gp: [N,k,chi] = [900,3,Mod(149,900)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("900.149");
S:= CuspForms(chi, 3);
N := Newforms(S);
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(900, base_ring=CyclotomicField(6))
chi = DirichletCharacter(H, H._module([0, 5, 3]))
N = Newforms(chi, 3, names="a")
Newform invariants
sage: traces = [8,0,0,0,0,0,0,0,36]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(9)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the q q q -expansion are expressed in terms of a basis 1 , β 1 , … , β 7 1,\beta_1,\ldots,\beta_{7} 1 , β 1 , … , β 7 for the coefficient ring described below.
We also show the integral q q q -expansion of the trace form .
Basis of coefficient ring in terms of a root ν \nu ν of
x 8 − 3 x 6 + 8 x 4 − 3 x 2 + 1 x^{8} - 3x^{6} + 8x^{4} - 3x^{2} + 1 x 8 − 3 x 6 + 8 x 4 − 3 x 2 + 1
x^8 - 3*x^6 + 8*x^4 - 3*x^2 + 1
:
β 1 \beta_{1} β 1 = = =
( ν 7 + 13 ν ) / 8 ( \nu^{7} + 13\nu ) / 8 ( ν 7 + 1 3 ν ) / 8
(v^7 + 13*v) / 8
β 2 \beta_{2} β 2 = = =
( − 3 ν 6 + 8 ν 4 − 24 ν 2 + 1 ) / 8 ( -3\nu^{6} + 8\nu^{4} - 24\nu^{2} + 1 ) / 8 ( − 3 ν 6 + 8 ν 4 − 2 4 ν 2 + 1 ) / 8
(-3*v^6 + 8*v^4 - 24*v^2 + 1) / 8
β 3 \beta_{3} β 3 = = =
( − 3 ν 7 + 8 ν 5 − 20 ν 3 + ν ) / 4 ( -3\nu^{7} + 8\nu^{5} - 20\nu^{3} + \nu ) / 4 ( − 3 ν 7 + 8 ν 5 − 2 0 ν 3 + ν ) / 4
(-3*v^7 + 8*v^5 - 20*v^3 + v) / 4
β 4 \beta_{4} β 4 = = =
( − 5 ν 6 + 24 ν 4 − 56 ν 2 + 39 ) / 4 ( -5\nu^{6} + 24\nu^{4} - 56\nu^{2} + 39 ) / 4 ( − 5 ν 6 + 2 4 ν 4 − 5 6 ν 2 + 3 9 ) / 4
(-5*v^6 + 24*v^4 - 56*v^2 + 39) / 4
β 5 \beta_{5} β 5 = = =
( − 5 ν 7 + 16 ν 5 − 44 ν 3 + 31 ν ) / 2 ( -5\nu^{7} + 16\nu^{5} - 44\nu^{3} + 31\nu ) / 2 ( − 5 ν 7 + 1 6 ν 5 − 4 4 ν 3 + 3 1 ν ) / 2
(-5*v^7 + 16*v^5 - 44*v^3 + 31*v) / 2
β 6 \beta_{6} β 6 = = =
( − 11 ν 6 + 24 ν 4 − 56 ν 2 − 15 ) / 4 ( -11\nu^{6} + 24\nu^{4} - 56\nu^{2} - 15 ) / 4 ( − 1 1 ν 6 + 2 4 ν 4 − 5 6 ν 2 − 1 5 ) / 4
(-11*v^6 + 24*v^4 - 56*v^2 - 15) / 4
β 7 \beta_{7} β 7 = = =
( 13 ν 7 − 32 ν 5 + 88 ν 3 + 25 ν ) / 4 ( 13\nu^{7} - 32\nu^{5} + 88\nu^{3} + 25\nu ) / 4 ( 1 3 ν 7 − 3 2 ν 5 + 8 8 ν 3 + 2 5 ν ) / 4
(13*v^7 - 32*v^5 + 88*v^3 + 25*v) / 4
ν \nu ν = = =
( β 7 + β 5 − 6 β 1 ) / 12 ( \beta_{7} + \beta_{5} - 6\beta_1 ) / 12 ( β 7 + β 5 − 6 β 1 ) / 1 2
(b7 + b5 - 6*b1) / 12
ν 2 \nu^{2} ν 2 = = =
( 2 β 6 + β 4 − 18 β 2 ) / 12 ( 2\beta_{6} + \beta_{4} - 18\beta_{2} ) / 12 ( 2 β 6 + β 4 − 1 8 β 2 ) / 1 2
(2*b6 + b4 - 18*b2) / 12
ν 3 \nu^{3} ν 3 = = =
( 2 β 7 − β 5 + 12 β 3 ) / 6 ( 2\beta_{7} - \beta_{5} + 12\beta_{3} ) / 6 ( 2 β 7 − β 5 + 1 2 β 3 ) / 6
(2*b7 - b5 + 12*b3) / 6
ν 4 \nu^{4} ν 4 = = =
( β 6 + 2 β 4 − 14 β 2 − 14 ) / 4 ( \beta_{6} + 2\beta_{4} - 14\beta_{2} - 14 ) / 4 ( β 6 + 2 β 4 − 1 4 β 2 − 1 4 ) / 4
(b6 + 2*b4 - 14*b2 - 14) / 4
ν 5 \nu^{5} ν 5 = = =
( 5 β 7 − 10 β 5 + 66 β 3 + 66 β 1 ) / 12 ( 5\beta_{7} - 10\beta_{5} + 66\beta_{3} + 66\beta_1 ) / 12 ( 5 β 7 − 1 0 β 5 + 6 6 β 3 + 6 6 β 1 ) / 1 2
(5*b7 - 10*b5 + 66*b3 + 66*b1) / 12
ν 6 \nu^{6} ν 6 = = =
( − 2 β 6 + 2 β 4 − 27 ) / 3 ( -2\beta_{6} + 2\beta_{4} - 27 ) / 3 ( − 2 β 6 + 2 β 4 − 2 7 ) / 3
(-2*b6 + 2*b4 - 27) / 3
ν 7 \nu^{7} ν 7 = = =
( − 13 β 7 − 13 β 5 + 174 β 1 ) / 12 ( -13\beta_{7} - 13\beta_{5} + 174\beta_1 ) / 12 ( − 1 3 β 7 − 1 3 β 5 + 1 7 4 β 1 ) / 1 2
(-13*b7 - 13*b5 + 174*b1) / 12
Character values
We give the values of χ \chi χ on generators for ( Z / 900 Z ) × \left(\mathbb{Z}/900\mathbb{Z}\right)^\times ( Z / 9 0 0 Z ) × .
n n n
101 101 1 0 1
451 451 4 5 1
577 577 5 7 7
χ ( n ) \chi(n) χ ( n )
− β 2 -\beta_{2} − β 2
1 1 1
− 1 -1 − 1
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
This newform subspace can be constructed as the kernel of the linear operator
T 7 8 − 152 T 7 6 + 21168 T 7 4 − 294272 T 7 2 + 3748096 T_{7}^{8} - 152T_{7}^{6} + 21168T_{7}^{4} - 294272T_{7}^{2} + 3748096 T 7 8 − 1 5 2 T 7 6 + 2 1 1 6 8 T 7 4 − 2 9 4 2 7 2 T 7 2 + 3 7 4 8 0 9 6
T7^8 - 152*T7^6 + 21168*T7^4 - 294272*T7^2 + 3748096
acting on S 3 n e w ( 900 , [ χ ] ) S_{3}^{\mathrm{new}}(900, [\chi]) S 3 n e w ( 9 0 0 , [ χ ] ) .
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
T 8 T^{8} T 8
T^8
3 3 3
( T 4 − 9 T 2 + 81 ) 2 (T^{4} - 9 T^{2} + 81)^{2} ( T 4 − 9 T 2 + 8 1 ) 2
(T^4 - 9*T^2 + 81)^2
5 5 5
T 8 T^{8} T 8
T^8
7 7 7
T 8 − 152 T 6 + ⋯ + 3748096 T^{8} - 152 T^{6} + \cdots + 3748096 T 8 − 1 5 2 T 6 + ⋯ + 3 7 4 8 0 9 6
T^8 - 152*T^6 + 21168*T^4 - 294272*T^2 + 3748096
11 11 1 1
( T 4 − 6 T 3 + ⋯ + 31329 ) 2 (T^{4} - 6 T^{3} + \cdots + 31329)^{2} ( T 4 − 6 T 3 + ⋯ + 3 1 3 2 9 ) 2
(T^4 - 6*T^3 - 165*T^2 + 1062*T + 31329)^2
13 13 1 3
T 8 − 320 T 6 + ⋯ + 2560000 T^{8} - 320 T^{6} + \cdots + 2560000 T 8 − 3 2 0 T 6 + ⋯ + 2 5 6 0 0 0 0
T^8 - 320*T^6 + 100800*T^4 - 512000*T^2 + 2560000
17 17 1 7
( T 4 − 366 T 2 + 31329 ) 2 (T^{4} - 366 T^{2} + 31329)^{2} ( T 4 − 3 6 6 T 2 + 3 1 3 2 9 ) 2
(T^4 - 366*T^2 + 31329)^2
19 19 1 9
( T 2 − 38 T + 301 ) 4 (T^{2} - 38 T + 301)^{4} ( T 2 − 3 8 T + 3 0 1 ) 4
(T^2 - 38*T + 301)^4
23 23 2 3
T 8 + ⋯ + 203928109056 T^{8} + \cdots + 203928109056 T 8 + ⋯ + 2 0 3 9 2 8 1 0 9 0 5 6
T^8 + 1536*T^6 + 1907712*T^4 + 693633024*T^2 + 203928109056
29 29 2 9
( T 4 − 60 T 3 + ⋯ + 176400 ) 2 (T^{4} - 60 T^{3} + \cdots + 176400)^{2} ( T 4 − 6 0 T 3 + ⋯ + 1 7 6 4 0 0 ) 2
(T^4 - 60*T^3 + 780*T^2 + 25200*T + 176400)^2
31 31 3 1
( T 4 + 4 T 3 + ⋯ + 8620096 ) 2 (T^{4} + 4 T^{3} + \cdots + 8620096)^{2} ( T 4 + 4 T 3 + ⋯ + 8 6 2 0 0 9 6 ) 2
(T^4 + 4*T^3 + 2952*T^2 - 11744*T + 8620096)^2
37 37 3 7
( T 2 + 196 ) 4 (T^{2} + 196)^{4} ( T 2 + 1 9 6 ) 4
(T^2 + 196)^4
41 41 4 1
( T 2 + 45 T + 675 ) 4 (T^{2} + 45 T + 675)^{4} ( T 2 + 4 5 T + 6 7 5 ) 4
(T^2 + 45*T + 675)^4
43 43 4 3
T 8 + ⋯ + 495504774241 T^{8} + \cdots + 495504774241 T 8 + ⋯ + 4 9 5 5 0 4 7 7 4 2 4 1
T^8 - 2162*T^6 + 3970323*T^4 - 1521877202*T^2 + 495504774241
47 47 4 7
T 8 + ⋯ + 116876510171136 T^{8} + \cdots + 116876510171136 T 8 + ⋯ + 1 1 6 8 7 6 5 1 0 1 7 1 1 3 6
T^8 + 7296*T^6 + 42420672*T^4 + 78876647424*T^2 + 116876510171136
53 53 5 3
( T 4 − 1536 T 2 + 166464 ) 2 (T^{4} - 1536 T^{2} + 166464)^{2} ( T 4 − 1 5 3 6 T 2 + 1 6 6 4 6 4 ) 2
(T^4 - 1536*T^2 + 166464)^2
59 59 5 9
( T 4 − 174 T 3 + ⋯ + 5489649 ) 2 (T^{4} - 174 T^{3} + \cdots + 5489649)^{2} ( T 4 − 1 7 4 T 3 + ⋯ + 5 4 8 9 6 4 9 ) 2
(T^4 - 174*T^3 + 12435*T^2 - 407682*T + 5489649)^2
61 61 6 1
( T 4 − 44 T 3 + ⋯ + 3136 ) 2 (T^{4} - 44 T^{3} + \cdots + 3136)^{2} ( T 4 − 4 4 T 3 + ⋯ + 3 1 3 6 ) 2
(T^4 - 44*T^3 + 1992*T^2 + 2464*T + 3136)^2
67 67 6 7
T 8 + ⋯ + 54 ⋯ 61 T^{8} + \cdots + 54\!\cdots\!61 T 8 + ⋯ + 5 4 ⋯ 6 1
T^8 - 17378*T^6 + 228189603*T^4 - 1282588173218*T^2 + 5447219503488961
71 71 7 1
( T 4 + 11016 T 2 + 5143824 ) 2 (T^{4} + 11016 T^{2} + 5143824)^{2} ( T 4 + 1 1 0 1 6 T 2 + 5 1 4 3 8 2 4 ) 2
(T^4 + 11016*T^2 + 5143824)^2
73 73 7 3
( T 4 + 3818 T 2 + 687241 ) 2 (T^{4} + 3818 T^{2} + 687241)^{2} ( T 4 + 3 8 1 8 T 2 + 6 8 7 2 4 1 ) 2
(T^4 + 3818*T^2 + 687241)^2
79 79 7 9
( T 4 − 160 T 3 + ⋯ + 34339600 ) 2 (T^{4} - 160 T^{3} + \cdots + 34339600)^{2} ( T 4 − 1 6 0 T 3 + ⋯ + 3 4 3 3 9 6 0 0 ) 2
(T^4 - 160*T^3 + 19740*T^2 - 937600*T + 34339600)^2
83 83 8 3
( T 4 + 8112 T 2 + 65804544 ) 2 (T^{4} + 8112 T^{2} + 65804544)^{2} ( T 4 + 8 1 1 2 T 2 + 6 5 8 0 4 5 4 4 ) 2
(T^4 + 8112*T^2 + 65804544)^2
89 89 8 9
( T 4 + 9216 T 2 + 1327104 ) 2 (T^{4} + 9216 T^{2} + 1327104)^{2} ( T 4 + 9 2 1 6 T 2 + 1 3 2 7 1 0 4 ) 2
(T^4 + 9216*T^2 + 1327104)^2
97 97 9 7
T 8 + ⋯ + 10 ⋯ 41 T^{8} + \cdots + 10\!\cdots\!41 T 8 + ⋯ + 1 0 ⋯ 4 1
T^8 - 20282*T^6 + 308560203*T^4 - 2084975828522*T^2 + 10567700398061041
show more
show less