Properties

Label 900.3.u.b
Level 900900
Weight 33
Character orbit 900.u
Analytic conductor 24.52324.523
Analytic rank 00
Dimension 88
Inner twists 44

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [900,3,Mod(149,900)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("900.149"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(900, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 5, 3])) N = Newforms(chi, 3, names="a")
 
Level: N N == 900=223252 900 = 2^{2} \cdot 3^{2} \cdot 5^{2}
Weight: k k == 3 3
Character orbit: [χ][\chi] == 900.u (of order 66, degree 22, not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,0,0,0,0,0,36] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(9)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 24.523223792424.5232237924
Analytic rank: 00
Dimension: 88
Relative dimension: 44 over Q(ζ6)\Q(\zeta_{6})
Coefficient field: 8.0.12960000.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x83x6+8x43x2+1 x^{8} - 3x^{6} + 8x^{4} - 3x^{2} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a11]\Z[a_1, \ldots, a_{11}]
Coefficient ring index: 2832 2^{8}\cdot 3^{2}
Twist minimal: no (minimal twist has level 180)
Sato-Tate group: SU(2)[C6]\mathrm{SU}(2)[C_{6}]

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,,β71,\beta_1,\ldots,\beta_{7} for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+3β1q3+(β6+4β1)q79β2q9+(β7β5β2+1)q11+(β4+10β3+10β1)q13+(β6+β4+2β1)q17++(18β7+9β5+9)q99+O(q100) q + 3 \beta_1 q^{3} + (\beta_{6} + 4 \beta_1) q^{7} - 9 \beta_{2} q^{9} + ( - \beta_{7} - \beta_{5} - \beta_{2} + 1) q^{11} + ( - \beta_{4} + 10 \beta_{3} + 10 \beta_1) q^{13} + ( - \beta_{6} + \beta_{4} + \cdots - 2 \beta_1) q^{17}+ \cdots + ( - 18 \beta_{7} + 9 \beta_{5} + \cdots - 9) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 8q+36q9+12q11+152q19+48q21+120q298q31+240q39180q41+108q4936q51+348q59+88q61+320q79324q81+800q91+O(q100) 8 q + 36 q^{9} + 12 q^{11} + 152 q^{19} + 48 q^{21} + 120 q^{29} - 8 q^{31} + 240 q^{39} - 180 q^{41} + 108 q^{49} - 36 q^{51} + 348 q^{59} + 88 q^{61} + 320 q^{79} - 324 q^{81} + 800 q^{91}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x83x6+8x43x2+1 x^{8} - 3x^{6} + 8x^{4} - 3x^{2} + 1 : Copy content Toggle raw display

β1\beta_{1}== (ν7+13ν)/8 ( \nu^{7} + 13\nu ) / 8 Copy content Toggle raw display
β2\beta_{2}== (3ν6+8ν424ν2+1)/8 ( -3\nu^{6} + 8\nu^{4} - 24\nu^{2} + 1 ) / 8 Copy content Toggle raw display
β3\beta_{3}== (3ν7+8ν520ν3+ν)/4 ( -3\nu^{7} + 8\nu^{5} - 20\nu^{3} + \nu ) / 4 Copy content Toggle raw display
β4\beta_{4}== (5ν6+24ν456ν2+39)/4 ( -5\nu^{6} + 24\nu^{4} - 56\nu^{2} + 39 ) / 4 Copy content Toggle raw display
β5\beta_{5}== (5ν7+16ν544ν3+31ν)/2 ( -5\nu^{7} + 16\nu^{5} - 44\nu^{3} + 31\nu ) / 2 Copy content Toggle raw display
β6\beta_{6}== (11ν6+24ν456ν215)/4 ( -11\nu^{6} + 24\nu^{4} - 56\nu^{2} - 15 ) / 4 Copy content Toggle raw display
β7\beta_{7}== (13ν732ν5+88ν3+25ν)/4 ( 13\nu^{7} - 32\nu^{5} + 88\nu^{3} + 25\nu ) / 4 Copy content Toggle raw display
ν\nu== (β7+β56β1)/12 ( \beta_{7} + \beta_{5} - 6\beta_1 ) / 12 Copy content Toggle raw display
ν2\nu^{2}== (2β6+β418β2)/12 ( 2\beta_{6} + \beta_{4} - 18\beta_{2} ) / 12 Copy content Toggle raw display
ν3\nu^{3}== (2β7β5+12β3)/6 ( 2\beta_{7} - \beta_{5} + 12\beta_{3} ) / 6 Copy content Toggle raw display
ν4\nu^{4}== (β6+2β414β214)/4 ( \beta_{6} + 2\beta_{4} - 14\beta_{2} - 14 ) / 4 Copy content Toggle raw display
ν5\nu^{5}== (5β710β5+66β3+66β1)/12 ( 5\beta_{7} - 10\beta_{5} + 66\beta_{3} + 66\beta_1 ) / 12 Copy content Toggle raw display
ν6\nu^{6}== (2β6+2β427)/3 ( -2\beta_{6} + 2\beta_{4} - 27 ) / 3 Copy content Toggle raw display
ν7\nu^{7}== (13β713β5+174β1)/12 ( -13\beta_{7} - 13\beta_{5} + 174\beta_1 ) / 12 Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/900Z)×\left(\mathbb{Z}/900\mathbb{Z}\right)^\times.

nn 101101 451451 577577
χ(n)\chi(n) β2-\beta_{2} 11 1-1

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
149.1
−0.535233 + 0.309017i
1.40126 0.809017i
0.535233 0.309017i
−1.40126 + 0.809017i
−0.535233 0.309017i
1.40126 + 0.809017i
0.535233 + 0.309017i
−1.40126 0.809017i
0 −2.59808 + 1.50000i 0 0 0 −10.1723 + 5.87298i 0 4.50000 7.79423i 0
149.2 0 −2.59808 + 1.50000i 0 0 0 3.24410 1.87298i 0 4.50000 7.79423i 0
149.3 0 2.59808 1.50000i 0 0 0 −3.24410 + 1.87298i 0 4.50000 7.79423i 0
149.4 0 2.59808 1.50000i 0 0 0 10.1723 5.87298i 0 4.50000 7.79423i 0
749.1 0 −2.59808 1.50000i 0 0 0 −10.1723 5.87298i 0 4.50000 + 7.79423i 0
749.2 0 −2.59808 1.50000i 0 0 0 3.24410 + 1.87298i 0 4.50000 + 7.79423i 0
749.3 0 2.59808 + 1.50000i 0 0 0 −3.24410 1.87298i 0 4.50000 + 7.79423i 0
749.4 0 2.59808 + 1.50000i 0 0 0 10.1723 + 5.87298i 0 4.50000 + 7.79423i 0
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 149.4
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner
9.d odd 6 1 inner
45.h odd 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 900.3.u.b 8
3.b odd 2 1 2700.3.u.a 8
5.b even 2 1 inner 900.3.u.b 8
5.c odd 4 1 180.3.o.a 4
5.c odd 4 1 900.3.p.b 4
9.c even 3 1 2700.3.u.a 8
9.d odd 6 1 inner 900.3.u.b 8
15.d odd 2 1 2700.3.u.a 8
15.e even 4 1 540.3.o.a 4
15.e even 4 1 2700.3.p.a 4
20.e even 4 1 720.3.bs.a 4
45.h odd 6 1 inner 900.3.u.b 8
45.j even 6 1 2700.3.u.a 8
45.k odd 12 1 540.3.o.a 4
45.k odd 12 1 1620.3.g.a 4
45.k odd 12 1 2700.3.p.a 4
45.l even 12 1 180.3.o.a 4
45.l even 12 1 900.3.p.b 4
45.l even 12 1 1620.3.g.a 4
60.l odd 4 1 2160.3.bs.a 4
180.v odd 12 1 720.3.bs.a 4
180.x even 12 1 2160.3.bs.a 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
180.3.o.a 4 5.c odd 4 1
180.3.o.a 4 45.l even 12 1
540.3.o.a 4 15.e even 4 1
540.3.o.a 4 45.k odd 12 1
720.3.bs.a 4 20.e even 4 1
720.3.bs.a 4 180.v odd 12 1
900.3.p.b 4 5.c odd 4 1
900.3.p.b 4 45.l even 12 1
900.3.u.b 8 1.a even 1 1 trivial
900.3.u.b 8 5.b even 2 1 inner
900.3.u.b 8 9.d odd 6 1 inner
900.3.u.b 8 45.h odd 6 1 inner
1620.3.g.a 4 45.k odd 12 1
1620.3.g.a 4 45.l even 12 1
2160.3.bs.a 4 60.l odd 4 1
2160.3.bs.a 4 180.x even 12 1
2700.3.p.a 4 15.e even 4 1
2700.3.p.a 4 45.k odd 12 1
2700.3.u.a 8 3.b odd 2 1
2700.3.u.a 8 9.c even 3 1
2700.3.u.a 8 15.d odd 2 1
2700.3.u.a 8 45.j even 6 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T78152T76+21168T74294272T72+3748096 T_{7}^{8} - 152T_{7}^{6} + 21168T_{7}^{4} - 294272T_{7}^{2} + 3748096 acting on S3new(900,[χ])S_{3}^{\mathrm{new}}(900, [\chi]). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T8 T^{8} Copy content Toggle raw display
33 (T49T2+81)2 (T^{4} - 9 T^{2} + 81)^{2} Copy content Toggle raw display
55 T8 T^{8} Copy content Toggle raw display
77 T8152T6++3748096 T^{8} - 152 T^{6} + \cdots + 3748096 Copy content Toggle raw display
1111 (T46T3++31329)2 (T^{4} - 6 T^{3} + \cdots + 31329)^{2} Copy content Toggle raw display
1313 T8320T6++2560000 T^{8} - 320 T^{6} + \cdots + 2560000 Copy content Toggle raw display
1717 (T4366T2+31329)2 (T^{4} - 366 T^{2} + 31329)^{2} Copy content Toggle raw display
1919 (T238T+301)4 (T^{2} - 38 T + 301)^{4} Copy content Toggle raw display
2323 T8++203928109056 T^{8} + \cdots + 203928109056 Copy content Toggle raw display
2929 (T460T3++176400)2 (T^{4} - 60 T^{3} + \cdots + 176400)^{2} Copy content Toggle raw display
3131 (T4+4T3++8620096)2 (T^{4} + 4 T^{3} + \cdots + 8620096)^{2} Copy content Toggle raw display
3737 (T2+196)4 (T^{2} + 196)^{4} Copy content Toggle raw display
4141 (T2+45T+675)4 (T^{2} + 45 T + 675)^{4} Copy content Toggle raw display
4343 T8++495504774241 T^{8} + \cdots + 495504774241 Copy content Toggle raw display
4747 T8++116876510171136 T^{8} + \cdots + 116876510171136 Copy content Toggle raw display
5353 (T41536T2+166464)2 (T^{4} - 1536 T^{2} + 166464)^{2} Copy content Toggle raw display
5959 (T4174T3++5489649)2 (T^{4} - 174 T^{3} + \cdots + 5489649)^{2} Copy content Toggle raw display
6161 (T444T3++3136)2 (T^{4} - 44 T^{3} + \cdots + 3136)^{2} Copy content Toggle raw display
6767 T8++54 ⁣ ⁣61 T^{8} + \cdots + 54\!\cdots\!61 Copy content Toggle raw display
7171 (T4+11016T2+5143824)2 (T^{4} + 11016 T^{2} + 5143824)^{2} Copy content Toggle raw display
7373 (T4+3818T2+687241)2 (T^{4} + 3818 T^{2} + 687241)^{2} Copy content Toggle raw display
7979 (T4160T3++34339600)2 (T^{4} - 160 T^{3} + \cdots + 34339600)^{2} Copy content Toggle raw display
8383 (T4+8112T2+65804544)2 (T^{4} + 8112 T^{2} + 65804544)^{2} Copy content Toggle raw display
8989 (T4+9216T2+1327104)2 (T^{4} + 9216 T^{2} + 1327104)^{2} Copy content Toggle raw display
9797 T8++10 ⁣ ⁣41 T^{8} + \cdots + 10\!\cdots\!41 Copy content Toggle raw display
show more
show less