Defining parameters
Level: | \( N \) | \(=\) | \( 90 = 2 \cdot 3^{2} \cdot 5 \) |
Weight: | \( k \) | \(=\) | \( 8 \) |
Character orbit: | \([\chi]\) | \(=\) | 90.c (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 5 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 4 \) | ||
Sturm bound: | \(144\) | ||
Trace bound: | \(5\) | ||
Distinguishing \(T_p\): | \(7\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{8}(90, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 134 | 18 | 116 |
Cusp forms | 118 | 18 | 100 |
Eisenstein series | 16 | 0 | 16 |
Trace form
Decomposition of \(S_{8}^{\mathrm{new}}(90, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
90.8.c.a | $2$ | $28.115$ | \(\Q(\sqrt{-1}) \) | None | \(0\) | \(0\) | \(100\) | \(0\) | \(q+8 i q^{2}-64 q^{4}+(275 i+50)q^{5}+\cdots\) |
90.8.c.b | $4$ | $28.115$ | \(\Q(i, \sqrt{2641})\) | None | \(0\) | \(0\) | \(-264\) | \(0\) | \(q+4\beta _{1}q^{2}-2^{6}q^{4}+(-66-44\beta _{1}+\cdots)q^{5}+\cdots\) |
90.8.c.c | $4$ | $28.115$ | \(\Q(i, \sqrt{31})\) | None | \(0\) | \(0\) | \(-60\) | \(0\) | \(q+\beta _{1}q^{2}-2^{6}q^{4}+(-15+4\beta _{1}-\beta _{2}+\cdots)q^{5}+\cdots\) |
90.8.c.d | $8$ | $28.115$ | \(\mathbb{Q}[x]/(x^{8} - \cdots)\) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q+\beta _{1}q^{2}-2^{6}q^{4}+(-6\beta _{1}+\beta _{3})q^{5}+\cdots\) |
Decomposition of \(S_{8}^{\mathrm{old}}(90, [\chi])\) into lower level spaces
\( S_{8}^{\mathrm{old}}(90, [\chi]) \simeq \) \(S_{8}^{\mathrm{new}}(5, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(10, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(15, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(30, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(45, [\chi])\)\(^{\oplus 2}\)