Properties

Label 9075.2.a.bt
Level $9075$
Weight $2$
Character orbit 9075.a
Self dual yes
Analytic conductor $72.464$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [9075,2,Mod(1,9075)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(9075, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("9075.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 9075 = 3 \cdot 5^{2} \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 9075.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,1,-2,-1,0,-1,6,0,2,0,0,1,-2,8,0,-3,-4,1,-10,0,-6,0,7] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(23)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(72.4642398343\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{5}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 825)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \frac{1}{2}(1 + \sqrt{5})\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta q^{2} - q^{3} + (\beta - 1) q^{4} - \beta q^{6} + (2 \beta + 2) q^{7} + ( - 2 \beta + 1) q^{8} + q^{9} + ( - \beta + 1) q^{12} - 2 \beta q^{13} + (4 \beta + 2) q^{14} - 3 \beta q^{16} - 2 q^{17} + \cdots + (13 \beta + 12) q^{98} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + q^{2} - 2 q^{3} - q^{4} - q^{6} + 6 q^{7} + 2 q^{9} + q^{12} - 2 q^{13} + 8 q^{14} - 3 q^{16} - 4 q^{17} + q^{18} - 10 q^{19} - 6 q^{21} + 7 q^{23} - 6 q^{26} - 2 q^{27} + 2 q^{28} + 5 q^{29}+ \cdots + 37 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−0.618034
1.61803
−0.618034 −1.00000 −1.61803 0 0.618034 0.763932 2.23607 1.00000 0
1.2 1.61803 −1.00000 0.618034 0 −1.61803 5.23607 −2.23607 1.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( +1 \)
\(5\) \( -1 \)
\(11\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 9075.2.a.bt 2
5.b even 2 1 9075.2.a.bc 2
11.b odd 2 1 9075.2.a.z 2
11.d odd 10 2 825.2.n.b 4
55.d odd 2 1 9075.2.a.by 2
55.h odd 10 2 825.2.n.d yes 4
55.l even 20 4 825.2.bx.c 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
825.2.n.b 4 11.d odd 10 2
825.2.n.d yes 4 55.h odd 10 2
825.2.bx.c 8 55.l even 20 4
9075.2.a.z 2 11.b odd 2 1
9075.2.a.bc 2 5.b even 2 1
9075.2.a.bt 2 1.a even 1 1 trivial
9075.2.a.by 2 55.d odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(9075))\):

\( T_{2}^{2} - T_{2} - 1 \) Copy content Toggle raw display
\( T_{7}^{2} - 6T_{7} + 4 \) Copy content Toggle raw display
\( T_{13}^{2} + 2T_{13} - 4 \) Copy content Toggle raw display
\( T_{17} + 2 \) Copy content Toggle raw display
\( T_{19} + 5 \) Copy content Toggle raw display
\( T_{23}^{2} - 7T_{23} + 11 \) Copy content Toggle raw display
\( T_{37}^{2} + 6T_{37} - 11 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} - T - 1 \) Copy content Toggle raw display
$3$ \( (T + 1)^{2} \) Copy content Toggle raw display
$5$ \( T^{2} \) Copy content Toggle raw display
$7$ \( T^{2} - 6T + 4 \) Copy content Toggle raw display
$11$ \( T^{2} \) Copy content Toggle raw display
$13$ \( T^{2} + 2T - 4 \) Copy content Toggle raw display
$17$ \( (T + 2)^{2} \) Copy content Toggle raw display
$19$ \( (T + 5)^{2} \) Copy content Toggle raw display
$23$ \( T^{2} - 7T + 11 \) Copy content Toggle raw display
$29$ \( T^{2} - 5T - 5 \) Copy content Toggle raw display
$31$ \( (T - 7)^{2} \) Copy content Toggle raw display
$37$ \( T^{2} + 6T - 11 \) Copy content Toggle raw display
$41$ \( T^{2} + 14T + 29 \) Copy content Toggle raw display
$43$ \( T^{2} + 7T - 19 \) Copy content Toggle raw display
$47$ \( T^{2} + T - 31 \) Copy content Toggle raw display
$53$ \( T^{2} + 13T + 41 \) Copy content Toggle raw display
$59$ \( T^{2} - 45 \) Copy content Toggle raw display
$61$ \( (T + 7)^{2} \) Copy content Toggle raw display
$67$ \( T^{2} + 21T + 109 \) Copy content Toggle raw display
$71$ \( (T + 8)^{2} \) Copy content Toggle raw display
$73$ \( T^{2} - 18T + 61 \) Copy content Toggle raw display
$79$ \( T^{2} - 5T - 25 \) Copy content Toggle raw display
$83$ \( T^{2} + 2T - 44 \) Copy content Toggle raw display
$89$ \( T^{2} - 15T + 45 \) Copy content Toggle raw display
$97$ \( T^{2} - 14T + 29 \) Copy content Toggle raw display
show more
show less