Defining parameters
Level: | \( N \) | = | \( 9 = 3^{2} \) |
Weight: | \( k \) | = | \( 7 \) |
Nonzero newspaces: | \( 2 \) | ||
Newform subspaces: | \( 2 \) | ||
Sturm bound: | \(42\) | ||
Trace bound: | \(1\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{7}(\Gamma_1(9))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 22 | 16 | 6 |
Cusp forms | 14 | 12 | 2 |
Eisenstein series | 8 | 4 | 4 |
Trace form
Decomposition of \(S_{7}^{\mathrm{new}}(\Gamma_1(9))\)
We only show spaces with odd parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.
Label | \(\chi\) | Newforms | Dimension | \(\chi\) degree |
---|---|---|---|---|
9.7.b | \(\chi_{9}(8, \cdot)\) | 9.7.b.a | 2 | 1 |
9.7.d | \(\chi_{9}(2, \cdot)\) | 9.7.d.a | 10 | 2 |
Decomposition of \(S_{7}^{\mathrm{old}}(\Gamma_1(9))\) into lower level spaces
\( S_{7}^{\mathrm{old}}(\Gamma_1(9)) \cong \) \(S_{7}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 3}\)\(\oplus\)\(S_{7}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 2}\)\(\oplus\)\(S_{7}^{\mathrm{new}}(\Gamma_1(9))\)\(^{\oplus 1}\)