Properties

Label 90.8.c
Level $90$
Weight $8$
Character orbit 90.c
Rep. character $\chi_{90}(19,\cdot)$
Character field $\Q$
Dimension $18$
Newform subspaces $4$
Sturm bound $144$
Trace bound $5$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 90 = 2 \cdot 3^{2} \cdot 5 \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 90.c (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 5 \)
Character field: \(\Q\)
Newform subspaces: \( 4 \)
Sturm bound: \(144\)
Trace bound: \(5\)
Distinguishing \(T_p\): \(7\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{8}(90, [\chi])\).

Total New Old
Modular forms 134 18 116
Cusp forms 118 18 100
Eisenstein series 16 0 16

Trace form

\( 18 q - 1152 q^{4} - 224 q^{5} + 1104 q^{10} + 668 q^{11} - 2464 q^{14} + 73728 q^{16} - 69648 q^{19} + 14336 q^{20} - 221682 q^{25} - 266976 q^{26} + 241704 q^{29} - 318288 q^{31} - 257568 q^{34} + 191996 q^{35}+ \cdots - 14199504 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{8}^{\mathrm{new}}(90, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
90.8.c.a 90.c 5.b $2$ $28.115$ \(\Q(\sqrt{-1}) \) None 30.8.c.a \(0\) \(0\) \(100\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+8 i q^{2}-64 q^{4}+(275 i+50)q^{5}+\cdots\)
90.8.c.b 90.c 5.b $4$ $28.115$ \(\Q(i, \sqrt{2641})\) None 30.8.c.b \(0\) \(0\) \(-264\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+4\beta _{1}q^{2}-2^{6}q^{4}+(-66-44\beta _{1}+\cdots)q^{5}+\cdots\)
90.8.c.c 90.c 5.b $4$ $28.115$ \(\Q(i, \sqrt{31})\) None 10.8.b.a \(0\) \(0\) \(-60\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{1}q^{2}-2^{6}q^{4}+(-15+4\beta _{1}-\beta _{2}+\cdots)q^{5}+\cdots\)
90.8.c.d 90.c 5.b $8$ $28.115$ \(\mathbb{Q}[x]/(x^{8} - \cdots)\) None 90.8.c.d \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{1}q^{2}-2^{6}q^{4}+(-6\beta _{1}+\beta _{3})q^{5}+\cdots\)

Decomposition of \(S_{8}^{\mathrm{old}}(90, [\chi])\) into lower level spaces

\( S_{8}^{\mathrm{old}}(90, [\chi]) \simeq \) \(S_{8}^{\mathrm{new}}(5, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(10, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(15, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(30, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(45, [\chi])\)\(^{\oplus 2}\)