275814 0.961211i \(-0.411053\pi\)
0.275814 + 0.961211i \(0.411053\pi\)
\(440\) 0 0
\(441\) 1.20842 0.0575436
\(442\) −14.5428 −0.691730
\(443\) −17.7741 −0.844471 −0.422235 0.906486i \(-0.638754\pi\)
−0.422235 + 0.906486i \(0.638754\pi\)
\(444\) 2.90088 0.137670
\(445\) 0 0
\(446\) 12.4593 0.589967
\(447\) 13.5293 0.639913
\(448\) 17.4147 0.822768
\(449\) 21.7125 1.02467 0.512337 0.858784i \(-0.328780\pi\)
0.512337 + 0.858784i \(0.328780\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 3.47603 0.163499
\(453\) 21.7316 1.02104
\(454\) 13.3761 0.627769
\(455\) 0 0
\(456\) −14.9524 −0.700212
\(457\) 0.874148 0.0408909 0.0204455 0.999791i \(-0.493492\pi\)
0.0204455 + 0.999791i \(0.493492\pi\)
\(458\) 45.5193 2.12698
\(459\) −3.88488 −0.181331
\(460\) 0 0
\(461\) 6.51959 0.303648 0.151824 0.988408i \(-0.451485\pi\)
0.151824 + 0.988408i \(0.451485\pi\)
\(462\) 0 0
\(463\) −12.5689 −0.584124 −0.292062 0.956399i \(-0.594341\pi\)
−0.292062 + 0.956399i \(0.594341\pi\)
\(464\) 18.5392 0.860661
\(465\) 0 0
\(466\) −10.3224 −0.478177
\(467\) 26.3110 1.21753 0.608764 0.793352i \(-0.291666\pi\)
0.608764 + 0.793352i \(0.291666\pi\)
\(468\) −0.880664 −0.0407087
\(469\) −11.3663 −0.524846
\(470\) 0 0
\(471\) −10.0477 −0.462974
\(472\) 36.6344 1.68624
\(473\) 0 0
\(474\) 6.97662 0.320447
\(475\) 0 0
\(476\) 4.02387 0.184434
\(477\) −2.75907 −0.126329
\(478\) −3.43076 −0.156919
\(479\) −6.99425 −0.319575 −0.159788 0.987151i \(-0.551081\pi\)
−0.159788 + 0.987151i \(0.551081\pi\)
\(480\) 0 0
\(481\) 19.5465 0.891243
\(482\) 12.6057 0.574175
\(483\) −17.2685 −0.785743
\(484\) 0 0
\(485\) 0 0
\(486\) −1.53672 −0.0697073
\(487\) 6.08580 0.275774 0.137887 0.990448i \(-0.455969\pi\)
0.137887 + 0.990448i \(0.455969\pi\)
\(488\) 34.7220 1.57179
\(489\) 17.0119 0.769306
\(490\) 0 0
\(491\) 4.58064 0.206722 0.103361 0.994644i \(-0.467040\pi\)
0.103361 + 0.994644i \(0.467040\pi\)
\(492\) −2.72659 −0.122924
\(493\) −15.6832 −0.706335
\(494\) 22.2303 1.00019
\(495\) 0 0
\(496\) 3.59640 0.161483
\(497\) 26.5666 1.19168
\(498\) 17.9485 0.804292
\(499\) −21.2025 −0.949152 −0.474576 0.880214i \(-0.657399\pi\)
−0.474576 + 0.880214i \(0.657399\pi\)
\(500\) 0 0
\(501\) −8.17422 −0.365197
\(502\) −1.38416 −0.0617781
\(503\) −14.8190 −0.660746 −0.330373 0.943850i \(-0.607175\pi\)
−0.330373 + 0.943850i \(0.607175\pi\)
\(504\) −7.21383 −0.321330
\(505\) 0 0
\(506\) 0 0
\(507\) 7.06599 0.313812
\(508\) −7.09090 −0.314608
\(509\) −23.6991 −1.05044 −0.525222 0.850965i \(-0.676018\pi\)
−0.525222 + 0.850965i \(0.676018\pi\)
\(510\) 0 0
\(511\) 1.76321 0.0779999
\(512\) −13.8431 −0.611783
\(513\) 5.93848 0.262190
\(514\) −6.57287 −0.289917
\(515\) 0 0
\(516\) −3.58115 −0.157651
\(517\) 0 0
\(518\) −35.3281 −1.55223
\(519\) 0.0419137 0.00183981
\(520\) 0 0
\(521\) −34.8182 −1.52541 −0.762707 0.646745i \(-0.776130\pi\)
−0.762707 + 0.646745i \(0.776130\pi\)
\(522\) −6.20372 −0.271530
\(523\) −16.6591 −0.728453 −0.364226 0.931310i \(-0.618667\pi\)
−0.364226 + 0.931310i \(0.618667\pi\)
\(524\) −1.44914 −0.0633060
\(525\) 0 0
\(526\) −5.60312 −0.244307
\(527\) −3.04236 −0.132527
\(528\) 0 0
\(529\) 13.3286 0.579504
\(530\) 0 0
\(531\) −14.5497 −0.631402
\(532\) −6.15094 −0.266677
\(533\) −18.3721 −0.795782
\(534\) −26.1081 −1.12981
\(535\) 0 0
\(536\) 9.98906 0.431462
\(537\) 21.5288 0.929038
\(538\) −17.3453 −0.747810
\(539\) 0 0
\(540\) 0 0
\(541\) 4.99608 0.214798 0.107399 0.994216i \(-0.465748\pi\)
0.107399 + 0.994216i \(0.465748\pi\)
\(542\) −14.7290 −0.632664
\(543\) −10.9246 −0.468820
\(544\) −7.85289 −0.336690
\(545\) 0 0
\(546\) 10.7251 0.458990
\(547\) −27.0209 −1.15533 −0.577665 0.816274i \(-0.696036\pi\)
−0.577665 + 0.816274i \(0.696036\pi\)
\(548\) −8.37820 −0.357899
\(549\) −13.7901 −0.588549
\(550\) 0 0
\(551\) 23.9735 1.02131
\(552\) 15.1761 0.645938
\(553\) −13.0071 −0.553116
\(554\) −41.4624 −1.76157
\(555\) 0 0
\(556\) 4.99763 0.211947
\(557\) −8.26537 −0.350215 −0.175107 0.984549i \(-0.556027\pi\)
−0.175107 + 0.984549i \(0.556027\pi\)
\(558\) −1.20345 −0.0509462
\(559\) −24.1302 −1.02060
\(560\) 0 0
\(561\) 0 0
\(562\) −29.1852 −1.23110
\(563\) 18.9867 0.800194 0.400097 0.916473i \(-0.368976\pi\)
0.400097 + 0.916473i \(0.368976\pi\)
\(564\) 0.199236 0.00838936
\(565\) 0 0
\(566\) −41.6367 −1.75012
\(567\) 2.86503 0.120320
\(568\) −23.3477 −0.979646
\(569\) 43.0309 1.80395 0.901974 0.431790i \(-0.142118\pi\)
0.901974 + 0.431790i \(0.142118\pi\)
\(570\) 0 0
\(571\) 8.68683 0.363533 0.181766 0.983342i \(-0.441819\pi\)
0.181766 + 0.983342i \(0.441819\pi\)
\(572\) 0 0
\(573\) 0.485281 0.0202729
\(574\) 33.2055 1.38597
\(575\) 0 0
\(576\) 6.07836 0.253265
\(577\) 11.0409 0.459639 0.229819 0.973233i \(-0.426186\pi\)
0.229819 + 0.973233i \(0.426186\pi\)
\(578\) −2.93162 −0.121939
\(579\) −12.5864 −0.523073
\(580\) 0 0
\(581\) −33.4628 −1.38827
\(582\) 13.7615 0.570434
\(583\) 0 0
\(584\) −1.54957 −0.0641216
\(585\) 0 0
\(586\) −13.9473 −0.576157
\(587\) −26.1401 −1.07892 −0.539459 0.842012i \(-0.681371\pi\)
−0.539459 + 0.842012i \(0.681371\pi\)
\(588\) −0.436870 −0.0180162
\(589\) 4.65059 0.191624
\(590\) 0 0
\(591\) 15.8941 0.653796
\(592\) 36.8493 1.51450
\(593\) 12.0171 0.493484 0.246742 0.969081i \(-0.420640\pi\)
0.246742 + 0.969081i \(0.420640\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −4.89115 −0.200349
\(597\) 5.02089 0.205491
\(598\) −22.5629 −0.922665
\(599\) −41.8072 −1.70820 −0.854098 0.520112i \(-0.825890\pi\)
−0.854098 + 0.520112i \(0.825890\pi\)
\(600\) 0 0
\(601\) 40.5539 1.65423 0.827115 0.562033i \(-0.189981\pi\)
0.827115 + 0.562033i \(0.189981\pi\)
\(602\) 43.6126 1.77752
\(603\) −3.96724 −0.161558
\(604\) −7.85646 −0.319675
\(605\) 0 0
\(606\) −6.22427 −0.252844
\(607\) −29.2269 −1.18628 −0.593141 0.805099i \(-0.702112\pi\)
−0.593141 + 0.805099i \(0.702112\pi\)
\(608\) 12.0040 0.486828
\(609\) 11.5661 0.468681
\(610\) 0 0
\(611\) 1.34248 0.0543108
\(612\) 1.40447 0.0567725
\(613\) −20.1259 −0.812876 −0.406438 0.913678i \(-0.633229\pi\)
−0.406438 + 0.913678i \(0.633229\pi\)
\(614\) −9.38884 −0.378903
\(615\) 0 0
\(616\) 0 0
\(617\) 8.98070 0.361550 0.180775 0.983525i \(-0.442139\pi\)
0.180775 + 0.983525i \(0.442139\pi\)
\(618\) 4.75969 0.191463
\(619\) 24.0303 0.965860 0.482930 0.875659i \(-0.339573\pi\)
0.482930 + 0.875659i \(0.339573\pi\)
\(620\) 0 0
\(621\) −6.02732 −0.241868
\(622\) −22.8363 −0.915653
\(623\) 48.6752 1.95013
\(624\) −11.1869 −0.447834
\(625\) 0 0
\(626\) −42.1282 −1.68378
\(627\) 0 0
\(628\) 3.63248 0.144952
\(629\) −31.1725 −1.24293
\(630\) 0 0
\(631\) 23.0323 0.916902 0.458451 0.888720i \(-0.348404\pi\)
0.458451 + 0.888720i \(0.348404\pi\)
\(632\) 11.4310 0.454702
\(633\) 0.800040 0.0317987
\(634\) −21.4109 −0.850334
\(635\) 0 0
\(636\) 0.997466 0.0395521
\(637\) −2.94368 −0.116633
\(638\) 0 0
\(639\) 9.27271 0.366823
\(640\) 0 0
\(641\) 17.8410 0.704677 0.352339 0.935873i \(-0.385387\pi\)
0.352339 + 0.935873i \(0.385387\pi\)
\(642\) −8.33376 −0.328907
\(643\) −21.4561 −0.846147 −0.423074 0.906095i \(-0.639049\pi\)
−0.423074 + 0.906095i \(0.639049\pi\)
\(644\) 6.24295 0.246007
\(645\) 0 0
\(646\) −35.4527 −1.39487
\(647\) −7.91168 −0.311040 −0.155520 0.987833i \(-0.549705\pi\)
−0.155520 + 0.987833i \(0.549705\pi\)
\(648\) −2.51789 −0.0989120
\(649\) 0 0
\(650\) 0 0
\(651\) 2.24369 0.0879371
\(652\) −6.15021 −0.240861
\(653\) −20.7286 −0.811171 −0.405585 0.914057i \(-0.632932\pi\)
−0.405585 + 0.914057i \(0.632932\pi\)
\(654\) −3.53102 −0.138074
\(655\) 0 0
\(656\) −34.6353 −1.35228
\(657\) 0.615424 0.0240100
\(658\) −2.42638 −0.0945900
\(659\) 44.9515 1.75106 0.875531 0.483162i \(-0.160512\pi\)
0.875531 + 0.483162i \(0.160512\pi\)
\(660\) 0 0
\(661\) 32.0760 1.24761 0.623806 0.781579i \(-0.285585\pi\)
0.623806 + 0.781579i \(0.285585\pi\)
\(662\) 38.3235 1.48949
\(663\) 9.46350 0.367532
\(664\) 29.4082 1.14126
\(665\) 0 0
\(666\) −12.3308 −0.477808
\(667\) −24.3322 −0.942145
\(668\) 2.95517 0.114339
\(669\) −8.10773 −0.313463
\(670\) 0 0
\(671\) 0 0
\(672\) 5.79137 0.223407
\(673\) 11.0442 0.425723 0.212861 0.977082i \(-0.431722\pi\)
0.212861 + 0.977082i \(0.431722\pi\)
\(674\) 24.9534 0.961168
\(675\) 0 0
\(676\) −2.55452 −0.0982507
\(677\) −7.99883 −0.307420 −0.153710 0.988116i \(-0.549122\pi\)
−0.153710 + 0.988116i \(0.549122\pi\)
\(678\) −14.7755 −0.567451
\(679\) −25.6567 −0.984613
\(680\) 0 0
\(681\) −8.70426 −0.333548
\(682\) 0 0
\(683\) 16.6442 0.636873 0.318436 0.947944i \(-0.396842\pi\)
0.318436 + 0.947944i \(0.396842\pi\)
\(684\) −2.14690 −0.0820887
\(685\) 0 0
\(686\) −25.4990 −0.973556
\(687\) −29.6210 −1.13011
\(688\) −45.4905 −1.73431
\(689\) 6.72104 0.256051
\(690\) 0 0
\(691\) −12.4814 −0.474815 −0.237408 0.971410i \(-0.576298\pi\)
−0.237408 + 0.971410i \(0.576298\pi\)
\(692\) −0.0151528 −0.000576022 0
\(693\) 0 0
\(694\) 42.2010 1.60193
\(695\) 0 0
\(696\) −10.1647 −0.385290
\(697\) 29.2996 1.10980
\(698\) 38.6287 1.46212
\(699\) 6.71715 0.254066
\(700\) 0 0
\(701\) −3.13045 −0.118235 −0.0591177 0.998251i \(-0.518829\pi\)
−0.0591177 + 0.998251i \(0.518829\pi\)
\(702\) 3.74343 0.141287
\(703\) 47.6508 1.79718
\(704\) 0 0
\(705\) 0 0
\(706\) −18.8037 −0.707685
\(707\) 11.6044 0.436427
\(708\) 5.26004 0.197684
\(709\) −8.71471 −0.327288 −0.163644 0.986519i \(-0.552325\pi\)
−0.163644 + 0.986519i \(0.552325\pi\)
\(710\) 0 0
\(711\) −4.53993 −0.170261
\(712\) −42.7774 −1.60315
\(713\) −4.72016 −0.176771
\(714\) −17.1042 −0.640110
\(715\) 0 0
\(716\) −7.78317 −0.290871
\(717\) 2.23252 0.0833748
\(718\) −5.96884 −0.222755
\(719\) 10.3566 0.386237 0.193118 0.981175i \(-0.438140\pi\)
0.193118 + 0.981175i \(0.438140\pi\)
\(720\) 0 0
\(721\) −8.87385 −0.330479
\(722\) 24.9957 0.930244
\(723\) −8.20298 −0.305072
\(724\) 3.94950 0.146782
\(725\) 0 0
\(726\) 0 0
\(727\) −18.2456 −0.676693 −0.338346 0.941022i \(-0.609868\pi\)
−0.338346 + 0.941022i \(0.609868\pi\)
\(728\) 17.5728 0.651290
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) 38.4825 1.42333
\(732\) 4.98546 0.184268
\(733\) 3.14121 0.116023 0.0580116 0.998316i \(-0.481524\pi\)
0.0580116 + 0.998316i \(0.481524\pi\)
\(734\) 30.0741 1.11006
\(735\) 0 0
\(736\) −12.1836 −0.449094
\(737\) 0 0
\(738\) 11.5899 0.426630
\(739\) 33.9751 1.24980 0.624898 0.780706i \(-0.285141\pi\)
0.624898 + 0.780706i \(0.285141\pi\)
\(740\) 0 0
\(741\) −14.4660 −0.531423
\(742\) −12.1475 −0.445950
\(743\) 40.2606 1.47702 0.738510 0.674243i \(-0.235530\pi\)
0.738510 + 0.674243i \(0.235530\pi\)
\(744\) −1.97183 −0.0722907
\(745\) 0 0
\(746\) −1.12178 −0.0410711
\(747\) −11.6797 −0.427339
\(748\) 0 0
\(749\) 15.5373 0.567719
\(750\) 0 0
\(751\) 39.7342 1.44992 0.724960 0.688791i \(-0.241858\pi\)
0.724960 + 0.688791i \(0.241858\pi\)
\(752\) 2.53085 0.0922908
\(753\) 0.900721 0.0328241
\(754\) 15.1122 0.550352
\(755\) 0 0
\(756\) −1.03578 −0.0376708
\(757\) −51.6449 −1.87707 −0.938533 0.345188i \(-0.887815\pi\)
−0.938533 + 0.345188i \(0.887815\pi\)
\(758\) 55.3460 2.01026
\(759\) 0 0
\(760\) 0 0
\(761\) 39.8286 1.44379 0.721893 0.692004i \(-0.243272\pi\)
0.721893 + 0.692004i \(0.243272\pi\)
\(762\) 30.1413 1.09190
\(763\) 6.58315 0.238326
\(764\) −0.175440 −0.00634721
\(765\) 0 0
\(766\) −19.1401 −0.691560
\(767\) 35.4427 1.27976
\(768\) −8.41013 −0.303475
\(769\) −46.2949 −1.66944 −0.834719 0.550676i \(-0.814370\pi\)
−0.834719 + 0.550676i \(0.814370\pi\)
\(770\) 0 0
\(771\) 4.27720 0.154039
\(772\) 4.55028 0.163768
\(773\) −7.01535 −0.252325 −0.126162 0.992010i \(-0.540266\pi\)
−0.126162 + 0.992010i \(0.540266\pi\)
\(774\) 15.2224 0.547157
\(775\) 0 0
\(776\) 22.5480 0.809425
\(777\) 22.9892 0.824733
\(778\) −31.4432 −1.12729
\(779\) −44.7877 −1.60469
\(780\) 0 0
\(781\) 0 0
\(782\) 35.9830 1.28675
\(783\) 4.03698 0.144270
\(784\) −5.54947 −0.198195
\(785\) 0 0
\(786\) 6.15986 0.219715
\(787\) −2.77476 −0.0989095 −0.0494548 0.998776i \(-0.515748\pi\)
−0.0494548 + 0.998776i \(0.515748\pi\)
\(788\) −5.74608 −0.204696
\(789\) 3.64614 0.129806
\(790\) 0 0
\(791\) 27.5471 0.979464
\(792\) 0 0
\(793\) 33.5926 1.19291
\(794\) −36.7348 −1.30367
\(795\) 0 0
\(796\) −1.81517 −0.0643370
\(797\) −42.9669 −1.52197 −0.760983 0.648772i \(-0.775283\pi\)
−0.760983 + 0.648772i \(0.775283\pi\)
\(798\) 26.1458 0.925550
\(799\) −2.14097 −0.0757420
\(800\) 0 0
\(801\) 16.9894 0.600291
\(802\) −14.5236 −0.512846
\(803\) 0 0
\(804\) 1.43425 0.0505821
\(805\) 0 0
\(806\) 2.93159 0.103261
\(807\) 11.2872 0.397328
\(808\) −10.1983 −0.358775
\(809\) 33.2867 1.17030 0.585149 0.810926i \(-0.301036\pi\)
0.585149 + 0.810926i \(0.301036\pi\)
\(810\) 0 0
\(811\) 37.8675 1.32971 0.664855 0.746973i \(-0.268493\pi\)
0.664855 + 0.746973i \(0.268493\pi\)
\(812\) −4.18140 −0.146739
\(813\) 9.58466 0.336149
\(814\) 0 0
\(815\) 0 0
\(816\) 17.8407 0.624550
\(817\) −58.8250 −2.05802
\(818\) −11.8254 −0.413465
\(819\) −6.97917 −0.243872
\(820\) 0 0
\(821\) 15.5524 0.542782 0.271391 0.962469i \(-0.412516\pi\)
0.271391 + 0.962469i \(0.412516\pi\)
\(822\) 35.6132 1.24215
\(823\) 19.7207 0.687421 0.343710 0.939076i \(-0.388316\pi\)
0.343710 + 0.939076i \(0.388316\pi\)
\(824\) 7.79864 0.271678
\(825\) 0 0
\(826\) −64.0588 −2.22889
\(827\) −5.77933 −0.200967 −0.100483 0.994939i \(-0.532039\pi\)
−0.100483 + 0.994939i \(0.532039\pi\)
\(828\) 2.17902 0.0757260
\(829\) 34.0085 1.18116 0.590581 0.806978i \(-0.298898\pi\)
0.590581 + 0.806978i \(0.298898\pi\)
\(830\) 0 0
\(831\) 26.9810 0.935960
\(832\) −14.8068 −0.513333
\(833\) 4.69455 0.162657
\(834\) −21.2434 −0.735599
\(835\) 0 0
\(836\) 0 0
\(837\) 0.783128 0.0270689
\(838\) −46.1939 −1.59574
\(839\) 38.0383 1.31323 0.656614 0.754226i \(-0.271988\pi\)
0.656614 + 0.754226i \(0.271988\pi\)
\(840\) 0 0
\(841\) −12.7028 −0.438028
\(842\) −36.6038 −1.26145
\(843\) 18.9918 0.654114
\(844\) −0.289233 −0.00995580
\(845\) 0 0
\(846\) −0.846893 −0.0291168
\(847\) 0 0
\(848\) 12.6706 0.435110
\(849\) 27.0944 0.929878
\(850\) 0 0
\(851\) −48.3636 −1.65788
\(852\) −3.35230 −0.114848
\(853\) 48.9458 1.67587 0.837936 0.545769i \(-0.183762\pi\)
0.837936 + 0.545769i \(0.183762\pi\)
\(854\) −60.7148 −2.07762
\(855\) 0 0
\(856\) −13.6547 −0.466707
\(857\) 27.4604 0.938030 0.469015 0.883190i \(-0.344609\pi\)
0.469015 + 0.883190i \(0.344609\pi\)
\(858\) 0 0
\(859\) −1.25914 −0.0429613 −0.0214806 0.999769i \(-0.506838\pi\)
−0.0214806 + 0.999769i \(0.506838\pi\)
\(860\) 0 0
\(861\) −21.6079 −0.736397
\(862\) −0.935086 −0.0318491
\(863\) −26.7154 −0.909404 −0.454702 0.890644i \(-0.650254\pi\)
−0.454702 + 0.890644i \(0.650254\pi\)
\(864\) 2.02140 0.0687694
\(865\) 0 0
\(866\) 26.2826 0.893120
\(867\) 1.90771 0.0647892
\(868\) −0.811145 −0.0275321
\(869\) 0 0
\(870\) 0 0
\(871\) 9.66412 0.327456
\(872\) −5.78550 −0.195922
\(873\) −8.95511 −0.303085
\(874\) −55.0042 −1.86054
\(875\) 0 0
\(876\) −0.222490 −0.00751724
\(877\) 26.7109 0.901962 0.450981 0.892533i \(-0.351074\pi\)
0.450981 + 0.892533i \(0.351074\pi\)
\(878\) 17.7613 0.599415
\(879\) 9.07599 0.306125
\(880\) 0 0
\(881\) −31.7144 −1.06849 −0.534243 0.845331i \(-0.679403\pi\)
−0.534243 + 0.845331i \(0.679403\pi\)
\(882\) 1.85700 0.0625286
\(883\) 47.8895 1.61161 0.805804 0.592182i \(-0.201733\pi\)
0.805804 + 0.592182i \(0.201733\pi\)
\(884\) −3.42127 −0.115070
\(885\) 0 0
\(886\) −27.3138 −0.917626
\(887\) 34.0800 1.14429 0.572147 0.820151i \(-0.306111\pi\)
0.572147 + 0.820151i \(0.306111\pi\)
\(888\) −20.2037 −0.677991
\(889\) −56.1947 −1.88471
\(890\) 0 0
\(891\) 0 0
\(892\) 2.93113 0.0981415
\(893\) 3.27271 0.109517
\(894\) 20.7908 0.695348
\(895\) 0 0
\(896\) 38.3444 1.28100
\(897\) 14.6824 0.490233
\(898\) 33.3661 1.11344
\(899\) 3.16147 0.105441
\(900\) 0 0
\(901\) −10.7186 −0.357090
\(902\) 0 0
\(903\) −28.3802 −0.944435
\(904\) −24.2094 −0.805191
\(905\) 0 0
\(906\) 33.3954 1.10949
\(907\) 22.5941 0.750226 0.375113 0.926979i \(-0.377604\pi\)
0.375113 + 0.926979i \(0.377604\pi\)
\(908\) 3.14679 0.104430
\(909\) 4.05035 0.134341
\(910\) 0 0
\(911\) −15.8393 −0.524779 −0.262390 0.964962i \(-0.584511\pi\)
−0.262390 + 0.964962i \(0.584511\pi\)
\(912\) −27.2716 −0.903052
\(913\) 0 0
\(914\) 1.34333 0.0444333
\(915\) 0 0
\(916\) 10.7087 0.353825
\(917\) −11.4843 −0.379245
\(918\) −5.96999 −0.197039
\(919\) 0.360925 0.0119058 0.00595291 0.999982i \(-0.498105\pi\)
0.00595291 + 0.999982i \(0.498105\pi\)
\(920\) 0 0
\(921\) 6.10964 0.201320
\(922\) 10.0188 0.329952
\(923\) −22.5882 −0.743499
\(924\) 0 0
\(925\) 0 0
\(926\) −19.3149 −0.634726
\(927\) −3.09729 −0.101728
\(928\) 8.16034 0.267876
\(929\) 0.480345 0.0157596 0.00787980 0.999969i \(-0.497492\pi\)
0.00787980 + 0.999969i \(0.497492\pi\)
\(930\) 0 0
\(931\) −7.17616 −0.235189
\(932\) −2.42841 −0.0795451
\(933\) 14.8604 0.486507
\(934\) 40.4328 1.32300
\(935\) 0 0
\(936\) 6.13353 0.200481
\(937\) −52.1442 −1.70348 −0.851739 0.523967i \(-0.824452\pi\)
−0.851739 + 0.523967i \(0.824452\pi\)
\(938\) −17.4668 −0.570312
\(939\) 27.4142 0.894630
\(940\) 0 0
\(941\) 14.9475 0.487275 0.243637 0.969866i \(-0.421659\pi\)
0.243637 + 0.969866i \(0.421659\pi\)
\(942\) −15.4406 −0.503081
\(943\) 45.4577 1.48031
\(944\) 66.8171 2.17471
\(945\) 0 0
\(946\) 0 0
\(947\) 27.2440 0.885311 0.442656 0.896692i \(-0.354036\pi\)
0.442656 + 0.896692i \(0.354036\pi\)
\(948\) 1.64129 0.0533066
\(949\) −1.49916 −0.0486649
\(950\) 0 0
\(951\) 13.9328 0.451802
\(952\) −28.0249 −0.908291
\(953\) −37.8748 −1.22688 −0.613442 0.789740i \(-0.710216\pi\)
−0.613442 + 0.789740i \(0.710216\pi\)
\(954\) −4.23992 −0.137273
\(955\) 0 0
\(956\) −0.807106 −0.0261037
\(957\) 0 0
\(958\) −10.7482 −0.347260
\(959\) −66.3964 −2.14405
\(960\) 0 0
\(961\) −30.3867 −0.980216
\(962\) 30.0376 0.968450
\(963\) 5.42307 0.174756
\(964\) 2.96557 0.0955144
\(965\) 0 0
\(966\) −26.5369 −0.853811
\(967\) −43.6845 −1.40480 −0.702400 0.711783i \(-0.747888\pi\)
−0.702400 + 0.711783i \(0.747888\pi\)
\(968\) 0 0
\(969\) 23.0703 0.741125
\(970\) 0 0
\(971\) −2.73545 −0.0877848 −0.0438924 0.999036i \(-0.513976\pi\)
−0.0438924 + 0.999036i \(0.513976\pi\)
\(972\) −0.361523 −0.0115959
\(973\) 39.6057 1.26970
\(974\) 9.35220 0.299664
\(975\) 0 0
\(976\) 63.3292 2.02712
\(977\) −36.5804 −1.17031 −0.585156 0.810921i \(-0.698967\pi\)
−0.585156 + 0.810921i \(0.698967\pi\)
\(978\) 26.1427 0.835950
\(979\) 0 0
\(980\) 0 0
\(981\) 2.29776 0.0733618
\(982\) 7.03919 0.224630
\(983\) −6.44168 −0.205458 −0.102729 0.994709i \(-0.532757\pi\)
−0.102729 + 0.994709i \(0.532757\pi\)
\(984\) 18.9898 0.605372
\(985\) 0 0
\(986\) −24.1007 −0.767523
\(987\) 1.57893 0.0502578
\(988\) 5.22981 0.166382
\(989\) 59.7050 1.89851
\(990\) 0 0
\(991\) −13.5718 −0.431123 −0.215561 0.976490i \(-0.569158\pi\)
−0.215561 + 0.976490i \(0.569158\pi\)
\(992\) 1.58301 0.0502607
\(993\) −24.9385 −0.791398
\(994\) 40.8256 1.29491
\(995\) 0 0
\(996\) 4.22249 0.133795
\(997\) 1.84851 0.0585429 0.0292715 0.999571i \(-0.490681\pi\)
0.0292715 + 0.999571i \(0.490681\pi\)
\(998\) −32.5823 −1.03138
\(999\) 8.02406 0.253870
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 9075.2.a.dr.1.5 6
5.2 odd 4 1815.2.c.h.364.9 yes 12
5.3 odd 4 1815.2.c.h.364.4 12
5.4 even 2 9075.2.a.dp.1.2 6
11.10 odd 2 9075.2.a.do.1.2 6
55.32 even 4 1815.2.c.i.364.4 yes 12
55.43 even 4 1815.2.c.i.364.9 yes 12
55.54 odd 2 9075.2.a.ds.1.5 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1815.2.c.h.364.4 12 5.3 odd 4
1815.2.c.h.364.9 yes 12 5.2 odd 4
1815.2.c.i.364.4 yes 12 55.32 even 4
1815.2.c.i.364.9 yes 12 55.43 even 4
9075.2.a.do.1.2 6 11.10 odd 2
9075.2.a.dp.1.2 6 5.4 even 2
9075.2.a.dr.1.5 6 1.1 even 1 trivial
9075.2.a.ds.1.5 6 55.54 odd 2