Properties

Label 8925.2.a.cx.1.11
Level $8925$
Weight $2$
Character 8925.1
Self dual yes
Analytic conductor $71.266$
Analytic rank $0$
Dimension $14$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [8925,2,Mod(1,8925)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("8925.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(8925, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 8925 = 3 \cdot 5^{2} \cdot 7 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 8925.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [14,3,14,17,0,3,14,15,14,0,4,17,-1,3,0,19,-14] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(17)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(71.2664838040\)
Analytic rank: \(0\)
Dimension: \(14\)
Coefficient field: \(\mathbb{Q}[x]/(x^{14} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{14} - 3 x^{13} - 18 x^{12} + 54 x^{11} + 124 x^{10} - 366 x^{9} - 416 x^{8} + 1164 x^{7} + 727 x^{6} + \cdots - 40 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{6} \)
Twist minimal: no (minimal twist has level 1785)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.11
Root \(2.13433\) of defining polynomial
Character \(\chi\) \(=\) 8925.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.13433 q^{2} +1.00000 q^{3} +2.55536 q^{4} +2.13433 q^{6} +1.00000 q^{7} +1.18533 q^{8} +1.00000 q^{9} -5.50983 q^{11} +2.55536 q^{12} +0.643407 q^{13} +2.13433 q^{14} -2.58084 q^{16} -1.00000 q^{17} +2.13433 q^{18} +5.16312 q^{19} +1.00000 q^{21} -11.7598 q^{22} +4.28012 q^{23} +1.18533 q^{24} +1.37324 q^{26} +1.00000 q^{27} +2.55536 q^{28} +8.85121 q^{29} -4.74477 q^{31} -7.87903 q^{32} -5.50983 q^{33} -2.13433 q^{34} +2.55536 q^{36} +7.79937 q^{37} +11.0198 q^{38} +0.643407 q^{39} +7.36348 q^{41} +2.13433 q^{42} +12.0566 q^{43} -14.0796 q^{44} +9.13519 q^{46} +10.0239 q^{47} -2.58084 q^{48} +1.00000 q^{49} -1.00000 q^{51} +1.64414 q^{52} -10.3163 q^{53} +2.13433 q^{54} +1.18533 q^{56} +5.16312 q^{57} +18.8914 q^{58} +14.0781 q^{59} +1.22749 q^{61} -10.1269 q^{62} +1.00000 q^{63} -11.6548 q^{64} -11.7598 q^{66} -9.34997 q^{67} -2.55536 q^{68} +4.28012 q^{69} -3.39468 q^{71} +1.18533 q^{72} -4.21709 q^{73} +16.6464 q^{74} +13.1936 q^{76} -5.50983 q^{77} +1.37324 q^{78} -7.23677 q^{79} +1.00000 q^{81} +15.7161 q^{82} -8.49261 q^{83} +2.55536 q^{84} +25.7327 q^{86} +8.85121 q^{87} -6.53097 q^{88} +10.0122 q^{89} +0.643407 q^{91} +10.9373 q^{92} -4.74477 q^{93} +21.3944 q^{94} -7.87903 q^{96} -1.82896 q^{97} +2.13433 q^{98} -5.50983 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 14 q + 3 q^{2} + 14 q^{3} + 17 q^{4} + 3 q^{6} + 14 q^{7} + 15 q^{8} + 14 q^{9} + 4 q^{11} + 17 q^{12} - q^{13} + 3 q^{14} + 19 q^{16} - 14 q^{17} + 3 q^{18} - 6 q^{19} + 14 q^{21} + 12 q^{22} + 7 q^{23}+ \cdots + 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.13433 1.50920 0.754600 0.656186i \(-0.227831\pi\)
0.754600 + 0.656186i \(0.227831\pi\)
\(3\) 1.00000 0.577350
\(4\) 2.55536 1.27768
\(5\) 0 0
\(6\) 2.13433 0.871336
\(7\) 1.00000 0.377964
\(8\) 1.18533 0.419077
\(9\) 1.00000 0.333333
\(10\) 0 0
\(11\) −5.50983 −1.66128 −0.830639 0.556812i \(-0.812024\pi\)
−0.830639 + 0.556812i \(0.812024\pi\)
\(12\) 2.55536 0.737670
\(13\) 0.643407 0.178449 0.0892244 0.996012i \(-0.471561\pi\)
0.0892244 + 0.996012i \(0.471561\pi\)
\(14\) 2.13433 0.570424
\(15\) 0 0
\(16\) −2.58084 −0.645211
\(17\) −1.00000 −0.242536
\(18\) 2.13433 0.503066
\(19\) 5.16312 1.18450 0.592250 0.805754i \(-0.298240\pi\)
0.592250 + 0.805754i \(0.298240\pi\)
\(20\) 0 0
\(21\) 1.00000 0.218218
\(22\) −11.7598 −2.50720
\(23\) 4.28012 0.892467 0.446234 0.894916i \(-0.352765\pi\)
0.446234 + 0.894916i \(0.352765\pi\)
\(24\) 1.18533 0.241954
\(25\) 0 0
\(26\) 1.37324 0.269315
\(27\) 1.00000 0.192450
\(28\) 2.55536 0.482918
\(29\) 8.85121 1.64363 0.821815 0.569755i \(-0.192962\pi\)
0.821815 + 0.569755i \(0.192962\pi\)
\(30\) 0 0
\(31\) −4.74477 −0.852186 −0.426093 0.904679i \(-0.640110\pi\)
−0.426093 + 0.904679i \(0.640110\pi\)
\(32\) −7.87903 −1.39283
\(33\) −5.50983 −0.959139
\(34\) −2.13433 −0.366035
\(35\) 0 0
\(36\) 2.55536 0.425894
\(37\) 7.79937 1.28221 0.641104 0.767454i \(-0.278477\pi\)
0.641104 + 0.767454i \(0.278477\pi\)
\(38\) 11.0198 1.78765
\(39\) 0.643407 0.103027
\(40\) 0 0
\(41\) 7.36348 1.14998 0.574992 0.818159i \(-0.305005\pi\)
0.574992 + 0.818159i \(0.305005\pi\)
\(42\) 2.13433 0.329334
\(43\) 12.0566 1.83861 0.919303 0.393549i \(-0.128753\pi\)
0.919303 + 0.393549i \(0.128753\pi\)
\(44\) −14.0796 −2.12258
\(45\) 0 0
\(46\) 9.13519 1.34691
\(47\) 10.0239 1.46214 0.731072 0.682301i \(-0.239021\pi\)
0.731072 + 0.682301i \(0.239021\pi\)
\(48\) −2.58084 −0.372513
\(49\) 1.00000 0.142857
\(50\) 0 0
\(51\) −1.00000 −0.140028
\(52\) 1.64414 0.228001
\(53\) −10.3163 −1.41705 −0.708523 0.705687i \(-0.750638\pi\)
−0.708523 + 0.705687i \(0.750638\pi\)
\(54\) 2.13433 0.290445
\(55\) 0 0
\(56\) 1.18533 0.158396
\(57\) 5.16312 0.683872
\(58\) 18.8914 2.48056
\(59\) 14.0781 1.83281 0.916404 0.400254i \(-0.131078\pi\)
0.916404 + 0.400254i \(0.131078\pi\)
\(60\) 0 0
\(61\) 1.22749 0.157165 0.0785823 0.996908i \(-0.474961\pi\)
0.0785823 + 0.996908i \(0.474961\pi\)
\(62\) −10.1269 −1.28612
\(63\) 1.00000 0.125988
\(64\) −11.6548 −1.45685
\(65\) 0 0
\(66\) −11.7598 −1.44753
\(67\) −9.34997 −1.14228 −0.571141 0.820852i \(-0.693499\pi\)
−0.571141 + 0.820852i \(0.693499\pi\)
\(68\) −2.55536 −0.309883
\(69\) 4.28012 0.515266
\(70\) 0 0
\(71\) −3.39468 −0.402874 −0.201437 0.979501i \(-0.564561\pi\)
−0.201437 + 0.979501i \(0.564561\pi\)
\(72\) 1.18533 0.139692
\(73\) −4.21709 −0.493573 −0.246787 0.969070i \(-0.579375\pi\)
−0.246787 + 0.969070i \(0.579375\pi\)
\(74\) 16.6464 1.93511
\(75\) 0 0
\(76\) 13.1936 1.51341
\(77\) −5.50983 −0.627904
\(78\) 1.37324 0.155489
\(79\) −7.23677 −0.814200 −0.407100 0.913384i \(-0.633460\pi\)
−0.407100 + 0.913384i \(0.633460\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 15.7161 1.73555
\(83\) −8.49261 −0.932185 −0.466092 0.884736i \(-0.654339\pi\)
−0.466092 + 0.884736i \(0.654339\pi\)
\(84\) 2.55536 0.278813
\(85\) 0 0
\(86\) 25.7327 2.77482
\(87\) 8.85121 0.948950
\(88\) −6.53097 −0.696203
\(89\) 10.0122 1.06129 0.530643 0.847595i \(-0.321951\pi\)
0.530643 + 0.847595i \(0.321951\pi\)
\(90\) 0 0
\(91\) 0.643407 0.0674473
\(92\) 10.9373 1.14029
\(93\) −4.74477 −0.492010
\(94\) 21.3944 2.20666
\(95\) 0 0
\(96\) −7.87903 −0.804150
\(97\) −1.82896 −0.185702 −0.0928511 0.995680i \(-0.529598\pi\)
−0.0928511 + 0.995680i \(0.529598\pi\)
\(98\) 2.13433 0.215600
\(99\) −5.50983 −0.553759
\(100\) 0 0
\(101\) −1.10831 −0.110281 −0.0551405 0.998479i \(-0.517561\pi\)
−0.0551405 + 0.998479i \(0.517561\pi\)
\(102\) −2.13433 −0.211330
\(103\) 7.56063 0.744971 0.372485 0.928038i \(-0.378506\pi\)
0.372485 + 0.928038i \(0.378506\pi\)
\(104\) 0.762648 0.0747838
\(105\) 0 0
\(106\) −22.0183 −2.13861
\(107\) 4.28328 0.414080 0.207040 0.978332i \(-0.433617\pi\)
0.207040 + 0.978332i \(0.433617\pi\)
\(108\) 2.55536 0.245890
\(109\) 12.1978 1.16834 0.584169 0.811632i \(-0.301421\pi\)
0.584169 + 0.811632i \(0.301421\pi\)
\(110\) 0 0
\(111\) 7.79937 0.740283
\(112\) −2.58084 −0.243867
\(113\) 4.91040 0.461932 0.230966 0.972962i \(-0.425811\pi\)
0.230966 + 0.972962i \(0.425811\pi\)
\(114\) 11.0198 1.03210
\(115\) 0 0
\(116\) 22.6181 2.10003
\(117\) 0.643407 0.0594830
\(118\) 30.0472 2.76607
\(119\) −1.00000 −0.0916698
\(120\) 0 0
\(121\) 19.3583 1.75984
\(122\) 2.61988 0.237193
\(123\) 7.36348 0.663943
\(124\) −12.1246 −1.08882
\(125\) 0 0
\(126\) 2.13433 0.190141
\(127\) 2.34771 0.208326 0.104163 0.994560i \(-0.466784\pi\)
0.104163 + 0.994560i \(0.466784\pi\)
\(128\) −9.11704 −0.805840
\(129\) 12.0566 1.06152
\(130\) 0 0
\(131\) 13.9915 1.22244 0.611220 0.791461i \(-0.290679\pi\)
0.611220 + 0.791461i \(0.290679\pi\)
\(132\) −14.0796 −1.22547
\(133\) 5.16312 0.447699
\(134\) −19.9559 −1.72393
\(135\) 0 0
\(136\) −1.18533 −0.101641
\(137\) 12.7146 1.08628 0.543141 0.839642i \(-0.317235\pi\)
0.543141 + 0.839642i \(0.317235\pi\)
\(138\) 9.13519 0.777639
\(139\) −0.625840 −0.0530831 −0.0265415 0.999648i \(-0.508449\pi\)
−0.0265415 + 0.999648i \(0.508449\pi\)
\(140\) 0 0
\(141\) 10.0239 0.844169
\(142\) −7.24536 −0.608017
\(143\) −3.54506 −0.296453
\(144\) −2.58084 −0.215070
\(145\) 0 0
\(146\) −9.00067 −0.744901
\(147\) 1.00000 0.0824786
\(148\) 19.9302 1.63825
\(149\) −1.48444 −0.121610 −0.0608049 0.998150i \(-0.519367\pi\)
−0.0608049 + 0.998150i \(0.519367\pi\)
\(150\) 0 0
\(151\) 2.05728 0.167419 0.0837096 0.996490i \(-0.473323\pi\)
0.0837096 + 0.996490i \(0.473323\pi\)
\(152\) 6.11999 0.496397
\(153\) −1.00000 −0.0808452
\(154\) −11.7598 −0.947632
\(155\) 0 0
\(156\) 1.64414 0.131636
\(157\) −14.9185 −1.19063 −0.595314 0.803493i \(-0.702972\pi\)
−0.595314 + 0.803493i \(0.702972\pi\)
\(158\) −15.4456 −1.22879
\(159\) −10.3163 −0.818132
\(160\) 0 0
\(161\) 4.28012 0.337321
\(162\) 2.13433 0.167689
\(163\) 15.0326 1.17744 0.588720 0.808337i \(-0.299632\pi\)
0.588720 + 0.808337i \(0.299632\pi\)
\(164\) 18.8164 1.46931
\(165\) 0 0
\(166\) −18.1260 −1.40685
\(167\) 6.96721 0.539139 0.269569 0.962981i \(-0.413119\pi\)
0.269569 + 0.962981i \(0.413119\pi\)
\(168\) 1.18533 0.0914501
\(169\) −12.5860 −0.968156
\(170\) 0 0
\(171\) 5.16312 0.394834
\(172\) 30.8089 2.34915
\(173\) 9.32109 0.708669 0.354335 0.935119i \(-0.384707\pi\)
0.354335 + 0.935119i \(0.384707\pi\)
\(174\) 18.8914 1.43215
\(175\) 0 0
\(176\) 14.2200 1.07187
\(177\) 14.0781 1.05817
\(178\) 21.3692 1.60169
\(179\) −20.5559 −1.53642 −0.768211 0.640196i \(-0.778853\pi\)
−0.768211 + 0.640196i \(0.778853\pi\)
\(180\) 0 0
\(181\) −16.7234 −1.24304 −0.621522 0.783397i \(-0.713485\pi\)
−0.621522 + 0.783397i \(0.713485\pi\)
\(182\) 1.37324 0.101791
\(183\) 1.22749 0.0907390
\(184\) 5.07335 0.374013
\(185\) 0 0
\(186\) −10.1269 −0.742541
\(187\) 5.50983 0.402919
\(188\) 25.6148 1.86815
\(189\) 1.00000 0.0727393
\(190\) 0 0
\(191\) −8.24929 −0.596898 −0.298449 0.954426i \(-0.596469\pi\)
−0.298449 + 0.954426i \(0.596469\pi\)
\(192\) −11.6548 −0.841110
\(193\) −25.0098 −1.80024 −0.900121 0.435640i \(-0.856522\pi\)
−0.900121 + 0.435640i \(0.856522\pi\)
\(194\) −3.90359 −0.280262
\(195\) 0 0
\(196\) 2.55536 0.182526
\(197\) −7.51729 −0.535585 −0.267793 0.963477i \(-0.586294\pi\)
−0.267793 + 0.963477i \(0.586294\pi\)
\(198\) −11.7598 −0.835733
\(199\) −2.41445 −0.171156 −0.0855779 0.996331i \(-0.527274\pi\)
−0.0855779 + 0.996331i \(0.527274\pi\)
\(200\) 0 0
\(201\) −9.34997 −0.659496
\(202\) −2.36550 −0.166436
\(203\) 8.85121 0.621233
\(204\) −2.55536 −0.178911
\(205\) 0 0
\(206\) 16.1369 1.12431
\(207\) 4.28012 0.297489
\(208\) −1.66053 −0.115137
\(209\) −28.4479 −1.96778
\(210\) 0 0
\(211\) −26.6246 −1.83291 −0.916456 0.400136i \(-0.868963\pi\)
−0.916456 + 0.400136i \(0.868963\pi\)
\(212\) −26.3618 −1.81053
\(213\) −3.39468 −0.232599
\(214\) 9.14192 0.624929
\(215\) 0 0
\(216\) 1.18533 0.0806514
\(217\) −4.74477 −0.322096
\(218\) 26.0341 1.76325
\(219\) −4.21709 −0.284965
\(220\) 0 0
\(221\) −0.643407 −0.0432802
\(222\) 16.6464 1.11723
\(223\) −21.6013 −1.44653 −0.723265 0.690571i \(-0.757359\pi\)
−0.723265 + 0.690571i \(0.757359\pi\)
\(224\) −7.87903 −0.526440
\(225\) 0 0
\(226\) 10.4804 0.697147
\(227\) −5.66803 −0.376201 −0.188100 0.982150i \(-0.560233\pi\)
−0.188100 + 0.982150i \(0.560233\pi\)
\(228\) 13.1936 0.873770
\(229\) 3.34447 0.221009 0.110504 0.993876i \(-0.464753\pi\)
0.110504 + 0.993876i \(0.464753\pi\)
\(230\) 0 0
\(231\) −5.50983 −0.362520
\(232\) 10.4916 0.688807
\(233\) −22.3728 −1.46569 −0.732846 0.680394i \(-0.761808\pi\)
−0.732846 + 0.680394i \(0.761808\pi\)
\(234\) 1.37324 0.0897716
\(235\) 0 0
\(236\) 35.9746 2.34175
\(237\) −7.23677 −0.470079
\(238\) −2.13433 −0.138348
\(239\) 16.3289 1.05623 0.528115 0.849173i \(-0.322899\pi\)
0.528115 + 0.849173i \(0.322899\pi\)
\(240\) 0 0
\(241\) −30.3048 −1.95211 −0.976053 0.217533i \(-0.930199\pi\)
−0.976053 + 0.217533i \(0.930199\pi\)
\(242\) 41.3169 2.65595
\(243\) 1.00000 0.0641500
\(244\) 3.13670 0.200806
\(245\) 0 0
\(246\) 15.7161 1.00202
\(247\) 3.32198 0.211373
\(248\) −5.62411 −0.357132
\(249\) −8.49261 −0.538197
\(250\) 0 0
\(251\) 20.4528 1.29097 0.645485 0.763773i \(-0.276655\pi\)
0.645485 + 0.763773i \(0.276655\pi\)
\(252\) 2.55536 0.160973
\(253\) −23.5828 −1.48264
\(254\) 5.01079 0.314405
\(255\) 0 0
\(256\) 3.85075 0.240672
\(257\) 12.8868 0.803854 0.401927 0.915672i \(-0.368341\pi\)
0.401927 + 0.915672i \(0.368341\pi\)
\(258\) 25.7327 1.60205
\(259\) 7.79937 0.484629
\(260\) 0 0
\(261\) 8.85121 0.547876
\(262\) 29.8624 1.84490
\(263\) −8.19887 −0.505564 −0.252782 0.967523i \(-0.581346\pi\)
−0.252782 + 0.967523i \(0.581346\pi\)
\(264\) −6.53097 −0.401953
\(265\) 0 0
\(266\) 11.0198 0.675667
\(267\) 10.0122 0.612734
\(268\) −23.8926 −1.45947
\(269\) 7.05528 0.430168 0.215084 0.976596i \(-0.430997\pi\)
0.215084 + 0.976596i \(0.430997\pi\)
\(270\) 0 0
\(271\) 16.0618 0.975686 0.487843 0.872931i \(-0.337784\pi\)
0.487843 + 0.872931i \(0.337784\pi\)
\(272\) 2.58084 0.156487
\(273\) 0.643407 0.0389407
\(274\) 27.1371 1.63941
\(275\) 0 0
\(276\) 10.9373 0.658346
\(277\) −16.5942 −0.997050 −0.498525 0.866875i \(-0.666125\pi\)
−0.498525 + 0.866875i \(0.666125\pi\)
\(278\) −1.33575 −0.0801129
\(279\) −4.74477 −0.284062
\(280\) 0 0
\(281\) 30.6476 1.82828 0.914142 0.405394i \(-0.132866\pi\)
0.914142 + 0.405394i \(0.132866\pi\)
\(282\) 21.3944 1.27402
\(283\) −15.2805 −0.908333 −0.454166 0.890917i \(-0.650063\pi\)
−0.454166 + 0.890917i \(0.650063\pi\)
\(284\) −8.67463 −0.514745
\(285\) 0 0
\(286\) −7.56633 −0.447407
\(287\) 7.36348 0.434653
\(288\) −7.87903 −0.464276
\(289\) 1.00000 0.0588235
\(290\) 0 0
\(291\) −1.82896 −0.107215
\(292\) −10.7762 −0.630630
\(293\) −22.3430 −1.30529 −0.652646 0.757663i \(-0.726341\pi\)
−0.652646 + 0.757663i \(0.726341\pi\)
\(294\) 2.13433 0.124477
\(295\) 0 0
\(296\) 9.24481 0.537344
\(297\) −5.50983 −0.319713
\(298\) −3.16828 −0.183533
\(299\) 2.75386 0.159260
\(300\) 0 0
\(301\) 12.0566 0.694928
\(302\) 4.39092 0.252669
\(303\) −1.10831 −0.0636708
\(304\) −13.3252 −0.764253
\(305\) 0 0
\(306\) −2.13433 −0.122012
\(307\) −17.1138 −0.976735 −0.488368 0.872638i \(-0.662408\pi\)
−0.488368 + 0.872638i \(0.662408\pi\)
\(308\) −14.0796 −0.802261
\(309\) 7.56063 0.430109
\(310\) 0 0
\(311\) −12.2190 −0.692876 −0.346438 0.938073i \(-0.612609\pi\)
−0.346438 + 0.938073i \(0.612609\pi\)
\(312\) 0.762648 0.0431765
\(313\) 9.24803 0.522729 0.261365 0.965240i \(-0.415827\pi\)
0.261365 + 0.965240i \(0.415827\pi\)
\(314\) −31.8410 −1.79689
\(315\) 0 0
\(316\) −18.4926 −1.04029
\(317\) 4.99443 0.280515 0.140258 0.990115i \(-0.455207\pi\)
0.140258 + 0.990115i \(0.455207\pi\)
\(318\) −22.0183 −1.23472
\(319\) −48.7687 −2.73052
\(320\) 0 0
\(321\) 4.28328 0.239069
\(322\) 9.13519 0.509084
\(323\) −5.16312 −0.287284
\(324\) 2.55536 0.141965
\(325\) 0 0
\(326\) 32.0844 1.77699
\(327\) 12.1978 0.674540
\(328\) 8.72815 0.481932
\(329\) 10.0239 0.552638
\(330\) 0 0
\(331\) −22.1145 −1.21552 −0.607761 0.794120i \(-0.707932\pi\)
−0.607761 + 0.794120i \(0.707932\pi\)
\(332\) −21.7017 −1.19104
\(333\) 7.79937 0.427403
\(334\) 14.8703 0.813668
\(335\) 0 0
\(336\) −2.58084 −0.140797
\(337\) 22.4262 1.22163 0.610815 0.791773i \(-0.290842\pi\)
0.610815 + 0.791773i \(0.290842\pi\)
\(338\) −26.8627 −1.46114
\(339\) 4.91040 0.266696
\(340\) 0 0
\(341\) 26.1429 1.41572
\(342\) 11.0198 0.595882
\(343\) 1.00000 0.0539949
\(344\) 14.2910 0.770518
\(345\) 0 0
\(346\) 19.8943 1.06952
\(347\) 3.56283 0.191263 0.0956313 0.995417i \(-0.469513\pi\)
0.0956313 + 0.995417i \(0.469513\pi\)
\(348\) 22.6181 1.21246
\(349\) −6.30005 −0.337234 −0.168617 0.985682i \(-0.553930\pi\)
−0.168617 + 0.985682i \(0.553930\pi\)
\(350\) 0 0
\(351\) 0.643407 0.0343425
\(352\) 43.4122 2.31388
\(353\) 14.5193 0.772786 0.386393 0.922334i \(-0.373721\pi\)
0.386393 + 0.922334i \(0.373721\pi\)
\(354\) 30.0472 1.59699
\(355\) 0 0
\(356\) 25.5847 1.35599
\(357\) −1.00000 −0.0529256
\(358\) −43.8732 −2.31877
\(359\) 10.9678 0.578858 0.289429 0.957200i \(-0.406535\pi\)
0.289429 + 0.957200i \(0.406535\pi\)
\(360\) 0 0
\(361\) 7.65779 0.403042
\(362\) −35.6933 −1.87600
\(363\) 19.3583 1.01605
\(364\) 1.64414 0.0861762
\(365\) 0 0
\(366\) 2.61988 0.136943
\(367\) −20.1871 −1.05376 −0.526879 0.849940i \(-0.676638\pi\)
−0.526879 + 0.849940i \(0.676638\pi\)
\(368\) −11.0463 −0.575830
\(369\) 7.36348 0.383328
\(370\) 0 0
\(371\) −10.3163 −0.535593
\(372\) −12.1246 −0.628632
\(373\) 27.6334 1.43080 0.715402 0.698713i \(-0.246244\pi\)
0.715402 + 0.698713i \(0.246244\pi\)
\(374\) 11.7598 0.608085
\(375\) 0 0
\(376\) 11.8817 0.612751
\(377\) 5.69493 0.293304
\(378\) 2.13433 0.109778
\(379\) 8.77721 0.450855 0.225428 0.974260i \(-0.427622\pi\)
0.225428 + 0.974260i \(0.427622\pi\)
\(380\) 0 0
\(381\) 2.34771 0.120277
\(382\) −17.6067 −0.900837
\(383\) −7.40695 −0.378477 −0.189239 0.981931i \(-0.560602\pi\)
−0.189239 + 0.981931i \(0.560602\pi\)
\(384\) −9.11704 −0.465252
\(385\) 0 0
\(386\) −53.3791 −2.71692
\(387\) 12.0566 0.612869
\(388\) −4.67365 −0.237268
\(389\) 26.2306 1.32995 0.664973 0.746867i \(-0.268443\pi\)
0.664973 + 0.746867i \(0.268443\pi\)
\(390\) 0 0
\(391\) −4.28012 −0.216455
\(392\) 1.18533 0.0598681
\(393\) 13.9915 0.705776
\(394\) −16.0444 −0.808304
\(395\) 0 0
\(396\) −14.0796 −0.707528
\(397\) −29.6923 −1.49022 −0.745108 0.666944i \(-0.767602\pi\)
−0.745108 + 0.666944i \(0.767602\pi\)
\(398\) −5.15323 −0.258308
\(399\) 5.16312 0.258479
\(400\) 0 0
\(401\) −15.6946 −0.783753 −0.391876 0.920018i \(-0.628174\pi\)
−0.391876 + 0.920018i \(0.628174\pi\)
\(402\) −19.9559 −0.995311
\(403\) −3.05282 −0.152072
\(404\) −2.83214 −0.140904
\(405\) 0 0
\(406\) 18.8914 0.937565
\(407\) −42.9732 −2.13010
\(408\) −1.18533 −0.0586825
\(409\) −32.5578 −1.60988 −0.804939 0.593357i \(-0.797802\pi\)
−0.804939 + 0.593357i \(0.797802\pi\)
\(410\) 0 0
\(411\) 12.7146 0.627165
\(412\) 19.3201 0.951835
\(413\) 14.0781 0.692737
\(414\) 9.13519 0.448970
\(415\) 0 0
\(416\) −5.06942 −0.248549
\(417\) −0.625840 −0.0306475
\(418\) −60.7173 −2.96978
\(419\) −14.7975 −0.722904 −0.361452 0.932391i \(-0.617719\pi\)
−0.361452 + 0.932391i \(0.617719\pi\)
\(420\) 0 0
\(421\) 8.93468 0.435450 0.217725 0.976010i \(-0.430136\pi\)
0.217725 + 0.976010i \(0.430136\pi\)
\(422\) −56.8256 −2.76623
\(423\) 10.0239 0.487381
\(424\) −12.2282 −0.593852
\(425\) 0 0
\(426\) −7.24536 −0.351039
\(427\) 1.22749 0.0594026
\(428\) 10.9453 0.529062
\(429\) −3.54506 −0.171157
\(430\) 0 0
\(431\) 2.30891 0.111216 0.0556082 0.998453i \(-0.482290\pi\)
0.0556082 + 0.998453i \(0.482290\pi\)
\(432\) −2.58084 −0.124171
\(433\) 7.10020 0.341214 0.170607 0.985339i \(-0.445427\pi\)
0.170607 + 0.985339i \(0.445427\pi\)
\(434\) −10.1269 −0.486107
\(435\) 0 0
\(436\) 31.1698 1.49276
\(437\) 22.0988 1.05713
\(438\) −9.00067 −0.430069
\(439\) 10.6936 0.510375 0.255188 0.966892i \(-0.417863\pi\)
0.255188 + 0.966892i \(0.417863\pi\)
\(440\) 0 0
\(441\) 1.00000 0.0476190
\(442\) −1.37324 −0.0653184
\(443\) −16.3278 −0.775759 −0.387880 0.921710i \(-0.626792\pi\)
−0.387880 + 0.921710i \(0.626792\pi\)
\(444\) 19.9302 0.945846
\(445\) 0 0
\(446\) −46.1043 −2.18310
\(447\) −1.48444 −0.0702115
\(448\) −11.6548 −0.550636
\(449\) 9.73297 0.459327 0.229664 0.973270i \(-0.426237\pi\)
0.229664 + 0.973270i \(0.426237\pi\)
\(450\) 0 0
\(451\) −40.5716 −1.91044
\(452\) 12.5479 0.590201
\(453\) 2.05728 0.0966595
\(454\) −12.0975 −0.567762
\(455\) 0 0
\(456\) 6.11999 0.286595
\(457\) 27.5677 1.28956 0.644781 0.764367i \(-0.276949\pi\)
0.644781 + 0.764367i \(0.276949\pi\)
\(458\) 7.13820 0.333546
\(459\) −1.00000 −0.0466760
\(460\) 0 0
\(461\) −8.80131 −0.409918 −0.204959 0.978771i \(-0.565706\pi\)
−0.204959 + 0.978771i \(0.565706\pi\)
\(462\) −11.7598 −0.547116
\(463\) 18.3765 0.854030 0.427015 0.904245i \(-0.359565\pi\)
0.427015 + 0.904245i \(0.359565\pi\)
\(464\) −22.8436 −1.06049
\(465\) 0 0
\(466\) −47.7510 −2.21202
\(467\) 33.9479 1.57092 0.785460 0.618912i \(-0.212426\pi\)
0.785460 + 0.618912i \(0.212426\pi\)
\(468\) 1.64414 0.0760003
\(469\) −9.34997 −0.431742
\(470\) 0 0
\(471\) −14.9185 −0.687409
\(472\) 16.6871 0.768088
\(473\) −66.4296 −3.05444
\(474\) −15.4456 −0.709442
\(475\) 0 0
\(476\) −2.55536 −0.117125
\(477\) −10.3163 −0.472349
\(478\) 34.8513 1.59406
\(479\) 32.8894 1.50275 0.751376 0.659874i \(-0.229390\pi\)
0.751376 + 0.659874i \(0.229390\pi\)
\(480\) 0 0
\(481\) 5.01816 0.228809
\(482\) −64.6805 −2.94612
\(483\) 4.28012 0.194752
\(484\) 49.4674 2.24852
\(485\) 0 0
\(486\) 2.13433 0.0968152
\(487\) 40.9669 1.85639 0.928195 0.372095i \(-0.121361\pi\)
0.928195 + 0.372095i \(0.121361\pi\)
\(488\) 1.45498 0.0658641
\(489\) 15.0326 0.679796
\(490\) 0 0
\(491\) 12.4761 0.563038 0.281519 0.959556i \(-0.409162\pi\)
0.281519 + 0.959556i \(0.409162\pi\)
\(492\) 18.8164 0.848308
\(493\) −8.85121 −0.398639
\(494\) 7.09021 0.319004
\(495\) 0 0
\(496\) 12.2455 0.549840
\(497\) −3.39468 −0.152272
\(498\) −18.1260 −0.812246
\(499\) −26.6977 −1.19515 −0.597577 0.801811i \(-0.703870\pi\)
−0.597577 + 0.801811i \(0.703870\pi\)
\(500\) 0 0
\(501\) 6.96721 0.311272
\(502\) 43.6531 1.94833
\(503\) −25.1092 −1.11956 −0.559782 0.828640i \(-0.689115\pi\)
−0.559782 + 0.828640i \(0.689115\pi\)
\(504\) 1.18533 0.0527987
\(505\) 0 0
\(506\) −50.3334 −2.23759
\(507\) −12.5860 −0.558965
\(508\) 5.99925 0.266174
\(509\) −20.8537 −0.924325 −0.462163 0.886795i \(-0.652926\pi\)
−0.462163 + 0.886795i \(0.652926\pi\)
\(510\) 0 0
\(511\) −4.21709 −0.186553
\(512\) 26.4529 1.16906
\(513\) 5.16312 0.227957
\(514\) 27.5046 1.21318
\(515\) 0 0
\(516\) 30.8089 1.35629
\(517\) −55.2303 −2.42903
\(518\) 16.6464 0.731402
\(519\) 9.32109 0.409150
\(520\) 0 0
\(521\) −30.2822 −1.32669 −0.663343 0.748315i \(-0.730863\pi\)
−0.663343 + 0.748315i \(0.730863\pi\)
\(522\) 18.8914 0.826854
\(523\) 13.0009 0.568490 0.284245 0.958752i \(-0.408257\pi\)
0.284245 + 0.958752i \(0.408257\pi\)
\(524\) 35.7533 1.56189
\(525\) 0 0
\(526\) −17.4991 −0.762996
\(527\) 4.74477 0.206685
\(528\) 14.2200 0.618847
\(529\) −4.68055 −0.203502
\(530\) 0 0
\(531\) 14.0781 0.610936
\(532\) 13.1936 0.572017
\(533\) 4.73771 0.205213
\(534\) 21.3692 0.924737
\(535\) 0 0
\(536\) −11.0828 −0.478704
\(537\) −20.5559 −0.887054
\(538\) 15.0583 0.649210
\(539\) −5.50983 −0.237325
\(540\) 0 0
\(541\) −13.5508 −0.582593 −0.291296 0.956633i \(-0.594087\pi\)
−0.291296 + 0.956633i \(0.594087\pi\)
\(542\) 34.2812 1.47250
\(543\) −16.7234 −0.717671
\(544\) 7.87903 0.337811
\(545\) 0 0
\(546\) 1.37324 0.0587693
\(547\) 28.3384 1.21166 0.605832 0.795593i \(-0.292841\pi\)
0.605832 + 0.795593i \(0.292841\pi\)
\(548\) 32.4904 1.38792
\(549\) 1.22749 0.0523882
\(550\) 0 0
\(551\) 45.6999 1.94688
\(552\) 5.07335 0.215936
\(553\) −7.23677 −0.307739
\(554\) −35.4175 −1.50475
\(555\) 0 0
\(556\) −1.59925 −0.0678232
\(557\) 21.6314 0.916552 0.458276 0.888810i \(-0.348467\pi\)
0.458276 + 0.888810i \(0.348467\pi\)
\(558\) −10.1269 −0.428706
\(559\) 7.75726 0.328097
\(560\) 0 0
\(561\) 5.50983 0.232625
\(562\) 65.4122 2.75925
\(563\) −7.56964 −0.319022 −0.159511 0.987196i \(-0.550992\pi\)
−0.159511 + 0.987196i \(0.550992\pi\)
\(564\) 25.6148 1.07858
\(565\) 0 0
\(566\) −32.6137 −1.37085
\(567\) 1.00000 0.0419961
\(568\) −4.02381 −0.168835
\(569\) −34.8187 −1.45968 −0.729838 0.683621i \(-0.760404\pi\)
−0.729838 + 0.683621i \(0.760404\pi\)
\(570\) 0 0
\(571\) 41.8796 1.75260 0.876302 0.481761i \(-0.160003\pi\)
0.876302 + 0.481761i \(0.160003\pi\)
\(572\) −9.05893 −0.378773
\(573\) −8.24929 −0.344619
\(574\) 15.7161 0.655978
\(575\) 0 0
\(576\) −11.6548 −0.485615
\(577\) −27.0110 −1.12448 −0.562242 0.826973i \(-0.690061\pi\)
−0.562242 + 0.826973i \(0.690061\pi\)
\(578\) 2.13433 0.0887764
\(579\) −25.0098 −1.03937
\(580\) 0 0
\(581\) −8.49261 −0.352333
\(582\) −3.90359 −0.161809
\(583\) 56.8409 2.35411
\(584\) −4.99864 −0.206845
\(585\) 0 0
\(586\) −47.6873 −1.96995
\(587\) 33.2666 1.37306 0.686529 0.727102i \(-0.259133\pi\)
0.686529 + 0.727102i \(0.259133\pi\)
\(588\) 2.55536 0.105381
\(589\) −24.4978 −1.00941
\(590\) 0 0
\(591\) −7.51729 −0.309220
\(592\) −20.1290 −0.827295
\(593\) −6.67275 −0.274017 −0.137009 0.990570i \(-0.543749\pi\)
−0.137009 + 0.990570i \(0.543749\pi\)
\(594\) −11.7598 −0.482511
\(595\) 0 0
\(596\) −3.79328 −0.155379
\(597\) −2.41445 −0.0988169
\(598\) 5.87764 0.240355
\(599\) 29.8095 1.21798 0.608991 0.793177i \(-0.291575\pi\)
0.608991 + 0.793177i \(0.291575\pi\)
\(600\) 0 0
\(601\) 39.2586 1.60139 0.800695 0.599072i \(-0.204464\pi\)
0.800695 + 0.599072i \(0.204464\pi\)
\(602\) 25.7327 1.04878
\(603\) −9.34997 −0.380760
\(604\) 5.25710 0.213908
\(605\) 0 0
\(606\) −2.36550 −0.0960919
\(607\) −10.1194 −0.410735 −0.205368 0.978685i \(-0.565839\pi\)
−0.205368 + 0.978685i \(0.565839\pi\)
\(608\) −40.6804 −1.64981
\(609\) 8.85121 0.358669
\(610\) 0 0
\(611\) 6.44947 0.260918
\(612\) −2.55536 −0.103294
\(613\) −14.2612 −0.576006 −0.288003 0.957629i \(-0.592991\pi\)
−0.288003 + 0.957629i \(0.592991\pi\)
\(614\) −36.5265 −1.47409
\(615\) 0 0
\(616\) −6.53097 −0.263140
\(617\) 28.7376 1.15693 0.578466 0.815706i \(-0.303651\pi\)
0.578466 + 0.815706i \(0.303651\pi\)
\(618\) 16.1369 0.649120
\(619\) −11.0280 −0.443252 −0.221626 0.975132i \(-0.571136\pi\)
−0.221626 + 0.975132i \(0.571136\pi\)
\(620\) 0 0
\(621\) 4.28012 0.171755
\(622\) −26.0794 −1.04569
\(623\) 10.0122 0.401128
\(624\) −1.66053 −0.0664745
\(625\) 0 0
\(626\) 19.7383 0.788903
\(627\) −28.4479 −1.13610
\(628\) −38.1222 −1.52124
\(629\) −7.79937 −0.310981
\(630\) 0 0
\(631\) −14.4693 −0.576012 −0.288006 0.957629i \(-0.592992\pi\)
−0.288006 + 0.957629i \(0.592992\pi\)
\(632\) −8.57795 −0.341213
\(633\) −26.6246 −1.05823
\(634\) 10.6598 0.423353
\(635\) 0 0
\(636\) −26.3618 −1.04531
\(637\) 0.643407 0.0254927
\(638\) −104.089 −4.12090
\(639\) −3.39468 −0.134291
\(640\) 0 0
\(641\) −2.58221 −0.101991 −0.0509956 0.998699i \(-0.516239\pi\)
−0.0509956 + 0.998699i \(0.516239\pi\)
\(642\) 9.14192 0.360803
\(643\) 1.51754 0.0598460 0.0299230 0.999552i \(-0.490474\pi\)
0.0299230 + 0.999552i \(0.490474\pi\)
\(644\) 10.9373 0.430989
\(645\) 0 0
\(646\) −11.0198 −0.433568
\(647\) −17.4697 −0.686806 −0.343403 0.939188i \(-0.611580\pi\)
−0.343403 + 0.939188i \(0.611580\pi\)
\(648\) 1.18533 0.0465641
\(649\) −77.5678 −3.04480
\(650\) 0 0
\(651\) −4.74477 −0.185962
\(652\) 38.4137 1.50439
\(653\) −5.53281 −0.216516 −0.108258 0.994123i \(-0.534527\pi\)
−0.108258 + 0.994123i \(0.534527\pi\)
\(654\) 26.0341 1.01802
\(655\) 0 0
\(656\) −19.0040 −0.741982
\(657\) −4.21709 −0.164524
\(658\) 21.3944 0.834041
\(659\) 15.7015 0.611644 0.305822 0.952089i \(-0.401069\pi\)
0.305822 + 0.952089i \(0.401069\pi\)
\(660\) 0 0
\(661\) 7.53083 0.292915 0.146458 0.989217i \(-0.453213\pi\)
0.146458 + 0.989217i \(0.453213\pi\)
\(662\) −47.1996 −1.83447
\(663\) −0.643407 −0.0249878
\(664\) −10.0665 −0.390657
\(665\) 0 0
\(666\) 16.6464 0.645036
\(667\) 37.8843 1.46689
\(668\) 17.8037 0.688848
\(669\) −21.6013 −0.835154
\(670\) 0 0
\(671\) −6.76329 −0.261094
\(672\) −7.87903 −0.303940
\(673\) 17.1440 0.660852 0.330426 0.943832i \(-0.392808\pi\)
0.330426 + 0.943832i \(0.392808\pi\)
\(674\) 47.8648 1.84368
\(675\) 0 0
\(676\) −32.1619 −1.23700
\(677\) −19.5065 −0.749697 −0.374849 0.927086i \(-0.622305\pi\)
−0.374849 + 0.927086i \(0.622305\pi\)
\(678\) 10.4804 0.402498
\(679\) −1.82896 −0.0701889
\(680\) 0 0
\(681\) −5.66803 −0.217200
\(682\) 55.7976 2.13660
\(683\) 45.8792 1.75552 0.877760 0.479101i \(-0.159037\pi\)
0.877760 + 0.479101i \(0.159037\pi\)
\(684\) 13.1936 0.504472
\(685\) 0 0
\(686\) 2.13433 0.0814891
\(687\) 3.34447 0.127599
\(688\) −31.1161 −1.18629
\(689\) −6.63755 −0.252870
\(690\) 0 0
\(691\) −33.2317 −1.26419 −0.632097 0.774890i \(-0.717805\pi\)
−0.632097 + 0.774890i \(0.717805\pi\)
\(692\) 23.8188 0.905454
\(693\) −5.50983 −0.209301
\(694\) 7.60425 0.288653
\(695\) 0 0
\(696\) 10.4916 0.397683
\(697\) −7.36348 −0.278912
\(698\) −13.4464 −0.508953
\(699\) −22.3728 −0.846218
\(700\) 0 0
\(701\) 29.0462 1.09706 0.548531 0.836130i \(-0.315187\pi\)
0.548531 + 0.836130i \(0.315187\pi\)
\(702\) 1.37324 0.0518297
\(703\) 40.2691 1.51878
\(704\) 64.2158 2.42022
\(705\) 0 0
\(706\) 30.9890 1.16629
\(707\) −1.10831 −0.0416823
\(708\) 35.9746 1.35201
\(709\) −1.29333 −0.0485720 −0.0242860 0.999705i \(-0.507731\pi\)
−0.0242860 + 0.999705i \(0.507731\pi\)
\(710\) 0 0
\(711\) −7.23677 −0.271400
\(712\) 11.8677 0.444761
\(713\) −20.3082 −0.760548
\(714\) −2.13433 −0.0798753
\(715\) 0 0
\(716\) −52.5279 −1.96306
\(717\) 16.3289 0.609814
\(718\) 23.4089 0.873612
\(719\) −14.5480 −0.542549 −0.271274 0.962502i \(-0.587445\pi\)
−0.271274 + 0.962502i \(0.587445\pi\)
\(720\) 0 0
\(721\) 7.56063 0.281572
\(722\) 16.3443 0.608270
\(723\) −30.3048 −1.12705
\(724\) −42.7345 −1.58821
\(725\) 0 0
\(726\) 41.3169 1.53342
\(727\) 3.10087 0.115005 0.0575024 0.998345i \(-0.481686\pi\)
0.0575024 + 0.998345i \(0.481686\pi\)
\(728\) 0.762648 0.0282656
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) −12.0566 −0.445928
\(732\) 3.13670 0.115936
\(733\) −38.5676 −1.42453 −0.712264 0.701912i \(-0.752330\pi\)
−0.712264 + 0.701912i \(0.752330\pi\)
\(734\) −43.0859 −1.59033
\(735\) 0 0
\(736\) −33.7232 −1.24305
\(737\) 51.5168 1.89765
\(738\) 15.7161 0.578518
\(739\) 9.89925 0.364150 0.182075 0.983285i \(-0.441719\pi\)
0.182075 + 0.983285i \(0.441719\pi\)
\(740\) 0 0
\(741\) 3.32198 0.122036
\(742\) −22.0183 −0.808317
\(743\) −11.2455 −0.412556 −0.206278 0.978493i \(-0.566135\pi\)
−0.206278 + 0.978493i \(0.566135\pi\)
\(744\) −5.62411 −0.206190
\(745\) 0 0
\(746\) 58.9788 2.15937
\(747\) −8.49261 −0.310728
\(748\) 14.0796 0.514802
\(749\) 4.28328 0.156508
\(750\) 0 0
\(751\) −20.2184 −0.737779 −0.368890 0.929473i \(-0.620262\pi\)
−0.368890 + 0.929473i \(0.620262\pi\)
\(752\) −25.8702 −0.943391
\(753\) 20.4528 0.745342
\(754\) 12.1549 0.442654
\(755\) 0 0
\(756\) 2.55536 0.0929377
\(757\) 25.9911 0.944664 0.472332 0.881421i \(-0.343412\pi\)
0.472332 + 0.881421i \(0.343412\pi\)
\(758\) 18.7335 0.680430
\(759\) −23.5828 −0.856000
\(760\) 0 0
\(761\) −38.8080 −1.40679 −0.703394 0.710800i \(-0.748333\pi\)
−0.703394 + 0.710800i \(0.748333\pi\)
\(762\) 5.01079 0.181522
\(763\) 12.1978 0.441590
\(764\) −21.0799 −0.762645
\(765\) 0 0
\(766\) −15.8089 −0.571198
\(767\) 9.05792 0.327063
\(768\) 3.85075 0.138952
\(769\) 17.2403 0.621701 0.310850 0.950459i \(-0.399386\pi\)
0.310850 + 0.950459i \(0.399386\pi\)
\(770\) 0 0
\(771\) 12.8868 0.464105
\(772\) −63.9090 −2.30014
\(773\) 39.3307 1.41463 0.707314 0.706899i \(-0.249907\pi\)
0.707314 + 0.706899i \(0.249907\pi\)
\(774\) 25.7327 0.924941
\(775\) 0 0
\(776\) −2.16791 −0.0778235
\(777\) 7.79937 0.279801
\(778\) 55.9848 2.00715
\(779\) 38.0185 1.36216
\(780\) 0 0
\(781\) 18.7041 0.669285
\(782\) −9.13519 −0.326674
\(783\) 8.85121 0.316317
\(784\) −2.58084 −0.0921730
\(785\) 0 0
\(786\) 29.8624 1.06516
\(787\) 28.6413 1.02095 0.510476 0.859892i \(-0.329469\pi\)
0.510476 + 0.859892i \(0.329469\pi\)
\(788\) −19.2094 −0.684307
\(789\) −8.19887 −0.291887
\(790\) 0 0
\(791\) 4.91040 0.174594
\(792\) −6.53097 −0.232068
\(793\) 0.789778 0.0280458
\(794\) −63.3732 −2.24903
\(795\) 0 0
\(796\) −6.16980 −0.218683
\(797\) 23.4749 0.831523 0.415762 0.909474i \(-0.363515\pi\)
0.415762 + 0.909474i \(0.363515\pi\)
\(798\) 11.0198 0.390097
\(799\) −10.0239 −0.354622
\(800\) 0 0
\(801\) 10.0122 0.353762
\(802\) −33.4975 −1.18284
\(803\) 23.2355 0.819962
\(804\) −23.8926 −0.842626
\(805\) 0 0
\(806\) −6.51572 −0.229506
\(807\) 7.05528 0.248358
\(808\) −1.31371 −0.0462162
\(809\) −8.05154 −0.283077 −0.141539 0.989933i \(-0.545205\pi\)
−0.141539 + 0.989933i \(0.545205\pi\)
\(810\) 0 0
\(811\) −46.0746 −1.61790 −0.808949 0.587879i \(-0.799963\pi\)
−0.808949 + 0.587879i \(0.799963\pi\)
\(812\) 22.6181 0.793739
\(813\) 16.0618 0.563313
\(814\) −91.7190 −3.21475
\(815\) 0 0
\(816\) 2.58084 0.0903476
\(817\) 62.2494 2.17783
\(818\) −69.4890 −2.42963
\(819\) 0.643407 0.0224824
\(820\) 0 0
\(821\) −22.2778 −0.777500 −0.388750 0.921343i \(-0.627093\pi\)
−0.388750 + 0.921343i \(0.627093\pi\)
\(822\) 27.1371 0.946516
\(823\) 40.2435 1.40280 0.701401 0.712767i \(-0.252558\pi\)
0.701401 + 0.712767i \(0.252558\pi\)
\(824\) 8.96183 0.312200
\(825\) 0 0
\(826\) 30.0472 1.04548
\(827\) −12.3160 −0.428270 −0.214135 0.976804i \(-0.568693\pi\)
−0.214135 + 0.976804i \(0.568693\pi\)
\(828\) 10.9373 0.380096
\(829\) −39.7303 −1.37989 −0.689945 0.723862i \(-0.742365\pi\)
−0.689945 + 0.723862i \(0.742365\pi\)
\(830\) 0 0
\(831\) −16.5942 −0.575647
\(832\) −7.49875 −0.259972
\(833\) −1.00000 −0.0346479
\(834\) −1.33575 −0.0462532
\(835\) 0 0
\(836\) −72.6948 −2.51420
\(837\) −4.74477 −0.164003
\(838\) −31.5827 −1.09101
\(839\) 30.7153 1.06041 0.530205 0.847870i \(-0.322115\pi\)
0.530205 + 0.847870i \(0.322115\pi\)
\(840\) 0 0
\(841\) 49.3440 1.70152
\(842\) 19.0696 0.657180
\(843\) 30.6476 1.05556
\(844\) −68.0355 −2.34188
\(845\) 0 0
\(846\) 21.3944 0.735555
\(847\) 19.3583 0.665158
\(848\) 26.6246 0.914294
\(849\) −15.2805 −0.524426
\(850\) 0 0
\(851\) 33.3822 1.14433
\(852\) −8.67463 −0.297188
\(853\) 32.8606 1.12513 0.562564 0.826754i \(-0.309815\pi\)
0.562564 + 0.826754i \(0.309815\pi\)
\(854\) 2.61988 0.0896504
\(855\) 0 0
\(856\) 5.07709 0.173531
\(857\) −38.1857 −1.30440 −0.652199 0.758048i \(-0.726153\pi\)
−0.652199 + 0.758048i \(0.726153\pi\)
\(858\) −7.56633 −0.258310
\(859\) −21.2418 −0.724759 −0.362380 0.932031i \(-0.618036\pi\)
−0.362380 + 0.932031i \(0.618036\pi\)
\(860\) 0 0
\(861\) 7.36348 0.250947
\(862\) 4.92798 0.167848
\(863\) −9.43641 −0.321219 −0.160610 0.987018i \(-0.551346\pi\)
−0.160610 + 0.987018i \(0.551346\pi\)
\(864\) −7.87903 −0.268050
\(865\) 0 0
\(866\) 15.1542 0.514959
\(867\) 1.00000 0.0339618
\(868\) −12.1246 −0.411536
\(869\) 39.8734 1.35261
\(870\) 0 0
\(871\) −6.01583 −0.203839
\(872\) 14.4584 0.489624
\(873\) −1.82896 −0.0619007
\(874\) 47.1661 1.59542
\(875\) 0 0
\(876\) −10.7762 −0.364094
\(877\) −8.76375 −0.295931 −0.147965 0.988993i \(-0.547272\pi\)
−0.147965 + 0.988993i \(0.547272\pi\)
\(878\) 22.8236 0.770258
\(879\) −22.3430 −0.753611
\(880\) 0 0
\(881\) 11.9829 0.403715 0.201858 0.979415i \(-0.435302\pi\)
0.201858 + 0.979415i \(0.435302\pi\)
\(882\) 2.13433 0.0718666
\(883\) −2.93723 −0.0988458 −0.0494229 0.998778i \(-0.515738\pi\)
−0.0494229 + 0.998778i \(0.515738\pi\)
\(884\) −1.64414 −0.0552983
\(885\) 0 0
\(886\) −34.8490 −1.17078
\(887\) −24.6824 −0.828755 −0.414377 0.910105i \(-0.636001\pi\)
−0.414377 + 0.910105i \(0.636001\pi\)
\(888\) 9.24481 0.310236
\(889\) 2.34771 0.0787397
\(890\) 0 0
\(891\) −5.50983 −0.184586
\(892\) −55.1992 −1.84820
\(893\) 51.7548 1.73191
\(894\) −3.16828 −0.105963
\(895\) 0 0
\(896\) −9.11704 −0.304579
\(897\) 2.75386 0.0919487
\(898\) 20.7734 0.693216
\(899\) −41.9970 −1.40068
\(900\) 0 0
\(901\) 10.3163 0.343684
\(902\) −86.5931 −2.88324
\(903\) 12.0566 0.401217
\(904\) 5.82044 0.193585
\(905\) 0 0
\(906\) 4.39092 0.145878
\(907\) −52.1775 −1.73253 −0.866263 0.499587i \(-0.833485\pi\)
−0.866263 + 0.499587i \(0.833485\pi\)
\(908\) −14.4839 −0.480665
\(909\) −1.10831 −0.0367603
\(910\) 0 0
\(911\) −2.72441 −0.0902639 −0.0451319 0.998981i \(-0.514371\pi\)
−0.0451319 + 0.998981i \(0.514371\pi\)
\(912\) −13.3252 −0.441242
\(913\) 46.7929 1.54862
\(914\) 58.8385 1.94621
\(915\) 0 0
\(916\) 8.54633 0.282379
\(917\) 13.9915 0.462039
\(918\) −2.13433 −0.0704434
\(919\) −47.2218 −1.55770 −0.778851 0.627209i \(-0.784197\pi\)
−0.778851 + 0.627209i \(0.784197\pi\)
\(920\) 0 0
\(921\) −17.1138 −0.563918
\(922\) −18.7849 −0.618647
\(923\) −2.18416 −0.0718924
\(924\) −14.0796 −0.463186
\(925\) 0 0
\(926\) 39.2216 1.28890
\(927\) 7.56063 0.248324
\(928\) −69.7390 −2.28929
\(929\) −39.4868 −1.29552 −0.647759 0.761845i \(-0.724294\pi\)
−0.647759 + 0.761845i \(0.724294\pi\)
\(930\) 0 0
\(931\) 5.16312 0.169214
\(932\) −57.1707 −1.87269
\(933\) −12.2190 −0.400032
\(934\) 72.4560 2.37083
\(935\) 0 0
\(936\) 0.762648 0.0249279
\(937\) 25.4530 0.831512 0.415756 0.909476i \(-0.363517\pi\)
0.415756 + 0.909476i \(0.363517\pi\)
\(938\) −19.9559 −0.651584
\(939\) 9.24803 0.301798
\(940\) 0 0
\(941\) −28.8529 −0.940577 −0.470288 0.882513i \(-0.655850\pi\)
−0.470288 + 0.882513i \(0.655850\pi\)
\(942\) −31.8410 −1.03744
\(943\) 31.5166 1.02632
\(944\) −36.3333 −1.18255
\(945\) 0 0
\(946\) −141.783 −4.60975
\(947\) −2.25238 −0.0731924 −0.0365962 0.999330i \(-0.511652\pi\)
−0.0365962 + 0.999330i \(0.511652\pi\)
\(948\) −18.4926 −0.600611
\(949\) −2.71331 −0.0880776
\(950\) 0 0
\(951\) 4.99443 0.161956
\(952\) −1.18533 −0.0384167
\(953\) −11.6851 −0.378518 −0.189259 0.981927i \(-0.560609\pi\)
−0.189259 + 0.981927i \(0.560609\pi\)
\(954\) −22.0183 −0.712868
\(955\) 0 0
\(956\) 41.7263 1.34952
\(957\) −48.7687 −1.57647
\(958\) 70.1967 2.26795
\(959\) 12.7146 0.410576
\(960\) 0 0
\(961\) −8.48716 −0.273779
\(962\) 10.7104 0.345318
\(963\) 4.28328 0.138027
\(964\) −77.4399 −2.49417
\(965\) 0 0
\(966\) 9.13519 0.293920
\(967\) 41.7296 1.34193 0.670967 0.741487i \(-0.265879\pi\)
0.670967 + 0.741487i \(0.265879\pi\)
\(968\) 22.9459 0.737510
\(969\) −5.16312 −0.165863
\(970\) 0 0
\(971\) −23.2889 −0.747377 −0.373688 0.927554i \(-0.621907\pi\)
−0.373688 + 0.927554i \(0.621907\pi\)
\(972\) 2.55536 0.0819633
\(973\) −0.625840 −0.0200635
\(974\) 87.4369 2.80166
\(975\) 0 0
\(976\) −3.16797 −0.101404
\(977\) 4.86330 0.155591 0.0777954 0.996969i \(-0.475212\pi\)
0.0777954 + 0.996969i \(0.475212\pi\)
\(978\) 32.0844 1.02595
\(979\) −55.1653 −1.76309
\(980\) 0 0
\(981\) 12.1978 0.389446
\(982\) 26.6281 0.849737
\(983\) 37.5117 1.19644 0.598218 0.801333i \(-0.295876\pi\)
0.598218 + 0.801333i \(0.295876\pi\)
\(984\) 8.72815 0.278243
\(985\) 0 0
\(986\) −18.8914 −0.601625
\(987\) 10.0239 0.319066
\(988\) 8.48888 0.270067
\(989\) 51.6035 1.64090
\(990\) 0 0
\(991\) 14.4990 0.460577 0.230288 0.973122i \(-0.426033\pi\)
0.230288 + 0.973122i \(0.426033\pi\)
\(992\) 37.3842 1.18695
\(993\) −22.1145 −0.701782
\(994\) −7.24536 −0.229809
\(995\) 0 0
\(996\) −21.7017 −0.687645
\(997\) 2.33799 0.0740450 0.0370225 0.999314i \(-0.488213\pi\)
0.0370225 + 0.999314i \(0.488213\pi\)
\(998\) −56.9818 −1.80373
\(999\) 7.79937 0.246761
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 8925.2.a.cx.1.11 14
5.2 odd 4 1785.2.g.g.1429.23 yes 28
5.3 odd 4 1785.2.g.g.1429.6 28
5.4 even 2 8925.2.a.cu.1.4 14
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1785.2.g.g.1429.6 28 5.3 odd 4
1785.2.g.g.1429.23 yes 28 5.2 odd 4
8925.2.a.cu.1.4 14 5.4 even 2
8925.2.a.cx.1.11 14 1.1 even 1 trivial